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1. Introduction

Closed orientable surfaces are one of the most ordinary geometric and physical
subjects to us, since they stay in our 3-dimensional space everywhere in vari-
ous manners. The study of symmetries on closed orientable surfaces is also a
classical topic in mathematics.

Let Σ2 be the orientable closed surface of genus 2. If a finite group action
G on Σ2 can also act on the pair (Σ2, S

3) for some embedding e : Σ2 → S3,
which is to say, for each h ∈ G we have h ◦ e = e ◦ h, then we call such a group
action on Σ2 extendable over S3. Similarly one can define the extendability
over a genus 2 handlebody V2.

There are many papers on such extending problems, for extending over a
handlebody see [3, 7] and over S3 see [2, 5, 6], and the references therein.

We determine extendability for all orientation-preserving finite group ac-
tions on Σ2. To do this, for each finite group G acting on Σ2, we first need
to find geometric generators for G, that is to exhibit each generator as a pri-
mary and explicit symmetry (like rotations, reflections and antipodal maps,
and their compositions), then check if those geometric generators are extend-
able. To find geometric generators itself is an interesting piece in the study of
surfaces symmetries.

We start from the Table 1 below which is copied from [1]. Table 1 gives
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G |G| Σ2/G presentation

Z2 2 (S2; 2, 2, 2, 2, 2, 2) 〈x : x2 = 1〉
Z2 2 (T 2; 2, 2) 〈x : x2 = 1〉
Z3 2 (S2; 3, 3, 3, 3) 〈x : x3 = 1〉
Z2 × Z2 4 (S2; 2, 2, 2, 2, 2) 〈x, y : x2 = y2 = 1 = [x, y] = 1〉
Z4 4 (S2; 2, 2, 4, 4) 〈x : x4 = 1〉
Z5 5 (S2; 5, 5, 5) 〈x : x5 = 1〉
Z6 6 (S2; 3, 6, 6) 〈x : x6 = 1〉
Z6 6 (S2; 2, 2, 3, 3) 〈x : x6 = 1〉
D3 6 (S2; 2, 2, 3, 3) 〈x, y : x2 = y3 = 1, xyx−1 = y−1〉
Z8 8 (S2; 2, 8, 8) 〈x : x8 = 1〉

D̃2 8 (S2; 4, 4, 4) 〈x, y : x4 = y4 = 1, x2 = y2, xyx−1 = y−1〉
D4 8 (S2; 2, 2, 2, 4) 〈x, y : x2 = y4 = 1, xyx−1 = y−1〉
Z10 10 (S2; 2, 5, 10) 〈x : x10 = 1〉
Z2 × Z6 12 (S2; 2, 6, 6) 〈x, y : x2 = y6 = [x, y] = 1〉
D4,3,−1 12 (S2; 3, 4, 4) 〈x, y : x4 = y3 = 1, xyx−1 = y−1〉
D6 12 (S2; 2, 2, 2, 3) 〈x, y : x2 = y6 = 1, xyx−1 = y−1〉
D2,8,3 16 (S2; 2, 4, 8) 〈x, y : x2 = y8 = 1, xyx−1 = y3〉
Z2 n
(Z2 ×
Z2×Z3)

24 (S2; 2, 4, 6)
〈x, y, z, w : x2 = y2 = z2 = w3 = [y, z] =
[y, w] = [z, w] = 1, xyx−1 = y, xzx−1 =
zy, xwx−1 = w−1〉

SL2(3) 24 (S2; 3, 3, 4) 〈x, y : x =
(

1 1
0 1

)
, y =

(
0 1
−1 0

)
〉

GL2(3) 48 (S2; 2, 3, 8) 〈x, y : x =
(

1 1
0 −1

)
, y =

(
0 −1
−1 −1

)
〉

Table 1: Abstract finite group actions on Σ2.

all the orientation-preserving finite group actions on Σ2, including their or-
ders, orbifold information, and group presentations. We remark that in this
classification, two group actions are equivalent if and only if they differ by a
conjugation via some topological homeomorphism of the Σ2.

We need to explain more before we can state our results.

