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1. Introduction

The mapping property of the fractional integral operators on Lebesgue spaces
is one of the important topics in harmonic analysis, theory of function spaces
and partial differential equations. It is related to the embedding properties
of Sobolev spaces and homogeneous Sobolev spaces [25]. It is also a major
component in fractional calculus [37]. Furthermore, it is used to establish the
restriction theorem of Fourier transform [41, Chapter VIII, Section 4].

The study of the fractional integral operators (Riesz potential) was ini-
tialized by Riesz in [36]. The mapping properties of the fractional integral
operators were extended to Morrey spaces by Spanne (result published in [35])
and Adams [1]. They show that the fractional integral operator Iα is bounded
from Mp

r to Mq
r when 0 < p < n

α and 0 ≤ r < n satisfy 1
p −

1
q = α

n for the

Spanne’s result and 1
p −

1
q = α

n−r for the Adams’s result. Notice that for both
results of Spanne and Adams, they require p < q.

The mapping properties of the fractional integral operators on Morrey
spaces provide some estimates and inequalities for the studies of partial dif-
ferential equation [17, 30, 34].

Recently, the mapping properties of the fractional integral operators have
been extended to a number of Morrey type spaces such as the generalized Mor-
rey spaces [9, 20, 31], the Orlicz-Morrey spaces [33, 38], the Morrey spaces with
variable exponent [3, 10, 12, 14, 15, 28, 29, 27], the weak Morrey spaces [19]
and local Morrey spaces [5, 4, 11, 18]. Roughly speaking, the above mentioned
results are generalizations of the Spanne and the Adams results in different set-
tings. For instance, for those results on Morrey spaces with variable exponent

M
p(·)
u in [12], we find that Iα : M

p(·)
u → M

q(·)
u is bounded when p(·) and q(·)
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satisfy 1
p(·) −

1
q(·) = α

n and some other conditions. Therefore, we see that we

also have p(·) ≤ q(·).
To obtain a complete description on the mapping properties of the fractional

integral operators on Morrey spaces, it is natural to investigate the mapping
properties for Iα acting from Mp

r to Mq
r when 0 < q ≤ p < n

α .
From the study of the fractional integral operator on Lebesgue spaces, we

find that 1
p−

α
n = 1

q is a necessary condition for the boundedness of Iα : Lp → Lq

[40, Chapter V, Section 1.2]. Hence, the condition p < q is also a necessary
condition.

On the other hand, when we consider Lebesgue space defined on general
Borel measure instead of Lebesgue measure, we have positive results.

The results for the mapping properties of Iα with Lebesgue spaces on
Borel measure as the target function space [25, Section 8] give us direction
for the study on Morrey spaces. In [25], we see that for the case q ≤ p on
Lebesgue spaces, we have positive results when we consider Iα as a mapping
from Lebesgue space to Lebesgue space on a Borel measure when this Borel
measure satisfies some conditions involving capacity.

Therefore, the main theme of this paper is to extend this result to Morrey
spaces. Roughly speaking, when the Borel measure satisfies the requirements
for the boundedness properties of Iα on Lebesgue spaces, then Iα is also a
bounded operator from the Morrey spaces to the Morrey space built on the
given Borel measure. As applications of our main results, we have the Poincaré
and the Sobolev inequalities on Borel-Morrey spaces.

This paper is organized as follows. Some definitions and the mapping prop-
erties for the fractional integral operators on Lebesgue spaces for the case q ≤ p
are presented in Section 2. The boundedness properties for the fractional in-
tegral operators from Morrey spaces to Borel-Morrey spaces are established in
Section 3.

2. Fractional integral operator on Lebesgue spaces

This section aims to present the mapping properties of the fractional integral
operators from Lebesgue spaces Lp to Lebesgue spaces on Borel measure Lq(µ)
with q ≤ p.

For any x ∈ Rn and r > 0, write B(x, r) = {y : |y − x| < r}. Define
B = {B(x, r) : x ∈ Rn, r > 0}.

