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1. Introduction

The purpose of the present paper is the definition and the investigation of two
arithmetic functions which measure the roundness of a positive integer and
allow the establishment of an ordering in the set of natural numbers according
to their roundness.

A round number is usually thought of as one having a large number of
divisors compared with its size. We recall that the function d(n) is defined
as the number of divisors of n. The function ω(n) (number of different prime
factors of n) gives an index of its roundness (see [1, p.476 and foll.]).

However, as for every positive integer n there are infinitely many positive
integers N such that d(N) = 2n and ω(N) = n, for a given pair of them it is
not clear which one should be considered the roundest. This means that the
estimate of roundness given by ω is too coarse and needs a refinement. The
functions d∗ and d∗∗, which we are going to define, are closely related to the
class of superior highly composite numbers, introduced by S. Ramanujan in [4].
In Proposition 2.2 we show that a number n is superior highly composite if and
only if, for every m < n, d∗(m) > d∗(n) or, equivalently, d∗∗(m) < d∗∗(n). As
Ramanujan’s numbers are the incarnation of roundness, our characterization
may suggest that round numbers have low d∗ and high d∗∗. Furthermore, it
leads to the investigation, for r > 0, of the set D+

r of all integers n such that
d∗(n) ≥ r. We prove in Theorem 2.4 that for every value (arbitrarily high) of
r almost every integer (in the sense of natural density) belongs to D+

r .

The relationship between d∗ and ω is examined in Theorem 2.6. It is shown
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there that, for sufficiently small r, all numbers with d∗ less than r have ω
greater than any prefixed value: sufficiently round numbers are divided by all
primes up to a prefixed P .

In Section 3, among some other miscellaneous results, we prove a theorem
concerning the quotient of two consecutive superior highly composite numbers.
Some matters related to the order of magnitude and the transcendency char-
acter of d∗ are also discussed.

2. Preliminaries and main results

In the above quoted paper, S. Ramanujan gave the following definition: a
positive integer N is said to be superior highly composite (s.h.c.) if there is a
positive real number ε such that

d(N)

N ε
≥ d(N

′
)

N ′ε
for all N

′
< N

and
d(N)

N ε
>
d(N

′
)

N ′ε
for all N

′
> N,

where d denotes the number of divisors. For fixed ε, 0 < ε ≤ 1 there is a unique
s.h.c. number associated with it:

Nε = 2[(2ε−1)−1] · 3[(3ε−1)−1] · p[(pε1−1)−1]
1 ,

where p1 is the greatest prime not exceeding 2
1
ε and square brackets designate

the integral part. Nε turns out to be the greatest of the integers which maximize

the function d(n)
nε .

The first s.h.c. numbers are: 2, 6, 12, 60, 120. A longer list (about 50) is
included in [4]. In the section devoted to miscellaneous results we give an
effective criterium which can be applied to establish whether a given number
is s.h.c.

We make use of the following notation: if m,n are positive integers, m > n,
we pose

〈m,n〉 = (log
d(m)

d(n)
) · (log

m

n
)−1.

Let N be s.h.c., N > 2, N1 < N < N2, where N1, N2 are respectively the
s.h.c. numbers which precede or follow N (the predecessor and the successor).

By inspection of the functions Fp,ε(x), for p prime, ε > 0, x real: Fp,ε(x) =
x+1
pεx , which are related to the map d(n)

nε for x integer, it can be shown that the

set of all ε such that N = Nε is the interval ε̄N < ε ≤ εN , where ε̄N = 〈N2, N〉
and εN = 〈N,N1〉 while ε̄2 = 0, 6309 . . . , ε2 = 1.
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Proposition 2.1. Let N be a positive integer. Then there is a unique positive
real number d∗(N) such that the following conclusions hold:

1. for every integer n > N and every real number x > d∗(N)

d(N)

Nx
>
d(n)

nx
;

2. there is an integer n̄ > N such that

d(N)

Nd∗(N)
=

d(n̄)

n̄d∗(N)
.