If an action of G is orientation-preserving on Σ2 and is extendable over
V2, then the action of G on V2 must also be orientation-preserving. However,
if it is extendable over S3, then there are two possibilities: (1) all elements
g ∈ G preserve the orientation of S3, or (2) some element g ∈ G reverses the
orientation of S3. We use the symbol “H” to denote an action which extends
over V2, use “+” to denote an action which extends over S3 of type (1), and
use “−” to denote an action which extends over S3 of type (2).
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G Σ2/G generators extendability

Z2 (S2; 2, 2, 2, 2, 2, 2) ρ2,1 H,+

Z2 (T 2; 2, 2) ρ2,2 H,+,−
Z3 (S2; 3, 3, 3, 3) ρ3 H,+

Z2 × Z2 (S2; 2, 2, 2, 2, 2) ρ2,1, ρ2,2 H,+,−
Z4 (S2; 2, 2, 4, 4) ρ4 H,−
Z5 (S2; 5, 5, 5) ρ5 ∅
Z6 (S2; 3, 6, 6) ρ6,2 −
Z6 (S2; 2, 2, 3, 3) ρ6,1 H,+

D3 (S2; 2, 2, 3, 3) ρ2,2, ρ3 H,+

Z8 (S2; 2, 8, 8) ρ8 ∅

D̃2 (S2; 4, 4, 4) ρ4, ρ
′
4 ∅

D4 (S2; 2, 2, 2, 4) ρ4, ρ2,2 H,−
Z10 (S2; 2, 5, 10) ρ10 ∅

Z2 × Z6 (S2; 2, 6, 6) ρ2,1, ρ6,2 −
D4,3,−1 (S2; 3, 4, 4) ρ3, ρ4 −
D6 (S2; 2, 2, 2, 3) ρ2,2, ρ6,1 H,+

D2,8,3 (S2; 2, 4, 8) ρ2,2, ρ8 ∅
Z2 n (Z2 × Z2 × Z3) (S2; 2, 4, 6) ρ2,2, ρ2,1, ρ

′
2,2, ρ3 −

SL2(3) (S2; 3, 3, 4) ρ3, ρ4 ∅
GL2(3) (S2; 2, 3, 8) ρ3, ρ8 ∅

Table 2: Geometric generators and extendability of finite group actions on Σ2.

Our main result is:

Theorem 1.1. For each orientation-preserving finite group action on the sur-
face Σ2,

(1) its geometric generators, whose descriptions will be given in Section 2,
are given in the third column of Table 2;

(2) its extendability is given in the last column of Table 2.

Here are some remarks about the symbols in Table 2:

1. We use ρn to denote a periodic map on Σ2 of order n;

2. If there are more than one periodic maps, which are not conjugate to
each other, then we denote them by ρn,1, ρn,2, ...;
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Figure 1

3. As the generators of D̃2, ρ4 and ρ′4 are two different periodic maps on
Σ2, but they are conjugate to each other. The same for the symbols ρ2,2
and ρ′2,2 as the generators of Z2 n (Z2 × Z2 × Z3).

We finish the introduction by the following very useful fact:
If a group action is extendable of some type then its subgroups are also

extendable, see Figure 1 for some subgroup inclusions. Two groups joined with
an edge indicates that the upper one is a subgroup of the lower one (as group
actions).

2. Examples

Example 2.1: This example is mostly from [2].
Figure 2(a) gives a realization of the actions of ρ2,1 and ρ2,2 on (Σ2, S

3).
This gives the examples of Z2 × Z2(H,+), Z2(ρ2,1)(H,+) and Z2(ρ2,2)(H,+).

Figure 2(b) gives a realization of the ρ2,2-action on (Σ2, S
3). The restriction

of this action on each S2 centered at O is an antipodal map, and if we view
S3 as the union of such S2’s together with O and ∞, then the action gives the
orientation-reversing map of S3 of order 2 with fixed points O and ∞. Here
we view Σ2 as the horizontal plane with two handles. This gives the example
of Z2(ρ2,2)(−).

Figure 3 gives a realization of the ρ3 and ρ2,1-actions on (Σ2, S
3). The two

actions commute and their composition is ρ3ρ2,1 = ρ6,1. This gives the example
of Z3(ρ3)(H,+) and Z6(ρ6,1)(H,+).
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Figure 4(a) gives a realization of the ρ4-action on (Σ2, S
3). This action is the

composition of a π/2-rotation together with a reflection about the horizontal
plane. Here we view Σ2 as the horizontal plane with two handles. This gives
the example of Z4(−).

Figure 4(b) gives a realization of the ρ4-action on the handlebody V2 as a
solid 3-ball with two pairs of opposite disks identified. This gives the example
of Z4(H). This ρ4 together with a ρ2,2 give the example of D4(H).

Figure 5(a) gives a realization of the ρ8-action on Σ2 as an octagon with
opposite sides identified.

Figure 5(b) gives a realization of the ρ10-action on Σ2. This also gives the
ρ5 = ρ210 action.

Example 2.2: This example is mostly form [6]. Let S3 be the unit sphere in
C2:

S3 = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1}.
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Let

am = (e
mπ
2 i, 0), m = 0, 1, 2, 3,

bn = (0, e
nπ
3 i), n = 0, 1, · · · , 5.