For any positive locally finite Borel measure ω on Rn and E being a ω
measurable set, we write ω(E) =

∫
E
dω. Let M(ω) be the collection of ω

measurable functions. For any 1 ≤ p <∞, define

Lp(ω) =

{
f ∈M(ω) : ‖f‖Lp(ω) =

(∫
Rn
|f(x)|pdω

)1/p

<∞

}
.
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When ω is the Lebesgue measure, for brevity, we writeM(ω) =M and Lp(ω) =
Lp.

For any 0 < α < n and Lebesgue measurable function f , the fractional
integral operator (Riesz potentials) Iα is defined as

Iαf(x) =

∫
Rn

f(y)

|x− y|n−α
dy.

Let 0 < α < n and ω be a locally finite Borel measure. We define

Iαω(x) =

∫
Rn

dω(y)

|x− y|n−α
.

As the condition that guarantees the mapping properties for the fractional
integral operator involves the notion of capacity, we recall the definition of
capacity from [25, Section 7.2.1].

Let 1 < p < ∞, α > 0 and ∆ be the Laplacian. The Riesz potential space
hαp consists of those Lebesgue measurable function g satisfying

‖g‖hαp = ‖(−∆)α/2g‖Lp <∞.

For any compact set E, the capacity associated with the Riesz potential
space hαp is defined as

capp,α(E) = inf
{
‖g‖phαp : g ∈ C∞0 , g ≥ 1 onE

}
.

Definition 2.1. Let 0 < α < n and 1 ≤ q < p < ∞. For any positive locally
finite Borel measure ω, we write ω ∈ Cp,q,α if there is a constant C > 0 such
that for any collection of open sets {Ek}k∈Z with Ēk+1 ⊂ Ek, k ∈ Z, we have

∞∑
k=−∞

(
ω(Ek)− ω(Ek+1)

capp,α(Ek)q/p

) p
p−q

< C.

A sufficient condition for ω ∈ Cp,q,α is given in [25, Section 8.4.3]. When
q = 1, [25, Section 8.4.4, Theorem 2] assures that ω ∈ Cp,1,α if ‖Tω‖Lp′ < ∞
where T is either the Riesz potential or the Bessel potential.

We now present the mapping properties for the fractional integral operator
on Lebesgue spaces for the case q < p.

Theorem 2.2. Let 0 < α < n, 1 ≤ q < p < n
α and ω be a positive locally finite

Borel measure on Rn. If ω ∈ Cp,q,α, then there exists a constant C > 0 such
that for any f ∈ Lp, we have

‖Iαf‖Lq(ω) ≤ C‖f‖Lp . (1)
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The above result is obtained by Maz’ja [25]. For the case p = q, we have
the following result [2] and [26, Section 11.5, Theorem 2].

Theorem 2.3. Let 0 < α < n, 1 < p < ∞ and ω be a positive locally finite
Borel measure on Rn. There exists a constant C1 > 0 such that for any f ∈ Lp,
we have

‖Iαf‖Lp(ω) ≤ C1‖f‖Lp (2)

if and only if there exists constant C0 > 0 such that

Iα((Iαω)p
′
)(x) ≤ C0Iαω(x), a.e. (3)

The reader is referred to [25, Sections 8.3 and 8.4.2] and [2] for the proofs
of Theorems 2.2 and 2.3, respectively. The result presented in [25, Sections
8.3 and 8.4.2] is in term of the embedding from the Riesz potential spaces to
Lebesgue spaces. In view of the definition of Riesz potential spaces, it is easy to
see that it is equivalent with the boundedness of the fractional integral operator
presented in (1).

The reader is referred to [13, 16, 24, 32] for the mapping properties of the
fractional integral operators on rearrangement-invariant quasi-Banach function
spaces, modular spaces, Herz spaces and some other function spaces appeared
in analysis.

The above theorem gives us the direction and foundation for the study
of the fractional integral operators on Morrey spaces with q < p in the next
section.