Proof. Let m be an an integer such that m > N and d(m) > d(N). Let

δ = 〈m,N〉. Since d(n) = o(n
δ
2 ) (see [1, p.343]), there is an n0 such that

d(n) < n
δ
2 and

1

n
δ
2

<
d(N)

Nδ

for n > n0. Therefore we have

d(N)

Nδ
>
d(n)

nδ
, n > n0 ≥ m > N.

Define d∗(N) = max〈n,N〉, N < n ≤ n0. As

d(N)

Nx
>
d(n)

nx

if and only if x > 〈n,N〉, if x > d∗(N) ≥ δ and n > N , the condition 1)
is fulfilled. Since d∗(N) = 〈n̄, N〉 for an n̄ with N < n̄ ≤ n0, the condition
2) is also satisfied. The uniqueness of d∗(N) follows from this argument: if
r > d∗(N), the condition 2) cannot be satisfied for any n̄ > N ; if r < d∗(N),
then 1) is not satisfied for n = n̄ and r < x < d∗(N). This completes the
proof.

Furthermore, let’s pose

d∗∗(N) =
d(N)

Nd∗(N)
.

From the above proposition it follows that d∗(N) = max〈n,N〉, n > N . This
formula holds as an alternative definition for d∗; it is possible to show that n
can be taken less or equal to the smallest s.h.c. number greater than N .

Proposition 2.2. For a positive integer N the following assertions are equiv-
alent:
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1. N is s.h.c.;

2. m < N implies d∗(m) > d∗(N);

3. m < N implies d∗∗(m) < d∗∗(N).

Proof. We prove firstly that 1) is equivalent to 2). According to our notation,
remark that, if N1 is s.h.c. and N2 its successor, then d∗(N1) = ε̄N1 = εN2 .
Therefore d∗(2) = 0, 6309 . . . , d∗(6) = 0, 5849 . . . and so on in a strictly decreas-
ing sequence. Suppose that N verifies 2). If by contradiction it is not s.h.c.,
there are two consecutive s.h.c. numbers N1 and N2 such that N1 < N < N2.
By the definitions, if β = 〈N2, N〉 we have d∗(N) ≥ β > εN2

= d∗(N1)
against 2). Conversely, suppose that N satisfies 1) and n < N . Let N1 be
the greatest s.h.c. number which does not exceed n. By the previous argu-
ment, d∗(n) ≥ d∗(N1) > d∗(N).

The equivalence between 1) and 3) follows immediately from the preceding
one. This completes the proof.

Highly composite numbers, also introduced in [4], are defined by a maxi-
mality condition on the number d of their divisors; the two Propositions we
have just proved show that s.h.c. numbers can be characterized by means of a
minimality condition on d∗ and a maximality one on d∗∗. Since these numbers
are “round par excellence”, the terms of their characterization suggest that the
rounder a number is, the smaller its d∗ and the bigger its d∗∗. Therefore, the
following order appears to be motivated: given two positive integers m and n,
we say that m is rounder than n if one of the following conditions holds:

1. d∗(m) < d∗(n);

2. d∗(m) = d∗(n) and d∗∗(m) > d∗∗(n);

3. d∗(m) = d∗(n), d∗∗(m) = d∗∗(n) and d(m) > d(n).

It’s clear that these three conditions are exhaustive. Therefore the roundness-
measure defines a total order in the set of positive integers. If p is a prime
number, N a positive integer, the p-adic valuation vp(N) is the greatest integer
h such that ph divides N .

Lemma 2.3. Let N be a positive integer, d∗(N) < r, r integer. If s̄ is a prime,
vs̄(N) = h, there are positive constants A(s̄, h, r) and B(s̄, h, r) depending only
on s̄, h, r such that the following conditions hold:

1. if p is the greatest prime that divides N , then p < A(s̄, h, r);

2. if s is a prime and vs(N) = αs, then αs < B(s̄, h, r).
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Proof. Suppose firstly s̄ < p. We can write: N = 2α2 · s̄αs̄ · pαp , where αi ≥ 0
for every prime i < p, αp ≥ 1, αs̄ = h. Let k be the integer such that

s̄k−1 < p < s̄k. Define n as follows: n = N · s̄
k

p . Then n
N < s̄ and we have:

d(n)

d(N)
=

(h+ k + 1)αp
(h+ 1)(αp + 1)

≥ (h+ k + 1)

2(h+ 1)
.

