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1. Introduction

Within the framework of higher-order Analytical Dynamics in one independent
real variable ¢, a higher-order Lagrangian of order N € N is a scalar smooth
function of the form

L(t,q,q",q?,...,q""), (1)
with ¢,q™",...,¢""’ € R™ depending on time ¢. In accordance with conven-
tional notation, we use ¢ := d"q/dt" for the n-th derivative of ¢ with respect

to t.
By standard arguments in Calculus of Variations a fixed-endpoint, station-

arizing motion for the action functional S,; := fdeu called a “natural”
motion, is a solution ¢ — ¢(t) to the Fuler-Lagrange equation

N .
. dP OL(t,q,...,q™)
;(_1) - 9q© =0 forallt. )

Here 0/0q™ is the partial derivative with respect to the vector ¢*.
A first integral for equation (2) is a smooth function of the form

K(t,q,q",q?,...), (3)
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that is constant along the natural motion for all ¢. The celebrated Noether’s
Theorem establishes a relation between invariance proprieties of a Lagrangian
function and first integrals associated to the related natural motions [2, 6].

A paper by Gorni and Zampieri [9] proposed a rethinking of Noether’s
Theorem for Lagrangians of order N = 1. They revisited Noether’s Theorem
introducing the concept of nonlocal constants of motion, i.e. functions that are
constant along natural motions but whose value at time ¢ also depends on the
past history of the motion itself. Their nonlocal constants of motion look like

this:
~ / " OL(s, ¢z, ¢L")
p Oe

OL(t,q,9") 0Oq-

0
Q= =g 2 ds, @

e=0

e=0 0

with ¢. perturbed motions. Throughout this work we use the notation a -
b for the Euclidean scalar product of vectors in R™, and ||a|| for the norm.
The result (4) was applied to some neat standard classical mechanics systems
[10, 11] where well-conceived nonlocal constants of motion gave new results
in dynamics. In particular for: (i) the homogeneous potentials of degree —2,
(ii) the mechanical systems with viscous fluid resistance, (iii) the mechanical
system with hydraulic (quadratic) fluid resistance, and (iv) the conservative
and dissipative Maxwell-Bloch equations of laser dynamics.

With reference to a more general higher-order framework than N =1, a
question which arises is if the machinery designed in [9] holds for every La-
grangian order N. The issue has not been addressed under this nonlocal per-
spective until now. Since higher-order Lagrangians provide a very large class of
models for modified gravity theories [18], quantum-loop cosmologies [17], and
string theories [13], an in-depth examination is strongly motivated. Further-
more, approaching higher-order mechanics from a new nonlocal point of view
could provide new perspectives to identify novel first integrals without nec-
essarily requiring invariance proprieties on the already difficult to investigate
structure of higher-order Lagrangians.

In the present work we extend the theory of nonlocal constants of motion [9]
to higher-order Lagrangian Dynamics. The main, very simple result of our work
is presented in Section 2, where we deduce the revisited nonlocal Noether’s
Theorem 2.2 for higher-order Lagrangians (1).

Generally, higher-order nonlocal constants of motion are trivial or of no
apparent practical value. However, in Section 3 we exhibit that in particular
cases they can be used to obtain first integrals. In this respect, we derive first
integrals by employing time-shift families (Subsection 3.1), nonlocal space-shift
families (Subsection 3.2), and finite invariances (Subsection 3.3) as perturbed
motions. Standard noetherian results are recovered by Theorem 3.3 and The-
orem 3.7, whereas the first integral of Theorem 3.4 is actually new for La-
grangians such that 9L/9q™ o< d*(0L/dq)/dt", for all i = 1,..., N. This latter
theorem generalizes the method employed in [9] to get energy conservation for
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the canonical harmonic oscillator.

In the rest of the paper, Section 4, we deal with some neat applications of
our theorems to higher-order Lagrangian systems. In Subsection 4.1 we derive
nonlocal constants of motion and first integrals for the Pais and Uhlenbeck
oscillator [20]. Such system is well-known in many branches of physics like
quantum mechanics and field theory. Theorem 3.3 and Theorem 3.4 result in
two first integrals that, opportunely combined, exactly recover from a nonlocal
perspective the recent results of [14]. Despite this, Theorem 3.7 leads to a new
angular-momentum-like first integral that never seems obtained before.

