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1. Introduction and Preliminaries

The notion of Pettis integrable multifunction was first considered in [11, Chap-
ter 4] and has been pretty recently studied in [1, 7–10, 16, 18, 23, 24, 29, 30]. In
the last decades was made a great deal of work about measurable and inte-
grable multifunctions. Some pioneering and highly influential ideas and no-
tions around the matter were inspired by problems arising in Control Theory
and Mathematical Economics. We can cite the papers by Aumann [2] and
Debreu [12], the monographs by Castaing and Valadier [11], Klein and Thomp-
son [20], and the survey by Hess [17]. There are beautiful research results for
gauge integrals of multifunctions in the papers [3–7,14,15]. The definitions and
further properties of the integrals of multifunctions are depended on the exis-
tence of measurable selectors. The best results for the existence of measurable
selectors are achieved in the papers [9,10] by Cascales, Kadets, and Rodŕıguez.

In this paper we first prove that indefinite Pettis integral of multifunctions
in locally convex spaces is a µ-continuous strong multimeasure, Theorem 2.8.
Then, we present a full characterization of strong multimeasures in terms of
weak multimeasures, Theorem 2.10.

Throughout this paper X is a complete Hausdorff locally convex space with
the topology τ and P the family of all τ -continuous seminorms. For any p ∈P,
we denote by X̃p the quotient vector space X/p−1(0), by ϕp : X → X̃p the

canonical quotient map, by (X̃p, p̃) the quotient normed space and by (Xp, p)
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the completion of (X̃p, p̃). It is easy to see that

X ′ =
⋃
p∈P

X ′p, (1)

where X ′ is the topological dual of X and X ′p is the topological dual of (X, p)

(p ∈P), and since X ′p = {x̃′p ◦ ϕp : x̃′p ∈ X̃ ′p} it follows that

X ′ =
{
x̃′p ◦ ϕp : x̃′p ∈ X̃ ′p, p ∈P

}
, (2)

where X̃ ′p is the topological dual of (X̃p, p̃) (p ∈ P). Define the continuous
linear maps g̃pq and gpq (p, q ∈ P; p ≤ q) as follows: for each p, q ∈ P such

that p ≤ q, the map g̃pq : X̃q → X̃p is defined by

g̃pq(ϕq(x)) = ϕp(x), for each x ∈ X;

gpq is the continuous linear extension of g̃pq to Xq. We denote by

lim
←−

g̃pq X̃q and lim
←−

gpq Xq

the projective limits of {(X̃p, p̃) : p ∈ P} and
{(
Xp, p

)
: p ∈P

}
with respect

to the mappings (g̃pq) and (gpq) respectively, cf. [26, p.52]. The following lemma
is obtained by [26, II.5.4, p.53].

Lemma 1.1. Let X be a complete Hausdorff locally convex space and let P be
the family of all continuous seminorms. Then,

L = lim←− g̃pq X̃q = lim←− gpq Xq ⊂ X̃P =
∏
p∈P

X̃p ⊂ XP =
∏
p∈P

Xp, (3)

and the function
ϕ : X → L, ϕ(x) = (ϕp(x))p∈P (4)

is an isomorphism of (X, τ) onto (L, τL), where τL is the induced topology in

L by the product topology in XP (or by the product topology in X̃P).

By cwk(X) the family of all nonempty convex weakly compact (or σ(X,X ′)-
compact) subsets of X is denoted; cwk(X) is considered with Minkowski ad-
dition: A ⊕ B = A+B; so, A ⊕ B = A + B whenever A,B ∈ cwk(X).

Since the function ϕp : (X, τ) → (X̃p, p̃) is linear and continuous, we ob-
tain by [25, Proposition II.6.13, p.39] that the function ϕp : (X,σ(X,X ′)) →
(X̃p, σ(X̃p, X̃

′
p)) is also continuous for every p ∈P. Therefore,

ϕp(cwk(X)) ⊂ cwk
(
X̃p

)
, p ∈P,
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and since cwk
(
X̃p

)
⊂ cwk

(
Xp

)
it follows that

ϕp(cwk(X)) ⊂ cwk
(
Xp

)
, p ∈P, (5)

where

ϕp(cwk(X)) = {ϕp(C) : C ∈ cwk(X)} and ϕp(C) =
{
ϕp(c) ∈ X̃p : c ∈ C

}
.

For any C ∈ cwk(X) and x′ ∈ X ′, we write

δ∗(x′, C) = sup {x′(c) : c ∈ C} .