3. Main result

The main result of this paper is presented and established in this section. We
begin with the definitions of Morrey spaces.

Definition 3.1. Let 1 < p <∞ and ω be a positive locally finite Borel measure
on Rn. Let u : B → (0,∞). The Borel-Morrey space Mp

u(ω) consists of f ∈
M(ω) satisfying

‖f‖Mp
u(ω) = sup

B∈B

1

u(B)
‖χBf‖Lp(ω) <∞.

In particular, the Morrey space Mp
u consists of all f ∈M satisfying

‖f‖Mp
u

= sup
B∈B

1

u(B)
‖χBf‖Lp <∞.

When 1 ≤ p ≤ r <∞ and u(B) = |B|
1
p−

1
r , Mp

u reduces to the classical Morrey
space introduced by Morrey in [30]. Furthermore, the family of Morrey spaces
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defined in Definition 3.1 also covers the generalized Morrey spaces studied
in [31].

The main result of this paper is presented in the following theorems.

Theorem 3.2. Let 0 < α < n, 1 ≤ q < p < n
α , ω be a positive locally finite

Borel measure on Rn and u : B → (0,∞). If ω ∈ Cp,q,α and there is a constant
C > 0 such that for any x ∈ Rn and r > 0, u satisfies

u(B(x, 2r)) ≤ Cu(B(x, r)) , (4)
∞∑
j=0

(
ω(B(x, r))

ω(B(x, 2j+1r))

)1/q

u(B(x, 2j+1r)) ≤ Cu(B(x, r)), (5)

then there exists a constant K > 0 such that for any f ∈Mp
u , we have

‖Iαf‖Mq
u(ω) ≤ K‖f‖Mp

u
.

We give an example for Theorem 3.2. Since p < n
α , we have α

n + 1
p′ < 1.

Thus (αn + 1
p′ , 1) 6= ∅.

Let ε ∈ (αn + 1
p′ , 1), θ = ε

α
n+ 1

p′
. We have θ > 1 and ε

θ −
1
p′ = α

n . Let

f ∈ Lθ(Rn). Define g = (Mf)ε where M is the Hardy-Littlewood maximal
function on Rn. In view of [8, Theorem 6.1.3], we have

‖Iαg‖Lp′ ≤ C‖g‖Lθ/ε = C‖(Mf)ε‖Lθ/ε = C‖Mf‖εLθ ≤ C‖f‖
ε
Lθ <∞ ,

where we use the boundedness of the Hardy-Littlewood maximal function on
Lθ because θ > 1. Let dω = gdx. According to [25, Section 8.4.4, Theorem 2],
we have ω ∈ Cp,1,α.

In view of [8, Theorem 9.2.8], ω ∈ A1 where A1 is the Muckenhoupt class
of weight functions. For simplicity, we refer the reader to [8, Chapter 9] for the
definition and properties of the Muckenhoupt class of weight functions.

According to [8, (9.3.3) and Theorem 9.3.3 (d)], we have a ε0 > 0 such that
for any r > 0, j ∈ N and x ∈ Rn,

ω(B(x, r))

ω(B(x, 2jr))
≤ C22−jnε0 (6)

for some C2 > 0.
Let s ∈ [0, 1) and u(B) = ω(B)s, B ∈ B. By using (6), we have

∞∑
j=0

ω(B(x, r))

ω(B(x, 2j+1r))

u(B(x, 2j+1r))

u(B(x, r))
=

∞∑
j=0

(
ω(B(x, r))

ω(B(x, 2j+1r))

)1−s

< C

for some C > 0. Thus, (5) is fulfilled for u and ω.



6 KWOK-PUN HO

In view of [8, Proposition 9.1.5 (9)], we have

u(B(x, 2r)) = ω(B(x, 2r))s ≤ Cω(B(x, r))s = Cu(B(x, r)).

Therefore, (4) is satisfied for u.
Theorem 3.2 gives the mapping properties of Iα from Morrey spaces to

Borel-Morrey spaces for the case q < p. The subsequent result gives the corre-
sponding result for the case p = q.

