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Abstract. Let X be a finite connected graph, possibly with loops and
multiple edges. An automorphism group of X acts purely harmonically
if it acts freely on the set of directed edges of X and has no invert-
ible edges. Define a genus g of the graph X to be the rank of the first
homology group. A finite group acting purely harmonically on a graph
of genus g is a natural discrete analogue of a finite group of automor-
phisms acting on a Riemann surface of genus g. In the present paper,
we investigate cyclic group Zn acting purely harmonically on a graph
X of genus g with fixed points. Given subgroup Zd < Zn, we find the
signature of orbifold X/Zd through the signature of orbifold X/Zn. As a
result, we obtain formulas for the number of fixed points for generators
of group Zd and for genus of orbifold X/Zd. For Riemann surfaces,
similar results were obtained earlier by M. J. Moore.
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1. Introduction

Let X be a finite connected graph, possibly with loops and multiple edges. We
provide each edge of X (including loops) by two possible orientations. Define
the genus g of the graph X to be the rank of its first homology group. An
automorphism group of a graph is said to act harmonically if it acts freely on
the set of its directed edges and purely harmonically if it also has no invertible
edges. By [2] and [4], a finite group acting harmonically on a graph of genus g
is a natural discrete analogue of a finite group of homeomorphisms acting on a
closed orientable topological surface of genus g. In particular, in papers [4, 5],
a discrete version of the classical 84(g − 1) Hurwitz theorem is established.
Also discrete versions of the Oikawa [15] and the Arakawa [1] theorems which
sharpen the Hurwitz upper bound for various classes of groups where found in
[9, 13].

An automorphism of a graph X is said to be harmonic if it generates a
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cyclic group acting harmonically on X. In paper [12], the authors have found
a discrete analogue of the Wiman theorem by which the order of a harmonic
automorphism of a graph X of genus g ≥ 2 does not exceed 2g + 2 and this
bound is achieved for any even g. However, in contrary to the Riemann surface
case considered by Wiman, an automorphism of maximal order acts without
fixed points. The size of cyclic group acting harmonically on X with given
number of fixed points was estimated from the above in [6].

In the present paper, we investigate cyclic group Zn acting purely harmon-
ically on a graph X of genus g with fixed points. Given subgroup Zd < Zn,
we find the signature of orbifold X/Zd through the signature of X/Zn. To do
this, we use an approach developed by the first named author [10] for the case
of Riemann surfaces. As a result, we obtain formulas for the number of fixed
points for generators of group Zd and for genus of orbifold X/Zd. For Riemann
surfaces, similar results were obtained earlier by M. J. Moore [14].

2. Basic definitions and preliminary facts

In this paper, a graph X is a finite connected multigraph, possibly with loops.
We provide each edge of X including loops, by the two possible orientations.
Denote by V (X) the set of vertices and by E(X) the set of directed edges
of X. Given e ∈ E(X), by ē we denote edge e taking with the opposite
orientation. Let G ≤ Aut(X) be a group of automorphisms of a graph X.
An edge e ∈ E(X) is called invertible if there is ϕ ∈ G such that ϕ(e) = ē.
Let G act without invertible edges. Define the quotient graph X/G so that its
vertices and edges are G-orbits of the vertices and edges of X. Note that if the
endpoints of an edge e ∈ E(X) lie in the same G-orbit then the G-orbit of e is
a loop in the quotient graph X/G. We say that the group G acts harmonically
on a graph X if it acts freely on the set of directed edges E(G) which simply
means that, each element of G that fixes an edge e ∈ E(G) is the identity. If
G acts harmonically and without invertible edges, we say that G acts purely
harmonically on X.

Let G be a finite group acting purely harmonically on a graph X. For every
ṽ ∈ V (X) denote by Gṽ the stabilizer of ṽ in the group G and by |Gṽ| its
order. Next to each vertex v ∈ V (X/G) we prescribe the number mv = |Gṽ|,
where ṽ ∈ ϕ−1(v). Since G acts transitively on each fibre of ϕ, these numbers
are well-defined. The point v, for which mv ≥ 2, will be called branch point
of order mv. Defining the genus of a graph as its cyclomatic number or Betti
number (equivalently, rank of the first homology group) we have the following
version of the Riemann-Hurwitz formula that can be found in [2, 4, 11].

Proposition 2.1. Let G be a finite group acting purely harmonically on a graph
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X of genus g. Denote by γ genus of the factor graph X/G. Then

g − 1 = |G|

γ − 1 +
∑

v∈V (X/G)

(
1− 1

mv

) . (1)

Observe that actually v in the above sum run over the branch points of X/G.

We prefer to look on the quotient graph X/G as on a one-dimensional
orbifold. In this case, the notion of signature is very important. If the group
G acts purely harmonically on X, the signature is defined as the sequence
(γ;m1, . . . ,mr), where γ is the genus of X/G and m1,m2, . . . ,mr are branch
orders used in Proposition 2.1. In the case of repetition, we will use power mark
to indicate the number of equal entries. For example, we write (3; 13, 22, 31)
instead of (3; 1, 1, 1, 2, 2, 3).