Let (Ω,Σ, µ) be a complete probability space.

Definition 1.2. A function f : Ω→ X is said to be scalarly measurable if, for
each x′ ∈ X ′ the composition x′◦f : Ω→ R is measurable, i.e. (x′◦f)−1(B) ∈ Σ
for all Borel subsets B ⊂ R. f is said to be Pettis integrable if

(i) x′ ◦ f ∈ L1(µ) for every x′ ∈ X ′,

(ii) for each A ∈ Σ there exists a vector
∫
A
fdµ ∈ X such that

x′
(∫

A

fdµ

)
=

∫
A

x′ ◦ fdµ for every x′ ∈ X ′;

the vector
∫
A
fdµ is said to be Pettis integral of f over A; the map

νf : Σ→ X, νf (A) =

∫
A

fdµ

is said to be the indefinite Pettis integral of f ; νf is a countably additive µ-
continuous vector measure, see Corollary 2.9; a vector measure ν : Σ → X
is said to be µ-continuous if for each A ∈ Σ, we have µ(A) = 0 implies that
ν(A) = 0. We refer to [13, 21–24, 27] for the detailed information about Pettis
integral.

A map F : Ω→ cwk(X) is called a multifunction; a function f : Ω→ X is
called a selector of F if f(ω) ∈ F (ω) for every ω ∈ Ω.

Definition 1.3. We say that a multifunction F : Ω → cwk(X) is p-scalarly
measurable if for every x′p ∈ X ′p, the map δ∗(x′p, F (·)) is measurable; F is said to
be scalarly measurable if for every x′ ∈ X ′, the map δ∗(x′, F (·)) is measurable;
by (1), F is scalarly measurable if and only if F is p-scalarly measurable for
every p ∈P.

We say that F is p-scalarly integrable if δ∗(x′p, F (·)) ∈ L1(µ) for every
x′p ∈ X ′p; F is said to be scalarly integrable if δ∗(x′, F (·)) ∈ L1(µ) for every
x′ ∈ X ′; (so, F is scalarly integrable if and only if F is p-scalarly integrable
for every p ∈P).
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Given a multifunction F : Ω→ cwk(X), by virtue of (5) we can define

F̃p : Ω→ cwk
(
Xp

)
, F̃p(ω) = ϕp(F (ω)), ω ∈ Ω, p ∈P,

where ϕp(F (ω)) =
{
ϕp(x) ∈ X̃p : x ∈ F (ω)

}
.

Definition 1.4. We say that a multifunction F : Ω → cwk(X) is the Pettis
integrable if

(i) F is scalarly integrable;

(ii) for every A ∈ Σ there exists IF (A) ∈ cwk(X) such that

δ∗ (x′, IF (A)) =

∫
A

δ∗(x′, F )dµ, for every x′ ∈ X ′.

We set IF (A) =
∫
A
Fdµ and call IF (A) Pettis integral of F over A; the map

IF : Σ→ cwk(X), IF (A) =

∫
A

Fdµ

is said to be the indefinite Pettis integral of F . We will prove that IF (·) is a
µ-continuous strong multimeasure, see Theorem 2.8.

Given a sequence (Bn) in cwk(X), the symbol
∑+∞
n=1Bn denotes a formal

series. The series
∑+∞
n=1Bn is said to be unconditionally convergent in X if for

every choice bn ∈ Bn, n ∈ N, the series
∑+∞
n=1 bn is unconditionally convergent

in X. In this case, we set

+∞∑
n=1

Bn =

{
+∞∑
n=1

bn : bn ∈ Bn for all n ∈ N

}
;

it is easy to see that
∑+∞
n=1Bn is a convex subset of X.

A map M : Σ → cwk(X) is said to be a finitely additive multimeasure if
M(A ∪ B) = M(A) + M(B) whenever A,B ∈ Σ are disjoint; M is said to
be a strong multimeasure (or a countably additive multimeasure), if for every
pairwise disjoint sequence (An) in Σ the series

∑+∞
n=1M(An) is unconditionally

convergent and

M

(
+∞⋃
n=1

An

)
=

+∞∑
n=1

M(An).

The map M is said to be a weak multimeasure if δ∗(x′,M) is countably additive
for every x′ ∈ X ′. We are going to prove that M is a strong multimeasure if
and only if M is a weak multimeasure which is a well-known result in Banach
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spaces, see [9, Theorem 3.4]. The last result can be seen as the set-valued
version of well-known fact that weakly countably additive vector measures are
norm countably additive (Orliz-Pettis theorem, cf. [13, Corollary I.4.4, p.22]).
M is said to be µ-continuous if for each A ∈ Σ, we have that µ(A) = 0 implies
that M(A) = {0}.