In Subsection 4.2 we use our new nonlocal theorems to analyze a higher
order generalization of the Pais-Uhlenbeck oscillator [1, 3]. The obtained first
integrals seem completely new, and generalize the results of Subsection 4.1. For
computational convenience, a revisited version of Theorem 3.4 is employed.

Finally, Subsection 4.3 is dedicated to apply our theorems to a simple De-
generate Higher-Order model of Scalar-Tensor (DHOST) theory that, in these
last years, inspired many modified gravity theories [18]. In such case a scalar
particle is coupled to n degrees of freedom. Again, the full consistency of our
machinery is confirmed.

We remark that higher-order nonlocal constants of motion and related first
integrals are a precious instrument also for studying models that, like the Pais
and Uhlenbeck oscillator, easily exhibit a general solution without requiring
a conservation law. Under this sense, as already analyzed in recent works for
Lagrangians of order N = 1 by [11, 15, 14], we believe our results could provide
a valuable tool to give a novel insight into stability proprieties of higher-order
models and boundedness of related solutions. However, the issue seems not
so easy to address as in the N = 1 case. We leave a complete analysis of
these points for future investigation, we now just focus on the definition and
implementation of the nonlocal theory.

2. Nonlocal constants of motion

In this section, we introduce the key concept of perturbed motions and outline
how nonlocal constants of motion in higher-order Lagrangian Dynamics can be
obtained.

DEFINITION 2.1. Given a natural motion t — q(t), a one parameter family of
perturbed motions, or simply a perturbed motion, associated to q(t) will be a
smooth function (,t) — q-(t) with € € R in a neighbourhood of 0, and such

that go(t) = q(t).

Among all, general perturbed motions are the time-shift family q-(t) =
q(t + ef(t)), and the space-shift family q-(t) = q(t) + eg(¢t), with f,g free
smooth functions of t.
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The following Theorem 2.2 gives us a simple tool that takes a perturbed
motion and computes the related nonlocal constant.

THEOREM 2.2. Let t — ¢(t) be a natural motion associated to the Lagrangian
(1), and ¢.(t) a perturbed motion associated to q(t). Then the function Q is
constant along q(t) for all t, with

N i— .
d* OL(t,q,...,q™ Dgli—+-
Q= E E (—1)’“7 ( ) .

k i
i=1 k=0 dt dq' 2 PO
t oL ey, g
_ / (S’ q b b qE ) ds . (5)
to Oe e=0

Proof. Define L. := L(t,q.,...,q") with Ly = L. Take the derivative of L.
with respect to € at € = 0 and use 9¢{" /0¢|.—¢ = d*(q. /) /dt"|-=o:

OL. N oL d g
= o —_ . 6
Oe |._o ; 0q® dt' e |__, (6)

Note that given two vectors A(t) € R™ and B(t) € R™, the following identity
holds

d'B  d d*A d*B d'A
=Y (- —— +(-1)'=— B 7
dti — dt kz:;)( Vo e TV g B @

with « =i —k — 1 and ¢ > 1. The choices A := dL/3q"” and B := 0q./0¢|e=0
lead to

i—1

OL d - d* 0L 0q
2 — 1 k= . £
e | _ 1 4 Z( ) dtk 9q e | __ +
e=0 i=1 k=0 e=0
al d oL | oq
—1)'— L= .
N ;( Varog | ae| s ®

Using equation (2), the second term on the right-hand-side of (8) disappears.
The final result (5) is obtained by integrating, putting the integration constant
to zero. 0

Following the nomenclature recommended by Gorni and Zampieri [9], ex-
pression (5) will be called nonlocal constant of motion associated to g., as its
value at ¢ also depends on the past history of the motion. It should be noticed
that when N = 1, expression (5) exactly recovers the result (4) for canonical
Lagrangians.