Connect each a2l to each b2k by the shortest geodesic in S3, and connect each
a2l+1 to each b2k+1 by the shortest geodesic in S3, where l = 0, 1 and k = 0, 1, 2.
Then we get two graphs Γ,Γ′ ∈ S3. Γ contains a2l, b2k, and Γ′ contains a2l+1,
b2k+1. Each graph has 5 vertices (3 of them are of degree 2) and 6 edges. They
are in the dual positions as in Figure 6 where graphs have been projected into
the 3-dimensional Euclidean space E3 = S3 − {(−1, 0)}; the vertex a2 is at
infinity.

Roughly speaking, there is a Σ2 embedded at the “middle position” between
the Γ and Γ′, as a Heegaard surface bounding two handlebodies, so if a group
action keeps Γ ∪ Γ′ invariant, then this group acts on the pair (Σ2, S

3). For
details of such an embedding one can see [6].
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Now we give some actions on S3:

x : (z1, z2) 7→ (z̄1, z̄2)

y : (z1, z2) 7→ (−z1, z2)

z : (z1, z2) 7→ (−iz̄1, z2)

w : (z1, z2) 7→ (z1, e
2
3πiz2)

It is easy to check that all these maps keep Γ ∪ Γ′ invariant, so they all act
on the pair (Σ2, S

3). Furthermore, x, y, w leave both Γ and Γ′ invariant, and
they preserve the orientation of S3; z interchanges Γ and Γ′, and it reverses the
orientation of S3, so we conclude that all these maps preserve the orientation
of Σ2. They generate the group

〈x, y, z, w|x2 = y2 = z2 = w3 = [y, z] = [y, w] = [z, w] = 1,

xyx−1 = y, xzx−1 = zy, xwx−1 = w−1〉
∼= Z2 n (Z2 × Z2 × Z3).

So it gives the example for Z2 n (Z2 × Z2 × Z3)(−).
Note that

(1) Z2×Z2 is the subgroup generated by y and z, so it also gives the example
for Z2 × Z2(−).

(2) Z2 × Z6 is the subgroup generated by y, z, and w, so it also gives the
example for Z2 × Z6(−).

(3) Z6 is the subgroup generated by zw, so it also gives the example for
Z6(−).

(4) D3 is the subgroup generated by x and w, so it also gives the example
for D3(H,+).

(5) D4 is the subgroup generated by x, y and z, so it also gives the example
for D4(−).

(6) D6 is the subgroup generated by x, y and w, so it also gives the example
for D6(H,+).

(7) D4,3,−1 is the subgroup generated by xz and w; we have

D4,3,−1 ∼= 〈xz,w|(xz)4 = w3 = 1, (xz)w(xz)−1 = w−1〉,

so it also gives the example for D4,3,−1(−).
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Figure 6

Figure 7

Example 2.3: In this part, we provide some intuition of some actions on Σ2.
Although these actions are not extendable in any sense, we can see the group
structures more directly.

First let us consider Σ2 as the hyperbolic octagon with opposite sides iden-
tified. This octagon has all eight corners π/4, and can be divided into 16
hyperbolic equilateral triangles, each of which has inner angle π/4.

There is an obvious π/4 rotation around the center point O. Now we
describe another order 3 rotation ρ3. If we lift it to the universal cover of
Σ2, then it is a 2π/3 rotation around the center of the triangle V BA. This
action will permute these triangles as:

V BA 7→ BAV

OCD 7→ DOC

OC ′D′ 7→ D′OC ′

A′V B′ 7→ V B′A′
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ABO 7→ V A′D 7→ B′V C ′ 7→ ABO

AOD′ 7→ V D′C ′ 7→ B′C ′O 7→ AOD′

BCO 7→ A′OD 7→ V DC 7→ BCO

V CB 7→ B′OA′ 7→ AD′V 7→ V CB

If we map each triangle to a letter in {1, 2, 3, 4} as in the left side of the picture,
then this order 3 action induces a permutation

(2, 3, 4) ∈ S4.

Note that the order 8 rotation ρ8 induces a permutation

(1, 2, 3, 4).

Since (2, 3, 4) and (1, 2, 3, 4) generates the whole S4, we have a surjective group
homomorphism:

〈ρ3, ρ8〉 → S4.

Furthermore, if we label the regions in Σ2 with eight non-zero vectors in Z2
3

as in the right side, then we can check that

ρ3((a, b)) = (a, b)

(
0 1
−1 −1

)
,

ρ8((a, b)) = (a, b)

(
0 1
1 1

)
.

So we have an isomorphism

〈ρ3, ρ8〉 ∼= 〈
(

0 1
−1 −1

)
,

(
0 1
1 1

)
〉 = GL2(3),

together with a 2 to 1 surjective homomorphism

p : GL2(3)→ S4.