If k ≥ (2s̄r − 1)(h+ 1), then

d(n)

d(N)
≥ s̄r > (

n

N
)r

against the hypothesis that d∗(N) < r. Therefore k ≤ (2s̄r − 1)h+ 2s̄r − 2 and
1) holds with A(s̄, h, r) = s̄(2s̄r−1)h+2s̄r−2 for s̄ < p. If s̄ > p, then h = 0 and
s̄ ≥ 3 while h ≥ 1 if s̄ = p: in both cases the formula holds. Consequently 1)
is shown. To prove 2), consider any prime s which divides N and its exponent
αs. Define the following quantities Q, ks and ms.

1. Q = p1 · p2 . . . pr where the pi are primes, p1 is the successor of p, pi+1

the successor of pi 1 ≤ i ≤ r − 1. Owing to the so-called Bertrand’s

Postulate, Q < (2
r(r+1)

2 ) · pr;

2. ks is defined as the integer such that sks < (3s+ 1)Q ≤ s(ks+1);

3. ms is the integer satisfying (ms − 1)Q ≤ sks < msQ.

From these inequalities it follows that

msQ

sks
<

4

3
.

We are going to prove that αs < (2r+1 · ks)− 1. Suppose by contradiction that
this is false; then we can write equivalently:

2r(αs − ks + 1) ≥ (2r+1 − 1)

2
(αs + 1).

Define the following number:

n = N · msQ

sks
.

Then
d(n)

d(N)
≥ 2r(αs − ks + 1)

(αs + 1)
≥ (2r+1 − 1)

2
.

As
n

N
<

4

3
,
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we have eventually
d(n)

d(N)
>

3(2r+1 − 1)

8
· n
N
.

As the inequality

(2x+1 − 1) > 2 · (4

3
)x

holds for x ≥ 1,

log [(2r+1 − 1) · 3

8
] · (log

4

3
)−1 > r − 1.

Choose y such that

r − 1 < y < log [(2r+1 − 1) · 3

8
] · (log

4

3
)−1.

As
n

N
<

4

3
,

we get
d(n)

d(N)
>

3(2r+1 − 1)

8
· n
N

> (
n

N
)y+1 > (

n

N
)r

against the hypothesis that d∗(N) < r. Therefore αs < (2r+1 ·ks)−1. From the
definition of ks given in b), the majoration of Q in a) and the above inequality,
as 2 ≤ s ≤ p we obtain the required majoration of αs in terms of s̄, h, r; we can
take

B = 2r+1{ log(2
r(r+1)+4

2 )

log s̄
+ (r + 1)[(2s̄r − 1)h+ 2s̄r − 2]} log s̄

log 2
− 1.

This completes the proof of the lemma.

Theorem 2.4. For any r > 0, the set D+
r of all integers N such that d∗(N) ≥ r

has natural density one.

Proof. We can suppose that r is an integer and prove that the set D−r of the
integers N such that d∗(N) < r has natural density zero. To this purpose, if
A(n) is the number of integers less than n that belong to D−r , we have to show
that

lim
n→∞

A(n)

n
= 0.

From Lemma 2.3 it follows that for any choice of s̄ prime and h nonnegative
integer, there are at most finitely many N in D−r such that s̄h+1 does not
divide N . In fact, none of them can be greater than AB·π(A), where π(A) is the



THE ROUNDNESS-MEASURE OF A NATURAL NUMBER 7

number of primes not exceeding A. If m is any positive integer, applying the
lemma to its prime factors and their exponents it follows that all but finitely
many integers in D−r are multiple of m. As m can be chosen arbitrarily big, it
follows that the density of D−r must be zero and that of D+

r is one.