2. The Main Results

A series
∑+∞
n=1 cn of elements cn ∈ X, n ∈ N, is said to be unconditionally

convergent if it converges for every rearrangement of its terms, i.e. if the series∑+∞
n=1 cπ(n) converges whenever π is a one-to-one mapping of N onto N.

Lemma 2.1. If series
∑+∞
n=1 cn of elements cn ∈ X, n ∈ N is unconditionally

convergent, then all rearrangements have the same sum.

Proof. Let π : N→ N be a permutation. We write
∑
n cn = a and

∑
n cπ(n) =

aπ. Given x′ ∈ X ′ the series
∑
n x
′(cn) is unconditionally convergent and its

sum is the same for every rearrangement. It follows that x′(a) = x′(aπ) for
every x′ ∈ X ′. Hence, a = aπ and that finished the proof.

Corollary 2.2. If the series
∑+∞
n=1 ϕp(cn) is unconditionally convergent for

every p ∈P, then the series
∑+∞
n=1 cn is also unconditionally convergent.

Proof. Suppose that
∑
n ϕp(cn) is unconditionally convergent for every p ∈P

but there exists a rearrangement (mn)n of N such that
∑
n cmn

is divergent.
Since X is complete, it means that

∑
n cmn

does not satisfy the Cauchy con-
dition, i.e. there exists a sequence (Nk)k of pairwise disjoint sets Nk ⊂ N such
that supNk < inf Nk+1 and the sequence

(∑
n∈Nk

cmn

)
k

does not converge to
zero. Hence, there exists p ∈P such that

lim
k→∞

p̃

(∑
n∈Nk

ϕp(cmn)

)
= lim
k→∞

p

(∑
n∈Nk

cmn

)
6= 0.

The last result contradicts the unconditionally convergence of
∑
n ϕp(cn).

Therefore,
∑
n cn is unconditionally convergent and this ends the proof.

Corollary 2.3. The series
∑+∞
n=1 cn is unconditionally convergent if and only

if the series
∑+∞
n=1 ϕp(cn) is unconditionally convergent for every p ∈ P. In

this case, we have

ϕp

(
+∞∑
n=1

cn

)
=

+∞∑
n=1

ϕp(cn) for every p ∈P.

The next lemma follows immediately from Corollary 2.3.
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Lemma 2.4. The series
∑+∞
n=1Bn is unconditionally convergent in X if and

only if the series
∑+∞
n=1 ϕp(Bn) is unconditionally convergent in the Banach

space Xp for every p ∈P.

Given p ∈P and C ∈ cwk(X) we write

p(C) = sup
c∈C

p(c) and p̃(ϕp(C)) = sup
c∈C

p̃(ϕp(c)).

A series
∑+∞
n=1 ϕp(Bn) is unconditionally convergent in the Banach space Xp

if and only if given ε > 0 there exists npε ∈ N such that

p̃

(∑
i∈S

ϕp(Bi)

)
≤ ε

whenever S is a finite subset of N\{1, . . . , npε}, see [7, p.4]. Hence, by equalities

∑
i∈S

ϕp(Bi) = ϕp

(∑
i∈S

Bi

)
and p̃(ϕp(x)) = p(x) (x ∈ X)

we obtain immediately the following corollary.

Corollary 2.5. The series
∑+∞
n=1Bn is unconditionally convergent if and only

if for each p ∈P and for each ε > 0 there exists npε ∈ N such that

p

(∑
i∈S

Bi

)
≤ ε

whenever S is a finite subset of N \ {1, . . . , npε}.

The next lemma is proved in the same manner as [7, Lemma 2.2].

Lemma 2.6. Let
∑+∞
n=1Bn be an unconditionally convergent series and let B =∑+∞

n=1Bn. Then B ∈ cwk(X).