3. Finite group acting purely harmonically on a graph

The main technique of the present paper is the uniformization theory of graphs
and their coverings [7, 12, 9].

Let G be a finite group acting purely harmonically on a graph X of genus
g with the factor space X/G of signature (γ;m1, . . . ,mr). In what follows, we
suppose that all vertex stabilizers of G on graph X are cyclic groups.

Let X be a graph of groups with a trivial group assigned to each vertex
and each edge of X. Consider a graph of groups Y obtained by prescribing the
respective group Zmi , i = 1, . . . , r to each of r points of the branch set and
trivial groups to all other vertices and edges of Y . Then the map ϕ : X → Y
can be naturally extended to a covering Φ : X → Y of graph of groups. Denote
by ∆ = π1(X ) and Γ = π1(Y) the fundamental groups and by X̃ and Ỹ the
universal covering trees of graphs of groups X and Y respectively. By the
Bass uniformization theorem [3, Proposition 2.4], there exists a lift of Φ to an

isomorphism Φ̃ : X̃ → Ỹ between covering trees equivariant under the action
of ∆ and Γ on X̃ and Ỹ respectively. We note that X ∼= X̃/∆ and Y ∼= Ỹ/Γ.
Identifying X̃ and Ỹ via isomorphism Φ̃ we replace the covering Φ : X → Y by
the covering X̃/∆→ X̃/Γ induced by a group inclusion H / Γ with Γ/∆ ∼= G.

By [3, p. 7], ∆ is a free group of the rank g and Γ = Z∗γ ∗ Zm1 ∗ . . . ∗Zmr ,

where Z∗γ is a free product of γ copies of Z. Let X̃ be the universal covering
tree of the graph X. Note that X̃ is the underlying graph of the graph of group
X̃ . Following traditions in the Riemann surface theory (see, for example, [8]),
one can refer to Γ as a universal covering group of the orbifold X/G.
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4. Cyclic group action on Riemann surfaces and graphs

First of all, we are going to find a discrete version of the following result es-
tablished earlier in [10]. Then, we will use the obtained result to establish
graph-theoretical versions of two Moore’s theorems proved in [14].

Theorem 4.1 (A. D. Mednykh, 1980). Let S be a compact Riemann sur-
face and Zn be a cyclic group of conformal automorphisms of S. Denote by
(γ;m1, . . . ,mr) the signature of orbifold S/Zn. Let Zd be a subgroup of Zn of
order d. Then the orbifold S/Zd has the signature(

γd; (m1, d)n/[m1,d], . . . , (mr, d)n/[mr,d]
)
,

where (mi, d) = gcd(mi, d), [mi, d] = lcm(mi, d), i = 1, 2, . . . , r, while γ and γd
are genera of the respective orbifolds.

We prove the following theorem.

Theorem 4.2. Let X be a finite connected graph and Zn be a cyclic group
acting purely harmonically on X. Denote by (γ;m1, . . . ,mr) the signature of
orbifold X/Zn. Let Zd be a subgroup of Zn of order d. Then the orbifold X/Zd
has the signature (

γd; (m1, d)n/[m1,d], . . . , (mr, d)n/[mr,d]
)
,

where (mi, d) = gcd(mi, d), [mi, d] = lcm(mi, d), i = 1, 2, . . . , r, while γ and γd
are genera of the respective orbifolds.

Proof. Let X̃ be the universal covering graph of orbifold O = X/Zn. See [12]
for detailed definition. Then there is an action of the group Γ = Z∗γ ∗ Zm1 ∗
. . . ∗ Zmr

on X̃ such that the factor graph X̃/Γ is isomorphic to O. That is, Γ
is the universal covering group of O. Moreover, there exists an order preserving
epimorphism θ : Γ → Zn whose kernel is a free group of rank g, where g is
genus of graph X.

Denote by H preimage θ−1(Zd). Then H is the universal covering group

of orbifold Od = X/Zd. Identifying Od with X̃/H and O with X̃/Γ we have

the sequence of orbifold coverings X̃
p→ Od

q→ O induced by group inclusions
I < H < Γ. Since θ is order preserving we have |Γ : H| = |Zn : Zd| = n/d. This
number coincides with multiplicity of covering q. That is, each edge of O has
exactly n/d preimages in Od. Consider a vertex x ∈ Od. By [12, Example 1],
branch order of x in orbifold Od is equal to the size of stabilizer |Hx̃| of group
H in any preimage x̃ ∈ p−1(x). In the same time, branch order of y = q(x)
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in orbifold O is equal to the size of stabilizer |Γx̃|. Avoiding the points with
trivial stabilizer, we can assume that |Γx̃| = mj for some j = 1, 2. . . . , r and y
is a branch point of orbifold O. Recall [12] that Γx̃ is a cyclic group of order
mj . The stabilizer Hx̃ is formed by those elements of Γx̃ = Zmj whose images
under epimorphism θ belong to Zd. Since θ preserves the order of elements, we
have Hx̃ = Z(mj ,d), where (mj , d) is the greatest common divisor of mj and d.
So, each element in the fiber q−1(y) of the n/d-fold covering q has branch order
(mj , d). Notice there are exactly (n/d) : (mj/(mj , d)) = n(mj , d)/(mjd) =
n/[mj , d] of them. This gives the proof of the theorem.