As a direct consequence of this theorem we state here without proof the
following Corollary which shows the preponderance of the numbers with high
d∗.

Corollary 2.5. Let S be a set of positive integers whose natural density is
not zero. Then the arithmetic mean of the d∗ of the first n elements of S tends
to infinity with n.

Theorem 2.6. For any prime P there is an rP > 0 such that every n in D−rP
is divided by all primes less or equal P . Thus ω(n) ≥ π(P ) if d∗(n) < rP .

Proof. Apply Lemma 2.3 for s̄ = P , h = 0, r = 1. Then there is MP > 0 such
that every n ≥ MP with d∗(n) < 1 is divided by all primes p ≤ P . Let N1

and N2 be consecutive s.h.c. numbers, with N1 < MP ≤ N2, d
∗(N1) = ε̄1.

We have shown in Proposition 2.2 that d∗(n) < ε̄1 implies n ≥ N2 ≥ Mp. As
ε̄1 < 1, the theorem is proved taking rP = ε̄1.

3. Miscellaneous topics

In the paper [4], at p.392, it is claimed that the quotient of two consecutive s.h.c.
numbers is a prime number. This assertion is supported by a faulty argument,
unless the Four Exponential Conjecture, which we are going to quote together
with the Six Exponential Theorem, is assumed.

Six Exponential Theorem (Lang [2]). Let β1, β2 be a couple of complex
numbers, linearly independent over Q, and z1, z2, z3 a triple, likewise complex
and linearly independent over Q. Then at least one of the six numbers eβizj ,
i ≤ 2, j ≤ 3, is transcendental.

It has been conjectured that the triple can be reduced to a couple (Four
Exponential Conjecture). We prove a (weaker) result which makes use of the
Six Exponential Theorem.

Theorem 3.1. The quotient of two consecutive s.h.c. numbers is either a prime
or the product of two different primes.

Proof. Let N = 2α2 · · · pαp be a s.h.c. number. For well known properties (see
[4]) of these numbers every prime less or equal p divides N , i.e. αq ≥ 1 for
every q ≤ p. Let P be the prime successor of p; we pose αP = 0. Moreover we
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know that N = Nε′ = 2[(2ε
′
−1)−1] · p[(pε

′
−1)−1], with ε′ arbitrarily chosen in the

interval ]ε̄N , εN ]. For q prime, q ≤ P , define

εq =
log

αq+2
αq+1

log q
.

As αq = [(qε
′ − 1)−1] we have for every ε such that εq < ε ≤ ε′ the two

equations: [(qε − 1)−1] = αq, [(qεq − 1)−1] = αq + 1. Let ε̄ = max εq. We have
two cases:

1. ε̄ = εq̄ for a unique q̄ ≤ P . As εq < ε̄ for q 6= q̄, we have [(qε̄ − 1)−1] = αq
for q 6= q̄, [(q̄ε̄ − 1)−1] = αq̄ + 1. Therefore

Nε̄ =
∏
q≤P

q[(qε̄−1)−1] = (
∏
q 6=q̄

qαq ) · q̄αq̄+1 = N · q̄ = N̄ .

To prove that N̄ is the s.h.c. successor of N it is enough to show that the
intervals ]ε̄N̄ , εN̄ ] and ]ε̄N , εN ] are contiguous. From the above we have,
for every ε such that ε̄ < ε ≤ ε′, the equality N = Nε while N̄ = Nε̄. Thus
ε̄ = εN̄ = ε̄N = d∗(N) and we have proved that N and N̄ are consecutive.

2. ε̄ = εq1 = εq2 for two distinct primes. Arguing like in 1), as εq < ε̄ for
q 6= q1, q2, we have that [(qε̄ − 1)−1] = αq while [(qε̄1 − 1)−1] = αq1 + 1,
[(qε̄2 − 1)−1] = αq2 + 1. Therefore

N̄ = Nε̄ = (
∏

q 6=q1,q2

qαq ) · qαq1+1
1 · qαq2+1

2 = N · q1 · q2.