Theorem 3.3. Let 0 < α < n, 1 < p < n
α , ω be a positive locally finite Borel

measure on Rn and u : B → (0,∞). If ω satisfies (3) and there is a constant
C > 0 such that for any x ∈ Rn and r > 0, u satisfies

u(B(x, 2r)) ≤ Cu(B(x, r)) , (7)
∞∑
j=0

(
ω(B(x, r))

ω(B(x, 2j+1r))

)1/p

u(B(x, 2j+1r)) ≤ Cu(B(x, r)), (8)

then there exists a constant C0 > 0 such that for any f ∈Mp
u , we have

‖Iαf‖Mp
u(ω) ≤ C0‖f‖Mp

u
.

Since the proof for Theorem 3.3 follows from the proof of Theorem 3.2, for
brevity, we just present the proof for Theorem 3.2 in the following.

Let v ∈ A∞ where A∞ is the Muckenhoupt class of weight functions. For
any Lebesgue measurable set E, we write v(E) =

∫
E
v(x)dx. In view of [39,

Theorem 2], we find that (2) holds, if there exists a constant C1 > 0 such that
for any B ∈ B

|B|
α
n−

1
p

(∫
B

v(x)dx

)1/p

< C1.

Notice that the conditions given in [39] are presented in terms of cubes while
it is easy to see that the conditions for cubes and conditions for balls are
equivalent. Moreover, [39, Theorem 2] assumes that v belongs to Aβ∞ which
includes A∞ as a special case, see [39, p.817-818].

According to Theorem 2.3, the measure vdx satisfies (3).
In particular, as v ∈ A∞, when 0 < s < 1/p and u(B) = (v(B))s, B ∈ B,

[8, Theorem 9.3.3 (d)] guarantees that (8) is fulfilled with dω = vdx and [8,
Proposition 9.1.5 (9)] shows that (7) is also fulfilled.

Conditions that similar to (5) had been used in [12, 15, 17] for the mapping
properties of the fractional integral operators on some Morrey type spaces.

We now present some applications of Theorems 3.2 and 3.3.
We start with the Poincaré inequality. Let n > 1. For any D ∈ B, if∫

D
f(x)dx = 0 or suppf ⊂ D, then

|f(x)| ≤ CI1(χD|∇f |) = C

∫
D

|∇f(y)|
|x− y|n−1

dy, ∀x ∈ D, (9)
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see [7, (4.3.4) and (4.3.5)].
The above inequality and our main results yield the Poincaré inequality on

the Borel-Morrey spaces.

Theorem 3.4 (The Poincaré inequality). Let n > 1, 1 < q ≤ p < ∞, ω be a
positive locally finite Borel measure on Rn and u : B → (0,∞). If

1. ω ∈ Cp,q,1 and u satisfies (4)-(5) when q < p,

2. ω satisfies (3) with α = 1 and u satisfies (7)-(8) when q = p,

then, for any D ∈ B and for any once continuously differentiable function f , if
either

∫
D
f(x)dx = 0 or suppf ⊂ D, we have

sup
B∈B

1

u(B)

(∫
D∩B

|f(x)|qdω
)1/q

≤ C sup
B∈B

1

u(B)

(∫
B

|∇f(x)|pdx
)1/p

for some C > 0.

For the studies and the use of Poincaré inequality on function spaces, the
reader is referred to [7].

We also have the Sobolev inequality for the Borel-Morrey spaces. Let n > 2
and ∆ denote the Laplacian. Since f = I2(∆f), Theorems 3.2 and 3.3 give the
following Sobolev inequality on the Borel-Morrey spaces.

