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Abstract. In this paper we simulate positive solutions, large solu-
tions and metasolutions of the heterogeneous logistic equation in a disk
and an annulus. The numerical methods introduced in this paper are
extremely innovative because they make unnecessary determining any
previous lifting and solving any decoupled system of ordinary differen-
tial equations. Moreover, they can be used to solve non-radially sym-
metric problems. The models are of a huge interest in Spatial Ecology
because they enable us to analyse the effects of the spatial heterogeneity
on the evolution of the terrestrial ecosystems. The large solutions and
the metasolutions have been computed by the first time in this paper.
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1. Introduction

As a consequence of the unequal distribution of resources, populations dis-
tribute themselves in habitats of different size and quality. Algae, cyanobac-
teria and mountain pine beetles, see [1, 17, 29], grow and reproduce rapidly
in some concrete habitats, having extraordinary and dramatic impact in some
ecosystems, as changing food webs, decreasing biodiversity and altering ecosys-
tem conditions. Inspired by Section 1.2 of López-Gómez [21], we propose the
diffusive heterogeneous logistic equation to model the disproportionate growth
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of a population.
Definitely, modelling the heterogeneous distribution of populations in patch-

es of the landscape with different population densities is crucial in conservation
planning. Using mathematical models where the habitat is assumed to be spa-
tially homogeneous becomes a tight restriction that leads too often to numerical
results that do not match up with the collected field data. At the same time,
modelling with reaction-diffusion systems with constant coefficients may also
result in inaccurate predictions. The key issue is to implement variable coeffi-
cients in reaction-diffusion equations.

Moreover, it is incredibly important to assign correct values to the param-
eters, in this case, the proliferation rate λ that depends on the size of the
patches. There are critical values of this parameter for which the species can
survive and grow in each patch as we are going to see below in this paper.

In contrast to spatial structure population models, we use a simpler model
that is more tractable and easier to interpret. We solve numerically for the
first time the following master equation in Spatial Ecology in an habitat Ω to
be considered circular, in the presence of spatial heterogeneity,{

−∆u = λu−m(x, y)u2 in Ω,

Bu = 0 on ∂Ω,
(1)

where ∆ is the Laplacian, Ω ∈ {BR((0, 0)), A(R0, R1)}, with

BR((x0, y0)) := {(x, y) ∈ R2 : ‖(x− x0, y − y0)‖ < R},

A(R0, R1) := {(x, y) ∈ R2 : 0 < R0 < ‖(x, y)‖ < R1},

and either
Bu = Du = u− f

(general Dirichlet boundary conditions), whith f ≥ 0 or

Bu =
∂u

∂η
= 0

(homogeneous Neumann boundary conditions), where η stands for the outward
unit normal vector-field on ∂Ω, λ ∈ R is a constant, f are the prescribed values
of u along the boundary ∂Ω, and m ≥ 0, m 6= 0, is a function of class Cµ(Ω),
for some µ ∈ (0, 1], satisfying the following hypotheses:

(A) The set
Ω+ := {x ∈ Ω : m(x, y) > 0}

is a subdomain of Ω with Ω+ ⊂ Ω, whose boundary, ∂Ω+, is of class C3,
and the open set

Ω0 := Ω\Ω+
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consists of two components Ω0,i, i ∈ {1, 2}, such that

Ω0,1 ∩ Ω0,2 = ∅,

and
λ1[−∆,D,Ω0,1] < λ1[−∆,D,Ω0,2]. (2)

Throughout this paper, for any given regular subdomain D of Ω, we de-
note by λ1[−∆,D, D] the principal eigenvalue of −∆ in D under homogeneous
Dirichlet boundary conditions. As a consequence of the Maximum Principle,

λ1[−∆,D, D2] < λ1[−∆,D, D1] if D1  D2

(see [20] for any further required details). So, roughly speaking, (2) entails
Ω0,1 to be larger than Ω0,2, but not exactly, as the principal eigenvalue also
dependes on some hidden geometrical properties of the underlying domains.
Figure 1 shows some of spatial configurations of m(x, y) treated in this paper.
Problem (1) is considered degenerate, always that Ω0 6= ∅.

Figure 1: Spatial configuration of m(x, y) in the disk BR((0, 0)) and the annulus

A(10, 100).

This problem is used in Spatial Ecology to model the evolution of the dis-
tribution of a single species, u, randomly dispersed in the inhabiting area, Ω.
In this context, it is very important to obtain the solutions of (1) because, at
least in case f = 0, they provide us with the limiting profiles as t→∞ of the
solutions of the parabolic problem

∂u
∂t −∆u = λu−m(x, y)u2 in Ω× (0,∞),

Bu = 0 on ∂Ω× (0,∞),

u(·, 0) = u0 > 0 in Ω.

(3)
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From the point of view of the applications, allowing m(x, y) to vanish on a
subdomain of Ω, enables us to model the three different possible behaviors of
the solution of (1), with f = 0 and B = D, according to three distinct ranges
of the parameter λ. Precisely, according to López-Gómez [18]:

• The inhabiting region Ω cannot support the species u if λ ≤ λ1[−∆,D,Ω].

• The species u grows according to the Verhulst law if λ1[−∆,D,Ω] < λ <
λ1[−∆,D,Ω0,1].