In Theorem 2.2, the one parameter family of perturbed motions can be
chosen randomly, giving generally trivial or of no apparent practical interest
nonlocal constants of motion. However, there are cases when expression (5)
becomes useful, as we will see in Section 3.
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3. First Integrals

The guiding idea of the following section is to describe particular cases for
which Theorem 2.2 yields a true first integral for equation (2), in the sense of a
point function of ¢,q,¢™, ... that is constant along the motions. This purpose
justifies the following terminology:

DEFINITION 3.1. Let g. be a perturbed motion associated to a natural motion
t— q(t). We say that q. satisfies the total derivative condition with the smooth
scalar function ¥(t,q,...,q®N=V) if

OL(t,qe,-.-,¢™)|  _ d(t,q...,.¢®" ")
Os - i for all ¢. (9)

e=0

Definition 3.1 is less general than the one introduced by [9], as our focus
are natural motions only. In principle one could define a total derivative condi-
tion considering a general smooth path ¢(¢), whether it solves Euler-Lagrange
equations (2) or not.

The condition (9) becomes interesting when applied to Theorem 2.2.

THEOREM 3.2. Let t — q(t) be a natural motion, and let q. be a perturbed
motion associated to q(t) satisfying the total derivative condition (9) for some
Y(t,q,...,q®N=D). Then the point function K(t,q,...,q®N=") is a first inte-
gral for equation (2), with

N i—1 ‘
- dk 8L(t7 q, ..., q(N)) 6q(1—k‘—1)
K(taqa"'7q(2N 1)) = ZZ(_l)k% aq(i) . Eag _
i=1 k=0 0

7¢(taQ7"'>q(2N71))' (10)
Proof. Add condition (9) inside expression (5) and compute the integral. [

By inspection, Theorem 3.2 works without necessarily requiring a general
invariance theory on the Lagrangian. After having sought a ¥(t,q,...,q®" ")
satisfying the total derivative condition, we are naturally led by Theorem 3.2
to consider (10) as a first integral. Generally we cannot expect to find such
a Y(t,q,...,q¢* ") for a random choice of ¢.. However there are few and
precious Lagrangians that make the research easier.

3.1. Time-shift families

As already noted in [10, 11], time-independent Lagrangians are a classical and
simple prototype to find first integrals.
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THEOREM 3.3. Let t — q(t) be a natural motion for the time-independent La-
grangian L = L(q,...,q"™’). Then, the point function

Ki(q,...,q""") =

N i-1
d* OL(q,...,q™) .
- ZZ(—I)’“%T ¢" " —L(g,-..,q"), (11)
i=1 k=0 q

is a first integral for the equation of motion (2).

Proof. Expression (5) can be written as:

N i—1 ) N )
d* OL 0Oql+V t OL 0Oq

Q= I el S 7/ e ds. (12

;kgo( ) dtk 8(_](” de e=0 to ;—0 8(](” e e=0 ( )

Consider the time-shift perturbed motion g¢.(t) = q(t + ). It follows that
g [Oe|c—o = qUTV for all j € 0,..., N, that combined in expression (12)
yields

N -1

d* oL , tdr
_ k i—k
Q= E E (=1 itk g g )—/t Eds' (13)

i=1 k=0 0

Observe that our time-shift ¢. satisfies the total derivative condition with the
scalar function ¢» = L. Computing the integral in expression (13) the final
result (11) is obtained, putting the integration constant to zero. O

Interestingly, expression (11) with N = 2 recovers from the nonlocal point
of view the noetherian result employed by [19] for second-order variational
problems. This fact should not surprise, since Theorem 3.3 assumes a time-
shift symmetric Lagrangians.

3.2. Nonlocal space-shift families

Nonlocal noetherian constants of motion starting from nonlocal transforma-
tions were introduced by [12]. We noticed that in [9] the authors proved
energy conservation for the 1-dimensional canonical harmonic oscillator I =
%q“ﬂ — %q2 taking inspiration from the nonlocal space-change ¢. = ¢+¢ [ gdr
and then replacing it with a local one using the equations of motion. In-
spired by this example, we deduce that generally the total derivative condi-

tion seems to be too easy to satisfy starting from nonlocal space-changes if
OL/0q'") x d*'(OL/0q)/dt" for alli € 1,...,N.