Theorem 3.5 (The Sobolev inequality). Let n > 2, 1 < q ≤ p < ∞, ω be a
positive locally finite Borel measure on Rn and u : B → (0,∞). If

1. ω ∈ Cp,q,2 and u satisfies (4)-(5) when q < p,

2. ω satisfies (3) with α = 2 and u satisfies (7)-(8) when q = p,

then, for any D ∈ B and for any twice continuously differentiable function f
with suppf ⊆ D, we have

sup
B∈B

1

u(B)

(∫
B∩D

|f(x)|qdω
)1/q

≤ C sup
B∈B

1

u(B)

(∫
B

|∆f(x)|pdx
)1/p

for some C > 0.

The reader is referred to [17] for more results on the Poincaré and the
Sobolev inequalities on Morrey spaces. We now correct two typos in [17]. The
conditions [17, (4.2) and (5.3)] should be

sup
B∈B

1

|B|1−αpn

∫
B

u(y)dy
( 1

|B|

∫
B

v1−p
′
(y)dy

)p−1
<∞

with (v, u) ∈ Fp,p,α and 1

|B|1−
2
n

∫
B
v(y)dy < C, respectively.
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We now going to prove our main results. We need some estimates from the
fractional maximal operator to prove our main result. For any 0 < α < n and
locally integrable function f , the fractional maximal operator is defined as

Mαf(x) = sup
x3B

1

|B|1−αn

∫
B

|f(y)|dy ,

where the supremum is taken over all B ∈ B containing x.
It is well known that for any locally integrable function, we have

Mα(f) ≤ CIα(|f |) (10)

for some C > 0 independent of f and x ∈ Rn. For the proof of (10), the reader
is referred to [23, (3.2.3)-(3.2.4)].

Lemma 3.6. Let 0 < α < n, 1 ≤ q ≤ p < n
α and ω be a positive locally finite

Borel measure on Rn. If Iα : Lp → Lq(ω) is bounded, then there is a constant
C > 0 such that for any B ∈ B

ω(B)
1
q ≤ C|B|

1
p−

α
n . (11)

Proof. For any B ∈ B and locally integrable function g, define

Pα,Bg(x) = χB(x)
1

|B|1−αn

∫
B

g(y)dy.

According to the definition of Mα, there is a constant C > 0 such that

|Pα,Bg(x)| ≤ CMαg(x).

Consequently,
|Pα,Bg(x)| ≤ CMαg(x) ≤ CIα(|g|)(x) .

Since ω ∈ Cp,q,α, Theorem 2.2 assures that Iα : Lp → Lq(ω) is bounded.
Therefore,

‖Pα,Bg‖Lq(ω) ≤ C‖g‖Lp .
Consequently, for any g ∈ Lp with ‖g‖Lp ≤ 1, we have

ω(B)1/q
1

|B|1−αn

∣∣∣∣∫
B

g(y)dy

∣∣∣∣ = ‖Pα,Bg‖Lq(ω) ≤ C‖g‖Lp ≤ C.

That is, ∣∣∣∣∫
B

g(y)dy

∣∣∣∣ ≤ C |B|1−αnω(B)1/q
.

By taking supremum over g ∈ Lp with ‖g‖Lp ≤ 1, the definition of associate
space yields

|B|1/p
′

= ‖χB‖Lp′ ≤ C
|B|1−αn
ω(B)1/q

.

Hence, we have ω(B)1/q ≤ C|B|
1
p−

α
n .
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When ω is the Lebesgue measure, (11) is valid if and only if 1
q = 1

p−
α
n . This

gives p < q which reassures that the Morrey spaces defined on the Lebesgue
measure cannot be used to study the case q ≤ p.

The preceding lemma is crucial for the proof of our main result. Moreover,
it also has its own independent interest. It gives a necessary condition for the
boundedness of the fractional integral operator Iα and the fractional maximal
operator Mα. The reader may consult [44] for more necessary or sufficient
conditions on the boundedness of the fractional maximal operators.