The proof that N, N̄ are consecutive s.h.c. is identical with that at point 1).
In this case their quotient is the product of two distinct primes. We prove
that there are no more cases. Firstly we show that, for fixed ε > 0, the
number (pε−1)−1, p prime, is an integer for at most two distinct values, q1, q2.
Suppose by contradiction that there are three different primes p, q, r, such that
(pε − 1)−1 = l, (qε − 1)−1 = m, (rε − 1)−1 = n, with m, l, n integers. It is easy
to check that ε is irrational. Apply the Six Exponential Theorem with β1 = 1,
β2 = ε, z1 = log p, z2 = log q, z3 = log r. The conditions of linear independence
over Q are clearly fulfilled; therefore at least one of the numbers eβizj should
be transcendental, whereas they are either integers or rational numbers. Thus
our claim is proved. Therefore the chain of equalities ε̄ = εq1 = · · · = εqn
holds for n ≤ 2 and there are no more cases to be handled. This completes the
proof.

Remark 3.2: In case 2) there are four numbers (instead of two) which maxi-

mize the map d(n)
nε̄ , namely N , N̄ , N1 = N · q1, N2 = N · q2. As N < N1 < N̄ ,
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N < N2 < N̄ , N1 and N2 are not s.h.c. since N and N̄ are consecutive. In the
paper [3], Nicolas and Robin introduced a class of numbers which they called
hautement composés supérieurs. They quote Lang’s result and are aware of the
possibility of the occurence of case 2). However, if this case takes place, their
class of numbers turns out to be strictly wider than that of s.h.c.: in fact N1

and N2 are hautement composés supérieurs because they maximize the map
d(n)
nε̄ .

Remark 3.3: The reason of Ramanujan’s default in absence of the assumption
of the four exponential conjecture can be explained as follows: in order to
generate the set of s.h.c. numbers, he considers the numbers of the type log p

log m+1
m

,

p prime, m ≥ 1 integer, ordered in an ascending chain

x1 =
log π1

log r1
< · · · < xn =

log πn
log rn

< · · · .

Starting from π1 = 2 (the first s.h.c.) the (n + 1)-th is obtained multiplying
the n-th by πn+1, n ≥ 1. At the end of Par. 36 (see p.392–3) of [4] it is claimed
that “πn is the prime corresponding to xn”. This is true in case 1) of Theorem
3.1; in case 2), instead, xn does not determine πn univocally as

xn =
log q1

log m1+1
m1

=
log q2

log m2+1
m2

, q1 6= q2

and the procedure breaks off. For a given positive integer n, the question
whether d∗(n) is algebraic arises. There are examples of integer values of d∗:
for instance d∗(18) = d∗(90) = 1. If N is s.h.c. we can show the transcendency
of d∗(N) and give an assessment of its order of magnitude.

Theorem 3.4. The function d∗(N) for N s.h.c. is asymptotic to log 2
log logN and

its values are transcendental.

Proof. We must show that, for any δ > 0 and N > Nδ, N s.h.c.

(1− δ) log 2

log logN
< d∗(N) <

(1 + δ) log 2

log logN
.

Fix δ > 0. There exists n0 such that for every N > n0, we have:

(1− δ) log 2

log logN
<

log 2

log logN + log 8
log 2

.

Moreover, for 0 < ε < ε0,

2( 1
ε )
δ
2 >

1

2ε − 1
.
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Furthermore, there is n1 such that, for every N > n1, N s.h.c., εN < ε0.
Finally, for N > n2:

(1 + δ
2 ) log 2

log logN − log log 3
<

(1 + δ) log 2

log logN
.

Set Nδ = max(n0, n1, n2). Let N be s.h.c. Then

N = 2[(2ε
′
N−1)−1] · p[(pε

′
N−1)−1]

N

with ε̄N < ε′N ≤ εN , pN ≤ 2
1
ε′
N < 2pN by Bertrand’s Postulate. Let

θ(x) =
∑
p≤x

log p.