Proof. Let us consider the mapping

T :

+∞∏
n=1

(Bn, σn)→ (X,σ(X,X ′)), T ((bn)n) =

+∞∑
n=1

bn,

where σn is the induced topology in Bn by the weak topology σ(X,X ′). It is
enough to prove that T is a continuous function, since

∏+∞
n=1(Bn, σn) is a com-

pact topological space with respect to the product topology by [19, Tychonoff’s
Theorem] and, therefore, B is σ(X,X ′)-compact subset of X.
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By βσ(X,X′)(0) a 0-neighborhood base with respect to the weak topology

σ(X,X ′) is denoted. Assume that an arbitrary element b = (bn) ∈
∏+∞
n=1Bn

and an arbitrary neighborhood U ∈ βσ(X,X′)(0) are given. Since the function

f : (X, τ)× (X,σ(X,X ′))→ (X,σ(X,X ′)), f(x, y) = x+ y

is continuous, given U there exists a (0, 0)-neighborhood Up(ε)×V in (X, τ)×
(X,σ(X,X ′)) such that Up(ε) + V ⊂ U , where Up(ε) = {x ∈ X : p(x) ≤ ε}.
Hence, by Corollary 2.5 there exists npε ∈ N such that

p

(∑
i∈S

Bi

)
≤ ε

2
,

whenever S is a finite subset of N \ {1, . . . , npε}. There exist 0-neighborhoods
W1, . . . ,Wpε in βσ(X,X′)(0) such that W1 + . . .+Wpε ⊂ V . Define Cn = Bn ∩
(bn +Wn) for every 1 ≤ n ≤ npε, Cn = Bn for every n > npε and C =

∏
n Cn.

Then C is a neighborhood of b = (bn) such that for each b′ = (b′n) ∈ C, we
have

T (b′) =

+∞∑
n=1

b′n =

npε∑
n=1

b′n +

+∞∑
npε+1

b′n ∈
npε∑
n=1

(bn +Wn) +

+∞∑
npε+1

b′n

=

npε∑
n=1

bn +

+∞∑
npε+1

b′n +

npε∑
n=1

Wn ⊂
+∞∑
n=1

bn +

+∞∑
npε+1

(b′n − bn) + V

⊂ T (b) + Up(ε) + V ⊂ T (b) + U = T (b) + U.

Since b and U were arbitrary, the last result yields that T is continuous and
the proof is finished.

Lemma 2.7. Let F : Ω→ cwk(X) be a multi-function. Then,

(i) F is scalarly measurable if and only if F̃p is scalarly measurable for every
p ∈P,

(ii) F is scalarly integrable if and only if F̃p is scalarly integrable for every
p ∈P,

(iii) if F is Pettis integrable, then each F̃p is Pettis integrable and

ϕp

(∫
A

Fdµ

)
=

∫
A

F̃pdµ, A ∈ Σ, p ∈P. (6)

Proof. Assume that F is scalarly measurable (scalarly integrable) and let p ∈
P. Given x̃′p ∈ X̃ ′p we have δ∗

(
x̃′p, F̃p(·)

)
= δ∗

(
x′p, F (·)

)
where x′p = x̃′p ◦ ϕp.

So, F̃p is scalarly measurable (scalarly integrable).
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Conversely, assume that F̃p is scalarly measurable (scalarly integrable) for
every p ∈P, and let x′ be an arbitrary element of X ′. Then, there exists p ∈P
such that x′ = x′p ∈ X ′p; further there exists x̃′p ∈ X̃ ′p such that x′p = x̃′p ◦ ϕp.
Since

δ∗ (x′, F (·)) = δ∗
(
x′p, F (·)

)
= δ∗

(
x̃′p, F̃p(·)

)
and δ∗

(
x̃′p, F̃p(·)

)
is measurable (integrable) it follows that δ∗ (x′, F (·)) is mea-

surable (integrable). Since x′ was arbitrary we infer that F is scalarly measur-
able (scalarly integrable).

(iii) Assume that F is Pettis integrable and let p ∈P, A ∈ Σ and x̃′p ∈ X̃ ′p.
Then, by Definition 1.4 we have

δ∗
(
x̃′p, ϕp

(∫
A

Fdµ

))
=δ∗

(
x̃′p ◦ ϕp,

∫
A

Fdµ

)
=

∫
A

δ∗
(
x̃′p ◦ ϕp, F (ω)

)
dµ

=

∫
A

δ∗
(
x̃′p ◦ ϕp, F (ω)

)
dµ

=

∫
A

δ∗
(
x̃′p, ϕp[F (ω)]

)
dµ =

∫
A

δ∗
(
x̃′p, F̃p(ω)

)
dµ.

The last result together with (ii) yields that F̃p is Pettis integrable and (6)
holds, and this ends the proof.

We are now ready to present the first main result.

Theorem 2.8. If F : Ω → cwk(X) is a Pettis integrable multifunction, then
the indefinite Pettis integral IF (·) is a µ-continuous strong multimeasure.