As a consequence of the above result, we obtain the following version of
the Moore formula for the number of fixed points well known in the Riemann
surface theory [8, 14]. An alternative proof of this result can be obtained by
making use of discrete version of Macbeath’s formula given in [6].

Theorem 4.3 (Moore’s formula for graphs). Let Zn be a cyclic group acting
purely harmonically on a graph X and h be an element of order d, d > 1 in the
group Zn. Denote by (γ;m1, . . . ,mr) the signature of the orbifold X/Zn. Then
the number of fixed points of h is given by the formula∑

d |mi

n

mi
.

Proof. Consider the canonical map ϕ : X → X/Zd, where Zd is a cyclic group
generated by h. By Theorem 4.2, the signature of orbifold Od = X/Zd is equal
to (

γd; (m1, d)n/[m1,d], . . . , (mr, d)n/[mr,d]
)
,

where γd is genus of Od.
Let x ∈ Od and Fx = ϕ−1(x) be the fiber of x. Since the covering ϕ is

regular, the group Zd acts transitively of the set Fx. So, the fiber Fx contains
a fixed point of h if and only if it consists of one element. If x is an ordinary
point of orbifold Od (that is, branch point of order 1), the fiber Fx consists of
d > 1 elements and has no fixed points of h. According to the signature of Od,
for any i = 1, 2, . . . , r we have n/[mi, d] branch points of order (mi, d). The
fiber of such a point has length one if and only if d/(mi, d) = 1. The latter is
equivalent to d|mi. As a result, the number of fixed points of h is given by∑

d |mi

n

[mi, d]
=
∑
d |mi

n

mi
.

As a direct consequence of Theorem 4.3 we have the following statement.
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Corollary 4.4. Let Zn be a cyclic group acting purely harmonically on a graph
X and denote by (γ;m1, . . . ,mr) the signature of the orbifold X/Zn. Then the
number of fixed points of a generator of Zn coincides with the number of entities
mi in the signature which are equal to n.

Now our aim is to obtain Moore’s formula for the genus of X/Zd. The
original result [14, Theorem 4], rewritten in terms of orbifolds, is given by the
theorem below. The proof of this theorem in the paper [14] is quite complicated.
Our approach, based on Theorems 4.1 and 4.2, allows to get the result quickly.

Theorem 4.5. Let G be a cyclic group of automorphisms of order n acting on
a Riemann surface S of genus g at least two. Suppose that the signature of
orbifold S/G has rb periods b, for each b dividing n, and, for d|n, let Gd be the
subgroup of G of order d. Then the orbit space S/Gd has genus γd, given by

γd = 1 +
1

d
(g − 1)− 1

2d

∑
bb′=n

b′rb
(
(b, d)− 1

)
,

where (b, d) denotes the greatest common divisor of b and d.

The following theorem a discrete version of the above Moore’s theorem for
cyclic orbifold Od = X/Zd.

Theorem 4.6. Let X be a finite graph of genus g and Zn be a cyclic group
acting purely harmonically on X. Denote by (γ;m1, . . . ,mr) be the signature of
orbifold X/Zn. Let Zd be a subgroup of Zn of order d. Then genus g of graph
X and genus γd of orbifold Od = X/Zd are related by the formula

g − 1 = d(γd − 1) +

r∑
i=1

n

mi

(
(mi, d)− 1

)
.

where (mi, d) = gcd(mi, d).

Proof. By Theorem 4.2, orbifold Od = X/Zd has the following signature(
γd; (m1, d)n/[m1,d], . . . , (mr, d)n/[mr,d]

)
.

By the Riemann-Hurwitz formula (1) we obtain

g − 1 = d

(
γd − 1 +

r∑
i=1

n

[mi, d]

(
1− 1

(mi, d)

))
. (2)

We note that [mi, d](mi, d) = mi d and



TWO MOORE’S THEOREMS FOR GRAPHS 475

d

(
n

[mi, d]

(
1− 1

(mi, d)

))
= d

(
n

[mi, d]
− n

[mi, d](mi, d)

)
=

nd

[mi, d]
− nd

mi d

=
n

mi

(
mi d

[mi, d]
− 1

)
=

n

mi

(
(mi, d)− 1

)
.

Hence,

d

r∑
i=1

n

[mi, d]

(
1− 1

(mi, d)

)
=

r∑
i=1

n

mi

(
(mi, d)− 1

)
and the result follows from (2).

Assuming that signature (γ;m1, . . . ,mr) has rb periods mj = b, for each b
dividing n, we restate the main result of Theorem 4.6 in the form

γd = 1 +
1

d
(g − 1)− 1

d

∑
bb′=n

b′rb
(
(b, d)− 1

)
.
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