By take the subgroup 〈ρ3, ρ4〉 = 〈ρ3, ρ28〉, we see another surjective group
homomorphism:

〈ρ3, ρ4〉 → A4

ρ3 7→ (2, 3, 4)

ρ4 7→ (1, 2, 3, 4)2 = (1, 3)(2, 4).

And in fact we have
〈ρ3, ρ4〉 ∼= SL2(3).
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Consider the subgroup of S4

〈(1, 2, 3, 4), (1, 2)(3, 4)〉 ∼= D4,

its preimage under p : GL2(3)→ S4 is the D2,8,3.
Finally consider the subgroup of S4

〈(1, 2)(3, 4), (1, 3)(2, 4)〉 ∼= Z2 × Z2,

its preimage under p is the D̃2, and D̃2 is isomorphic to the unit quaternion
group {±1,±i,±j,±k}.

So this example shows the group actions of GL2(3), SL2(3), D2,8,3 and D̃2

on Σ2.

3. Extendabilities

3.1. Extension to a handlebody

The following lemma follows from results of [7] or [3]; alternatively, it is a
consequence of the equivariant Dehn’s Lemma ([4]).

Lemma 3.1. If a group G acts on some handlebody V orientation-preservingly,
and the orbifold ∂V/G is a sphere with no more than 3 branch points, then
V is in fact the 3 ball. So ∂V/G must be (S2;n, n), (S2; 2, 2, n), (S2; 2, 3, 3),
(S2; 2, 3, 4) or (S2; 2, 3, 5).

Now we proof the handlebody part of the main theorem:
Z2(ρ2,1)(H), Z2(ρ2,2)(H), Z3(H), Z2 × Z2(H), Z4(H), Z6(ρ6,1)(H) and

D4(H) are from Example 2.1.
D3(H) and D6(H) are from Example 2.2.
All the other actions cannot extend to a handlebody by Lemma 3.1.

3.2. Extension to S3

The results for cyclic group actions are proved in [2], and the existence of the
extensions of the cyclic group actions is actually proved also in Section 2. In
the following we consider only the non-cyclic group actions.

By Lemma 2.4 of [5], if some G-action on Σ2 with orbifold Σ2/G a sphere
with no more than 4 singular points, then this action extends to S3 orientation-
preservingly implies that it also extends to some handlebody. So in this case
if we do not have G(H), we can not have G(+).

Z2 × Z2(+) is from Example 2.1. Z2 × Z2(−) is from Example 2.2.
D3(+) is from Example 2.2.



FINITE GROUP ACTIONS ON THE GENUS-2 SURFACE 523

D3(−) does not extend: otherwise, suppose D3 = 〈ρ2, ρ3〉 acts on S3, where
ρ2 reverse the orientation of S3. Denote by Θ1 and Θ2 the two 3-orbifold
bounded by X = Σ2/Z3 = S2(3, 3, 3, 3), and by {A,B,C,D} the four branched
points onX. By applying Smith theory, we may suppose that two branched arcs
in Θ1 are AB and CD, and two branched arcs in Θ2 are BC andDA , see Figure
8. Note the induced involution ρ̄2 on X is a π-rotation about two ordinary
points and interchanges Θ1 and Θ2. Since ρ̄2(A) 6= A, if ρ̄2 interchanges A
and B, ρ̄2 will keep the singular arc AB invariant; if ρ̄2 interchanges the pairs
(A,B) and (C,D), then ρ̄2 interchanges the singular arcs AB and CD. In
either case we would have ρ̄2(Θ1) = Θ1 which is a contradiction.

A

B C

D

Θ1

Θ2

Figure 8

D̃2(+) does not extend because it does not even extend to a handlebody.

D̃2(−) does not extend: otherwise, suppose D̃2 acts on S3, consider the
orientation-preserving subgoup, which is an index 2 subgroup and must be
isomorphic to Z4, but there is no Z4(+).

So we have D̃2{∅}. Since D̃2 ⊂ SL2(3) ⊂ GL2(3) and D̃2 ⊂ D2,8,3, we also
conclude that SL2(3){∅} , GL2(3){∅} and D2,8,3{∅}.

D4(+) does not extend because there is no Z4(+) as a subgroup.
Z2×Z6(+) and D4,3,−1(+) do not extend because they cannot even extend

to a handlebody.
D6(−) does not extend because an element of order 2 which reverses the

orientation of S3 together with an element of order 3 will form a subgroup of
either Z6(ρ6,1) or D3, but there is no Z6(ρ6,1)(−) or D3(−) as a subgroup.

Z2 n (Z2 × Z2 × Z3)(+) does not extend because it cannot even extend to
a handlebody.
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