It is known that

x
log 2

4
≤ θ(x) ≤ x log 3

for x ≥ 2. As 2 · · · pN ≤ N , taking the logarithms from the inequalities of the
above we have:

ε′N ≥
log 2

log logN + log 8
log 2

.

Since d∗(N) = inf ε′N , the same inequality holds for d∗(N). On the other hand,
since

2[(2ε
′
N−1)−1] · p[(2ε

′
N−1)−1]

N > N,

we get

2
1
ε′
N (2ε

′
N − 1)−1 >

1

log 3
logN.

For N > Nδ s.h.c. as ε′N ≤ εN < ε0 we obtain

2
( 1
ε′
N

)1+ δ
2

>
1

log 3
logN,

namely

d∗(N) < ε′N <
(1 + δ

2 ) log 2

log logN − log log 3
<

(1 + δ) log 2

log logN
.

As Nδ ≥ n0, we find

(1− δ) log 2

log logN
<

log 2

log logN + log 8
log 2

≤ d∗(N).
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For the second part, recall Gelfond-Schneider’s Theorem (see [2]): if α, β are
algebraic, α 6= 0, 1 and β irrational, then αβ is transcendental. By proving
Theorem 3.1 we observed that

d∗(N) = ε̄N =
log m+1

m

log p

for suitable p prime and m ≥ 1 integer, ε̄N < 1. It’s easily seen that ε̄N is
irrational. If by contradiction it were algebraic, setting α = p, β = ε̄N in
Gelfond-Schneider’s Theorem, we would get that pε̄N is transcendental while
pε̄N = m+1

m . Therefore ε̄N is transcendental.

In the general case, the question about the maximum order of d∗(n) as well
as the problem of comparing the sizes of n and d∗(n) lead to the

Theorem 3.5. The following assertions hold:

1. for every n ≥ 2, d∗(n) < 2n log n+1
2 ;

2. for every real number M ≥ 1, there are infinitely many integers n such
that d∗(n) > M · n.

Proof.

1. The formula holds for n = 2. If n > 2, from calculus it follows that, for
every k > 1:

log n+k
2

log n+k
n

<
log n+1

2

log n+1
n

;

moreover

log
n+ 1

n
>

1

2n
.

As d(n) ≥ 2, from the definition of d∗(n) we have, for a suitable integer
k ≥ 1:

d∗(n) ≤
log d(n+k)

2

log n+k
n

<
log n+k

2

log n+k
n

≤
log n+1

2

log n+1
n

< 2n log
n+ 1

2
.

2. Take an integer h > 2 · eM . As 2h−1 and 2h−1 − 1 are relatively prime,
for a theorem of Dirichlet, [1, p.16], there are infinitely many primes p
such that p is congruent to 2h−1 − 1 (mod 2h−1). It follows that p+ 1 is
a multiple of 2h−1 and therefore d(p+ 1) ≥ h. Since d(p) = 2 and

log
p+ 1

p
<

1

p
, d∗(p) ≥

log d(p+1)
2

log p+1
p

≥
log h

2

log p+1
p

≥M · p.
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This completes the proof.

Finally, we tackle some computational problems concerning the function
d∗∗. If S is an infinite set of positive integers, nS its smallest element, n0 ≥ nS ,

define S∗∗n0
=

n≤n0∑
n∈S

d∗∗(n) and S∗∗ = lim
n0→∞

S∗∗n0
. The value of S∗∗ can be

considered as an index of the occurence in S of numbers with low d∗: if the
series diverges, their effectiveness prevails. Denote respectively by N , O, P the
sets of natural, odd and prime numbers.

Proposition 3.6. The following assertions hold:

1. N∗∗ = +∞;

2. P ∗∗ = 1, 7211 . . . ;

3. there is an N0 such that, for n̄ > N0 the following holds: O∗∗n̄ < O∗∗ <
O∗∗n̄ + 5

[
√
n̄]

, where [
√
n̄] denotes the integral part of

√
n̄.