THEOREM 3.4. Consider a Lagrangian L = L(t,q,...,q") such that there
exists a set of constant parameters py...pn € R such that for all motions,
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whether natural or not,

oL d OL

g :piﬁa—q foralliel,...,N. (14)

Let t — q(t) be a natural motion associated to L, and define the function

N

o diTl AL
) ._ _1)it+1
F© .= E 1( 1) dti—1 g (15)
=
Then,
d~—' 0L
FO dtﬁflaiq fel,...,2N, (16)

and the point function

K (t Q7 q(3N 1))

N i—1 1
- Z lz F“*’“*” FU-k=1 _ Z || F®)|2
2

i=1 k=0

1
=IO ()

is a first integral for the equation of motion (2).

Proof. Expression (5) can be written as:

N
Q=2
i=1

=1 k=

71—

pd* 0L 9girY

1
0

_ — g 85
Consider the space-shift perturbed motion ¢.(t) = ¢(t) + eF(t), with F a free

function. Tt follows that 8¢\ /0¢|.—q = d'F/dt! := F“ for all j € 0,..., N,
that combined in expression (18) yields

L k
Q=ZZ(—1)“L OL  pu-en _ CF9ds.  (19)
; dtk dg to = aq( B

i=

Fixing F = F©) .= fti OL/0qdr and using condition (14), expression (19)
becomes

N i—1
Q — Zpi Z(_l)kF(w—Hl) IO e D
=1 k=0

N
FOLFO 43" p, F*Y . FO 1 ds. (20)

=1

/t
to
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Clearly, the integrand inside expression (20) can be rewritten:

N 1—1
Q _ Zpi Z(_l)kF(k+i+1) N LG e D
i=1 k=0

_/td
t ds

Observe that our space-shift ¢. satisfies the total derivative condition with
the scalar function 1 = 1(||F©@|]*> + Zil pil| F?||?). Computing the integral
in expression (21) the final result (17) is obtained, putting the integration
constant to zero. To be precise, the result is not a true first integral since
FO = ftto OL/0q dr is nonlocal. To make F'® a point function, isolate 9L/dq

from the equation of motion (2)

N
1 Pi i
SIEO 4 S0 2 FOR| ds. (21)
i=1

N j
oL Z(—l)j+1d— oL (22)
j=1

dq dti g’
and replace expression (22) in F®. Integrating, we obtain definition (15). O

From formula (16), notice that the highest order derivative F'*™) formally
depends on ¢*¥ = hence also K3 in formula (17) depends on ¢®~ Y.

We leave it to the reader to verify the energy conservation of the 1-dimen-
sional canonical harmonic oscillator is a trivial consequence of Theorem 3.4,
with ¢ € R and N = 1. Our result (17) is actually new and seems to pro-
vide a powerful perspective to get undiscovered first-integrals, as we show in
Subsection 4.1 and Subsection 4.2.

REMARK 3.5: Conditions (14) can be read as functional Partial Differential
Equations which restrict the form of the Lagrangians to which apply Theo-
rem 3.4. In this respect, a relevant class of solutions is L = Zﬁ;o pniallg™ >+
b™(t) - ¢} + ¢(t), with pg = 1, a € R constant, and b € R™, ¢ € R
free functions of ¢. The related first integral is expression (17) with F©® =
SN (=)t p, X @D and F® = X¢ Y where X := 2aq + b(t). We leave
for future investigation an analysis of the prospects and a complete search of
further general solutions.

When k& = i — 1, formula (17) is not easily manageable since summation
contains many F® terms (15) that, generally, have a long expression for large
values of N. Supposing N > 2, here is an equivalent reformulation of expres-
sion (17) that bypasses the presence of F® terms in the summation. Such
result will be useful in Subsection 4.2.
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LEMMA 3.6. If N > 2, expression (17) is equivalent to

2K2(t7Qa"'? e 1)) |F1(0>||2 Zp’t
N i—2
+2ZpZZ kF(l+k+1) k-1 (23)

Proof. Let x =i+k+1and y =4—k— 1. Let us separate in (17) the addends
inside the summation with respect to the k index, and multiply by two:

1—1

—IF) - ZP||F(”||2+QZ/%Z DEFCLFY . (24)
=1

Notice that, supposing N > 2, the double summation on the right-hand-side
of expression (24) can be rewritten as

N i—1

ZMZ(_DkF«r) P —

=1 k=0
N i—2
Z z+1F<21) Jal Jrzp Z F(JL CFW (25)
i=1 =2 k=0

where the F(© contributes have been isolated from the summation.
By simple calculations we see that from (15) and (16) it follows

N
o — Z p¢(*1)i+1F(2i> , (26)

that added in (25) yields

i—1 i—2
Zplz Y@ W = |F<0)||2+Z/’ZZ DFF® . pw (27)
i=1 k=0 i=2 k=0

Combined with result (27), expression (24) returns our final expression (23).
O

3.3. Finite invariances

Another interesting situation generating first integrals arises when the La-
grangian, evaluated on a perturbed motion ¢., has constant derivative at € = 0.
Following the nomenclature of Gorni and Zampieri [9], this condition will be
called finite invariance.
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THEOREM 3.7. Let t — q(t) be a natural motion associated to the Lagrangian
L = L(t,q,...,q™), and suppose that for a given perturbed motion q. there
exist a constant p € R such that

OL(t, qey ..., ")

=qu. 28
5 s (28)
Then, the point function
KB(ta(L' . 'aq(ZNil)) =
N i-1
d* OL(t,q,...,q™) Ogli—*+V
LSS D ) S

dtF g 9 |y

is a first integral for the equation of motion (2).

Proof. Add condition (28) inside expression (5) and compute the integral. Ob-
serve that our perturbed motion ¢. satisfies the total derivative condition with
the scalar function ¢ = ut. O

Standard cases for Theorem 3.7 are Lagrangians such that L(t, ¢, ..., ¢")
does not depends on ¢, i.e. are invariant under the perturbed motion consid-
ered.

4. Applications

In the present section we deal with some neat applications of our theorems
to higher-order Lagrangian systems, where novel first integrals are discovered,
standard noetherian results are recovered.

4.1. The Pais-Uhlenbeck oscillator

The Pais-Uhlenbeck (P-U) oscillator is one of the simplest higher-order me-
chanical systems to test our formal results. The P-U oscillator has the following
N = 2 order Lagrangian:

1 1 1
=g Lt vud)gn? + Jutude (30
where ¢ € R™, and w1, wy € R are positive constants. The Euclidean scalar
product will remain implicit in the entire section, hence ¢'?q"’ := ¢'”-¢"’ with
i,7=0,1,2.

The equation of motion (2) contains terms up to the fourth time derivative:

¢ + (w? + w)¢® + wiwig=0. (31)
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This oscillator was proposed by Pais and Uhlenbeck [20] for solving the
ultraviolet behavior of field theories involving higher derivatives. The P-U os-
cillator has been applied in many branches of physics, e.g. its quantum behavior
was discussed by Simon [13], Smilga [22], Chen et al. [5]. In addition, Pulgar
et al. [21] introduced some scalar-tensor field cosmologies inspired by the P-U
oscillator. In recent time, the P-U oscillator has also attracted much atten-
tion within the context of dynamical realizations of nonrelativistic conformal

groups [8].
Let us try some random perturbed motions for Theorem 2.2. The first
family is ¢. = g —e. We can compute ¢, /0e|.—o = —1, so the related nonlocal

constant of motion (5) is

t
Q=4+ (w} + w3l + wiud [ qds. 3

to
Clearly, ¢ can not be a total derivative of some function ¢ being the same for
all smooth paths. However, since ¢ is a natural motion, equation (31) leads to

t

) dr ..
Q=%+ (wh +udg? - [ L[+ @+ udgds. @

to 45

that returns a first integral which is trivially 0.
Let us search for a second nonlocal constant of motion starting from the
space-change family g. = ¢ — e¢™®, that gives 9q./0¢|.—9 = —¢®. Using

Theorem 2.2 we can compute the nonlocal constant of motion

t

Q= +ud)a®q" + [ [utuda®a— (u} +udgg + 404 ds. (30
to

where, even in this case, the integrand never seems satisfying the total deriva-

tive condition. However, multiplying equation (31) by ¢® we get

qVq® +wiwdg@q = —(wi +w3) ¢?®?, (35)

that simplifies expression (34) to

Hdlg®g) ds} : (36)

Q= (ut +ud) [g7a - [ L1
The resulting first integral is again trivially 0.