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Let f ∈ Mp
u . For any y ∈ Rn and r > 0, define f0 =

χB(y,2r)f and fj = χB(y,2j+1r)\B(y,2jr)f , j ∈ N\{0}. Thus, we have f =∑∞
j=0 fj .
Theorem 2.2 guarantees that

‖χB(y,r)Iαf0‖Lq(ω) ≤ C‖f0‖Lp = C‖fχB(y,2r)‖Lp . (12)

Consequently, (4) and (12) gives

1

u(y, r)
‖χB(y,r)Iαf0‖Lq(ω) ≤ C

1

u(y, r)
‖fχB(y,2r)‖Lp

≤ C 1

u(y, 2r)
‖fχB(y,2r)‖Lp ≤ C‖f‖Mp

u
. (13)

We consider Iαfj for j ≥ 1. For any x ∈ B(y, r), we have

|Iαfj(x)| ≤ C2−j(n−α)r−n+α
∫
B(y,2j+1r)

|f(z)|dz.

The Hölder inequality yields

χB(y,r)(x)|Iαfj(x)| ≤C2−j(n−α)r−n+αχB(y,r)(x)

× ‖χB(y,2j+1r)f‖Lp‖χB(y,2j+1r)‖Lp′

≤C2−j(n−α)r−n+αχB(y,r)(x)

× ‖χB(y,2j+1r)f‖Lp
|B(y, 2j+1r)|
|B(y, 2j+1r)|

1
p

.

Since ω ∈ Cp,q,α, Theorem 2.2 assures that Iα : Lp → Lq(ω) is bounded.
Consequently, (11) guarantees that

χB(y,r)(x)|Iαfj(x)|

≤ C2−j(n−α)r−n+α|B(y, 2j+1r)|1−αn
‖χB(y,2j+1r)f‖Lp
ω(B(y, 2j+1r))1/q

≤ C
‖χB(y,2j+1r)f‖Lp
ω(B(y, 2j+1r))1/q

.
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As a result of the above inequalities, we obtain

χB(y,r)(x)

∞∑
j=1

|Iαfj(x)| ≤ CχB(y,r)(x)

∞∑
j=1

‖χB(y,2j+1r)f‖Lp
ω(B(y, 2j+1r))1/q

.

By applying the norm ‖ · ‖Lq(ω) on both sides of the above inequality, we
find that∥∥∥∥∥∥χB(y,r)

∞∑
j=1

|Iαfj |

∥∥∥∥∥∥
Lq(ω)

≤ Cω(B(y, r))1/q
∞∑
j=1

‖χB(y,2j+1r)f‖Lp
ω(B(y, 2j+1r))1/q

≤ C
∞∑
j=1

(
ω(B(y, r))

ω(B(y, 2j+1r))

)1/q

u(y, 2j+1r)‖f‖Mp
u
.

In view of (5), we have

1

u(y, r)

∥∥∥∥∥∥χB(y,r)

∞∑
j=1

|Iαfj |

∥∥∥∥∥∥
Lq(ω)

≤ C‖f‖Mp
u
. (14)

Consequently, (13) and (14) yield

1

u(y, r)
‖χB(y,r)(x)Iαf‖Lq(ω)

≤ C

 1

u(y, r)
‖χB(y,r)Iαf0‖Lq(ω) +

1

u(y, r)

∥∥∥∥∥∥χB(y,r)

∞∑
j=1

|Iαfj |

∥∥∥∥∥∥
Lq(ω)


≤ C‖f‖Mp

u

for some C > 0 independent of B(y, r) ∈ B. By taking supremum over B(y, r) ∈
B, we obtain

‖Iαf‖Mq
u(ω) ≤ C‖f‖Mp

u
.

The proof for Theorem 3.3 follows from the proof of Theorem 3.2 with the
modification that we use Theorem 2.3 instead of Theorem 2.2. Therefore, for
brevity, we omit the details.

In view of (10), whenever ω and u satisfy the conditions in Theorems 3.2
and 3.3, we also have

‖Mαf‖Mq
u(ω) ≤ C‖f‖Mp

u
,

‖Mαf‖Mp
u(ω) ≤ C‖f‖Mp

u
,

respectively.
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