Proof.

1. If N1 and N2 are consecutive s.h.c. numbers, N1 < N2, as we know that
d∗(N1) = ε̄N1 = εN2 = 〈N2, N1〉, then we get the equalities:

d∗∗(N1) =
d(N1)

N
d∗(N1)
1

=
d(N1)

N
ε̄N1
1

=
d(N2)

N
εN2
2

,

as well as the inequality

d(N2)

N
εN2
2

<
d(N2)

N
ε̄N2
2

= d∗∗(N2).

Therefore d∗∗(2) < d∗∗(6) < d∗∗(12) · · · and S∗∗ = +∞ for every S which
contains the set of s.h.c. numbers.

2. With the usual technique, it’s possible to check that, for everyN , d∗(N) =
max〈n,N〉, N < n ≤ N̄ , where N̄ is the smallest s.h.c. number greater
than N . The proof is left to the reader. As 6 and 12 are s.h.c., d∗(p)
for p = 2, 3, 5, 7, 11 is easily computed. If p is prime, p ≥ 13, since
d(p+ 1) ≥ 4, then d∗(p) ≥ 〈p+ 1, p〉 ≥ log 2

log 14
13

≥ 9, 35. Therefore∑
p≥13

d∗∗(p) < 2
∑
n≥13

n−9,35 < (2, 5) · 10−10.

Thus P ∗∗ = d∗∗(2) + d∗∗(3) + d∗∗(5) + d∗∗(7) + d∗∗(11) + ε, ε < 10−9,
namely P∗∗ = 1, 7211 . . . .
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3. Following Lemma 2.3, applied for s̄ = 2, h = 0, r = 2, if N = 3α3 · pαp is
an odd number such that d∗(N) < 2, then p ≤ 61. Moreover, according to
the points 1) and 2) of Lemma 2.3, for s prime, 3 ≤ s ≤ 61, set Q = 67·71

and ks equal to the integral part of log[(3s+1)Q]
log s . Then αs < 8ks−1. Define

N0 = 3ᾱ3 · · · 61ᾱ61 , where ᾱs = 8ks−1. Thus, for n odd, n > N0 we have

d∗(n) ≥ 2. Now fix an integer n0 > 1 and consider An0
=

∑
n≤n0

n−2. By

comparison with the integral, ζ(2) < An0 + 1
n0

. As 1
n0

< An0 < 1, 645,

it follows that ζ2(2) < A2
n0

+ 5
n0

. Since the series
∑
n

n−2 is absolutely

convergent, the equality ζ2(2) = (
∑
n

n−2)2 =
∑
h,k

(h · k)−2 holds. For a

positive integer n, let k1,n, . . . kd(n),n be its divisors. Then the terms of

the series
∑
h,k

(h · k)−2 which are equal to n−2 are:

(k1,n ·
n

k1,n
)−2, . . . (kd(n),n ·

n

kd(n),n
)−2,

namely their number is d(n). Therefore, after an arrangement of the
terms, we get ∑

h,k

(h · k)−2 =
∑
n

d(n)

n2

(see also [1, p.327] for a general treatment of Dirichlet series). Analo-

gously (
∑
n≤n0

n−2)2 =
∑
n≤n2

0

mn

n2
, 0 ≤ mn ≤ d(n). For every n, 1 ≤ n ≤ n2

0,

mn is the number of indices i, 1 ≤ i ≤ d(n) such that both ki,n and n
ki,n

are less or equal n0. Therefore mn = d(n) if and only if n ≤ n0. This
implies the following inequalities:∑

n≤n0

d(n)

n2
< (

∑
n≤n0

n−2)2 <
∑
n≤n2

0

d(n)

n2
< ζ2(2).

Consequently, ∑
n>n2

0

d(n)

n2
<

5

n0
.