What matters is that Theorem 2.2 is not powerful enough to yield non trivial
first integrals for the P-U oscillator. However, we come to Theorem 3.3, which is
the most natural to consider as our Lagrangian (30) is time-independent. After
a couple of calculations, we finally obtain our first non trivial first integral:

2K, = ¢@?% — (w? + w?) ¢V? — 2¢Pq" — wiwiq®. (37)
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It is also easy to prove that our Lagrangian (30) also satisfies the hypothesis
of validity of the Theorem 3.4 with

2 2
wi + w; 1
= - = —_——. 38
P wiw3 P2 wiw? (38)

Hence, from formulas (15) and (16) we get

—(w? g™ _ag® if =0
F(e):{ (wy +w3)q q 1 01=01,2, (39)

wiwiqg™Y if £#£0
which added with (38) in (17) yields our second non trivial first integral
2K = [w] + wiwi +w;]q? +¢©% + 2wiw g+
+ (wf +w3) [2¢9¢ + wiwie®],  (40)

Our result (40), opportunely combined with (37), exactly recovers from a non-
local perspective the two first integrals recently proposed by [14]:

Sk = (0% +wpq®)? + (Wi +wi —wi)(@® +wig)? k=12,  (41)

that, again, are constant along the natural motions.
Let ¢ = (q1,92) € R? and define the rotation family

cose —sine
qg_(sine cos e )q. (42)

Tt is clear that, when evaluated on the rotation family (42), the P-U Lagrangian
does not depend on e. Noticing that ¢ - ¢ /0e|.—o = det (¢, ¢"), our
Theorem 3.7 gives a new angular-momentum-like first integral for P-U natural
motions:

K3 = (wf +w3)det (¢, q) +det (¢, ¢) +det (¢*,q) . (43)

Generalizations in more than two spatial dimension is straightforward and will
be left for future works, new first integrals are naturally expected.

We leave it to the reader to prove that the time derivatives of K 23 are
identically zero. These first integrals are all independent, and expressed as
linear combinations of quadratic functions of ¢'” or their components.

4.2. The higher-order Pais-Uhlenbeck oscillator

The research of higher-derivative theories of quantum gravity motivates the
definition of Lagrangians with an arbitrary number of higher-order derivative



NONLOCAL CONSTANTS OF MOTION 13

terms [4, 7]. In this respect, physically viable quantum theories are inspired
by the so-called higher-order Pais-Uhlenbeck (P-U) oscillator, which has the
following Lagrangian [1, 3]:

L= g2, ()

where ¢ € R™ with ¢»2 := ¢ - ¢, and ag, ...an € R are constants. In the
N = 2 limit, the specific choices ag = wiw3, a1 = —(wi+w3) and ag = 1 lead to
the standard P-U oscillator (30) of Subsection 4.1. This makes Lagrangian (44)
a well thought-out model to exhibit how our machinery works for a Lagrangian
with an arbitrary order N.

The equation of motion (2) for (44) reads

N

> (~D'aig® =0, (45)

=0

and contains up to 2/N-order derivative terms. Our contribution in this sub-
section is to deduce three first integrals for equation (45).

For such purpose, let us search for a first result beginning with Theorem 3.3,
since Lagrangian (44) does not explicitly depend on time. Using standard
calculation rules to evaluate time derivatives, expression (11) leads to the first
integral

N i—1
261 =) ai (2 D (=D)Fgh gt — q“”) — aog® . (46)
i=1 k=0

Notice that the conserved quantity (46) contains up to 2N — 1 order derivative
terms.
As in the previous section, also the higher-order version of the P-U oscillator
satisfies the hypothesis of validity (14) of our Theorem 3.4 with
Q;

pi=— i=1,...,N. (47)
Qo

According to formulas (15) and (16), we get

N
P _ > (=1 ;g™ i £=0

Jj=1

apq" ™Y if £#0

(=0,...,N, (48)
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that added into expression (23) enables us to calculate the actually new first
integral