Proof. Let (An) be a pairwise disjoint sequence in Σ and let A =
⋃+∞
n=1An.

By Lemma 2.7 we have that each F̃p is Pettis integrable and ϕp
(∫
B
Fdµ

)
=∫

B
F̃pdµ for every B ∈ Σ and p ∈P. Therefore, by [9, Theorem 4.1] we obtain

that the series
∑+∞
n=1

∫
An

F̃pdµ is unconditionally convergent and

+∞∑
n=1

∫
An

F̃pdµ =

∫
A

F̃pdµ, for every p ∈P.

So,

+∞∑
n=1

ϕp

(∫
An

Fdµ

)
= ϕp

(∫
A

Fdµ

)
, for every p ∈P.
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Hence,

0 = lim
k→∞

p̃

(
k∑

n=1

ϕp

(∫
An

Fdµ

)
− ϕp

(∫
A

Fdµ

))

= lim
k→∞

p̃

[
ϕp

(
k∑

n=1

∫
An

Fdµ−
∫
A

Fdµ

)]

= lim
k→∞

p

(
k∑

n=1

∫
An

Fdµ−
∫
A

Fdµ

)

whenever p ∈P. Therefore,

+∞∑
n=1

∫
An

Fdµ =

∫
A

Fdµ.

This means that IF is a strong multimeasure.

It remains to prove that IF is µ-continuous. Let A ∈ Σ be such that
µ(A) = 0 and let xA ∈ IF (A). Then for every x′ ∈ X ′, we have

δ∗(x′, IF (A)) =

∫
A

δ∗(x′, F (ω))dµ = 0

and δ∗(−x′, IF (A)) =
∫
A
δ∗(−x′, F (ω))dµ = 0. It follows that x′(xA) = 0 for

every x′ ∈ X ′. Hence, xA = 0 and, therefore, IF (A) = {0}. This means that
IF is µ-continuous and this ends the proof.

Corollary 2.9. If f : Ω→ X is a Pettis integrable function, then the indefi-
nite Pettis integral νf is a countably additive µ-continuous vector measure.

Given a map M : Σ→ cwk(X), by virtue of (5) we can define

M̃p : Σ→ cwk
(
Xp

)
, M̃p(A) = ϕp(M(A)), A ∈ Σ, p ∈P,

where ϕp(M(A)) =
{
ϕp(x) ∈ X̃p : x ∈M(A)

}
.

Theorem 2.10. Let M : Σ → cwk(X) be a function. Then the following
statements are equivalent:

(i) M is a strong multimeasure,

(ii) M is a weak multimeasure.
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Proof. (i) ⇒ (ii) Assume that M is a strong multimeasure, let (An) be a
pairwise disjoint sequence in Σ with A =

⋃+∞
n=1An and let x′ ∈ X ′. Then,

there exists p ∈ P such that x′ = x′p ∈ X ′p. Hence, there exists x̃′p ∈ X̃ ′p such
that x′p = x̃′p ◦ ϕp. Thus,

δ∗(x′,M(A)) =δ∗(x′p,M(A)) = δ∗(x̃′p ◦ ϕp,M(A)) = δ∗(x̃′p, M̃p(A)). (7)

By Lemma 2.4 and Lemma 2.6 we obtain that M̃p is a countably additive
multimeasure in Xp and

M̃p(A) =

+∞∑
n=1

M̃p(An).

The last result together with [9, Theorem 3.4] yields

δ∗(x̃′p, M̃p(A)) =

+∞∑
n=1

δ∗(x̃′p, M̃p(An)) for every x̃′p ∈ X̃ ′p. (8)

Since for each n ∈ N, δ∗(x̃′p, M̃p(An)) = δ∗(x′p,M(An)), we obtain by (7)
and (8) that

δ∗(x′,M(A)) =δ∗(x′p,M(A)) =

+∞∑
n=1

δ∗(x′p,M(An)) =

+∞∑
n=1

δ∗(x′,M(An)).

This means that δ∗(x′,M) is countably additive.
(ii)⇒ (i) Assume that M is a weak multimeasure. Then, given p ∈P we

have that δ∗(x̃′p, M̃p) is countably additive for every x̃′p ∈ X̃ ′p. Therefore, by [9,

Theorem 3.4], M̃p is a countably additive multimeasure. Hence, by Lemma 2.4
and Lemma 2.6 it follows that M is a countably additive multimeasure and
this ends the proof.
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