Since we have shown that every odd number greater than N0 belongs to
D+

2 , if n̄ > N0, posing n0 = [
√
n̄] we have eventually:

n>n̄∑
n∈O

d∗∗(n) <
∑
n>n̄

d(n)

n2
≤

∑
n>n2

0

d(n)

n2
<

5

n0
=

5

[
√
n̄]
.
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The assertion at point 3) follows from the fact that

O∗∗ = O∗∗n̄ +

n>n̄∑
n∈O

d∗∗(n).

The proof is complete.

Corollary 3.7. The function d∗(n) tends to infinity over the sequence of odd
integers.

Proof. Arguing as in part 3) of the Proposition 3.6, if Lemma 2.3 is applied
for s̄ = 2, h = 0 and r arbitrarily big, it follows that d∗(n) > r for n odd and
n > N0(r).

The following criterion can be used to detect whether a given number is
s.h.c. We state it without proof.

Criterion. Let N be a positive integer. Define ρ = min〈N,n〉, n < N . Then

N is s.h.c. if and only if for every prime p, 2 ≤ p ≤ 2
1
ρ , the p-adic valuation

of N equals [(pρ− 1)−1]. Moreover, N is highly composite if and only if ρ > 0.

Examples. For N = 23 · 32 · 5 · 7 = 2520, a standard computational program
shows that the minimum ρ of the quantities 〈N,n〉, n < N is attained for
n = 360, ρ = 0, 3562 . . . .

Besides, 2
1
ρ = 7, (2ρ − 1)−1 = 3, 57 . . . , (3ρ − 1)−1 = 2, 08 . . . , (5ρ − 1)−1 =

1, 29 . . . , (7ρ−1)−1 = 1. Therefore [(pρ−1)−1] = vp(N), p prime and 2 ≤ p ≤ 7.
Thus N turns out to be s.h.c. .
For N = 23 · 33 · 5 · 7 = 7560, the same procedure yields ρ = 〈7560, 5040〉 =
0, 159 . . . . As in this case (2ρ − 1)−1 = 8, 58 . . . whereas v2(N) = 3, N is not
s.h.c. .
If we take N = 25 · 32 = 288, since 〈288, 240〉 = −0, 57 . . . , the number is not
even highly composite.

4. Concluding remarks

From the above Proposition it follows that the series O∗∗ is convergent. The-
oretically we should be able to compute its sum within any preassigned de-
gree of accuracy by choosing n̄ > N0 sufficiently big. However, since N0 =
371 ·547 ·(7·11)39 ·(13·17·19·23)31 ·(29·31·37·41·43·47·53·59·61)23 > (2, 5)·10663,
the computation of O∗∗n̄ for n̄ > N0 is far beyond the reach of any existing ma-
chine. In this computational context a main problem is the numerical value of
O∗∗, whose size is completely unknown at the present state of affairs. Another
remark concerns highly composite numbers. In their definition, only the pre-
decessors of a given number are involved while, on the contrary, the function
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d∗(n) is defined uniquely in terms of the successors of n. This may account
for the difficulty in proving theorems which relate the two concepts. But the
numerical tests that we have performed show that highly composite numbers
have a d∗ much lower than the average; for instance there is only one highly
composite number n < 1013 whose d∗ is greater than 1 (incidentally, n = 50400
and d∗(n) > 1, 05). In other words, the fact of having more divisors than all
predecessors has an impact on the value of d∗, which is defined by looking
uniquely at the successors.
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[2] S. Lang, Nombres transcendants, Séminaire N. Bourbaki 305 (1966), 407–414.
[3] N. Nicolas and G. Robin, Majorations explicites pour le nombre de diviseurs

de n, Canad. Math. Bull. 26 (1983), no. 4, 485–492.
[4] S. Ramanujan, Highly composite numbers, Proc. London Math. Soc. 14 (1915),

342–409.

Author’s address:

Rodolfo Talamo
Retired professor of Mathematics
Politecnico di Milano, Milano, Italy
E-mail: rodtalamo@gmail.com

Received January 21, 2020
Revised December 15, 2020

Accepted December 18, 2020