N 2 N
2Ky = <Z(_1)z+1aiq(2i1)> —ap Zaiq(i—1)2+
=1

=1
N 1—2
+2a0 Y @Y (~1)Fg0- gD (49)
=2 k=0

that, again, contains up to 2N — 1 order derivative terms. Assuming N > 2,
we used expression (23) instead of expression (17) to effectively get (49). In
fact, in expression (23) the F© terms are already isolated from the F¢#*
ones. Thanks to this, we substituted expression (48) without expanding the
summations of (17) to recognize F'®© and F©# terms one by one.

Let ¢ = (q1,92) € R? and define the rotation family

cose —sine
e = ( ) q. (50)

sine cose

It is evident that, when evaluated on the rotation family (50), the higher-order
P-U Lagrangian (44) does not depend on £. Remembering as in the previous
section that ¢ - ¢ /0elc—o = det (¢",¢"”), our Theorem 3.7 gives a new
angular-momentum-like first integral for all higher order P-U motions:

N
K3 :Zai

i=1 k=

i—1
(—1)F det (=2, ). (51)
0

Also in the case of the higher-order P-U oscillator, the three first integrals
K 2,3 are all independent and expressed as linear combinations of quadratic
functions of ¢ or their components.

4.3. Degenerate higher-order theories

Higher-Order Scalar-Tensor (HOST) theories of modified gravity have attracted
significant attention in the last years to explain the present cosmic acceleration
and exploring alternative theories of gravitation [16]. Such theories generically
suffer from ghost instabilities. This fate can be avoided by considering degener-
ate Lagrangians, whose kinetic matrix cannot be inverted [23]. In this regard,
an interesting Degenerate HOST (DHOST) model was studied in [18], where
the authors described a point particle ¢ = ¢(t) with higher derivatives, coupled
toi =1,...,n degrees of freedom ¢; = ¢;(t). Using Einstein’s convention on
dummy indices, the Lagrangian looks as follows:

1 1 1 ‘ )
I = §a¢(2)2 + §k0¢)(1)2 + §kijQ§l)Q;'l) + bi¢(z)q£1> + cigb( )qﬁl) _ V(¢, q) , (52)
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with degenerate condition
a—bbik;' =0. (53)
Here a, b;, ¢;, ko, and k;; = k;j; have constant values.
We retain Lagrangian (52) a valid case to exhibit how our results work for
many-particle systems. The equations of motion for (52) with respect to ¢

and ¢; read respectively
ap™® — kop® +biq¥ — ciq” -V, =0, (54)
kijql? + big® + cip® + Vi =0 i=1,...n, (5
where V; := 0V/0q; and V,, := 9V/0¢.

It is worthwhile to note that our Lagrangian is explicitly time-independent,
so Theorem 3.3 yields the first integral

2K1 _ k0¢(1)2 +a (a¢(2)2 o 2¢(3)¢(1)) =+ kijq(l)q;'l)+

%

+20; (6%q;" — ¢V q;”) +2¢:0M g +2V(d,q) . (56)

By inspection we see that if V (¢, q) = 0, then our Lagrangian depends on
derivatives only, i.e. it is invariant under the space-changes ¢; . = ¢; + €?¥; and
¢ = ¢ + €. Here ©¥; and ¢ are constants, with ¢ = 1,...,n. Being simply
0¢; ¢ /0¢le=0 = V¥; and ¢./0¢|.=0 = v, the first integral of Theorem 3.7 takes
the following form

K3 = (kijq;” +bi0® + o) 0; — (a9® — ko¢™ + big” — ciq;”) . (57)

This result should not surprise, since taking V(¢,q) = 0 both equations (54)
and (55) become total derivatives. Interestingly, in turn, also K3 is a total
derivative, which yields the new first integral

2 = (kijqj + bid™ + ci9) ¥i — (ad® — koo + biq)” — ciqi) v — Kst.  (58)

that contains up to second derivative terms in ¢.
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