• The species u grows according to the Malthus law in Ω0,1, while it has a
logistic behavior in Ω\Ω0,1 if λ1[−∆,D,Ω0,1] ≤ λ < λ1[−∆,D,Ω0,2].

• The species u grows according to the Verhulst law in Ω+, while it exhibits
Malthusian growth in Ω\Ω+ if λ ≥ λ1[−∆,D,Ω0,2].

Therefore, as the previous results establish that, for the appropriate ranges
of values of the parameter λ, the metasolutions provide us with the limiting
profiles of the positive solutions of the evolution problem, from the point of view
of the applications it is imperative to design efficient numerical algorithms to
compute all the solutions and metasolutions of (1). A functionM : Ω→ [0,∞]
is said to be a metasolution of (1) supported in D, D ∈ {Ω\Ω0,1,Ω+} if there
exists a solution (large solution) L of{

−∆L = λL−m(x, y)L2 in D,

L = 0 on ∂D ∩ ∂Ω,

satisfying

lim
dist((x,y),∂D\∂Ω)↓0

L(x, y) =∞,

for which

M =

{
∞ in Ω\D,
L in D.

Computing the positive solutions, the large solutions and the metasolutions
is the main goal of this paper, where, for the first time, the degenerate logis-
tic equation in circular domains, without radial symmetries on the coefficient
m(x, y), has been solved numerically. Our numerical schemes and methods
enjoy a great versatility, as it will become apparent later.

From the point of view of numerical analysis, our main contribution here
consists in developing a number of, really necessary, algebraic manipulations on
the differentiation matrix L∆ of the Laplace operator in polar coordinates in
order to impose either general inhomogeneous Dirichlet boundary conditions,
or homogeneous Neumann ones, both in arbitrary disks and circular annuli.
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From a theoretical point of view, in the problem with Ω = B1((0, 0)) the
most common pseudo-spectral method available is based on the expansion of u
in terms of eigenfunctions of the Laplace operator and it can be expressed as

u(r, θ) ≈
M∑
m=0

N∑
n=1

amnJm(
√
λmnr) cos(mθ) +

M∑
m=1

N∑
n=1

bmnJm(
√
λmnr) sin(mθ),

where N , M are positive integers, the Jm’s denote the Bessel functions of first
kind, λmn are the eigenvalues of −∆ in B1((0, 0)) under Dirichlet boundary
conditions, and amn, bmn are the (unknown) coefficients of the expansion, that
are determined in this paper through the collocation points, (ri, θj), which are
the Chebyshev–Gauss–Lobatto points in the r-direction and the equidistant
spaced points in the θ-direction. Unfortunately, in the case of the logistic
equation, this paradigmatic classical scheme becomes unstable for

λ > λ[−∆,D, B1((0, 0))] + ε

if ε > 0, being precisely this range of values of λ the one for which the large
solutions and metasolutions of the model play a significant role in describing
the dynamics of the evolution problem (3).

As a by-product, during the last several years a variety of methods have
been developed to approximate the solutions of the Poisson equation in a disk.
The monograph of Boyd and Fu Yu [3] collects a rather complete review of
them comparing some of the main available schemes to solve the Poisson equa-
tion in a disk through the Zernike and the Logan–Shepp ridge polynomials, the
Chebyshev–Fourier series, the cylindrical Robert functions, the Bessel–Fourier
expansions, the square-to-disk conformal mapping, and the radial basis func-
tions. But yet none of these schemes can be directly applied to compute the
large solutions and the metasolutions of our problem. Very recently, the authors
obtained in [24] the differentiation matrices of the Laplace equation in polar
coordinates subjected to non homogeneous Robin boundary conditions and
also, the differentiation matrix of the biharmonic equation subjected to non-
homogeneous boundary conditions. More references concerning pseudospectral
methods in the disk can also be found in [24]. The paradigmatic monographs
of e.g., Gottlieb–Orszag [13], Fornberg [10], Boyd [2], Peyret [26], Canuto et
al [6], and Shen–Tang–Wang [32] reveal the great importance of using spec-
tral and pseudo-spectral methods to solve a huge variety of partial differential
equations.

Although some sophisticated numerical calculations of radially symmetric
classical solutions for (1), as well as some explosive solutions that do not belong
to ∪∞p=1L

p
loc

(Ω), were carried out by Gómez-Reñasco and López-Gómez [12],
this paper solves for the first time (1) without imposing any radial symmetry
on the coefficients. Actually, the numerics of [12] where utterly one-dimensional
using ODE’s techniques.
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Collocation-spectral methods are some of the most versatile methods for
treating non-linear problems as well as simulating solutions of partial differen-
tial equations with variable coefficients, as it will be seen in this work. Further-
more, solving problem (1) in the unit disk is the first necessary step to solve
the same problem on a more complicated geometry via a conformal mapping.
But this analysis will be accomplished in an upcoming work and will appear
elsewhere.

The organization of this paper is as follows. In Section 2 we apply the
underlying collocation spectral method to simulate numerically the classical
positive solutions, large solutions and metasolutions of the heterogeneous lo-
gistic equation in the unit disk and in a circular annulus for both the Dirichlet
and the Neumann problems. In Appendixes A and B we obtain the discretiza-
tion matrices of the Laplace operator in polar coordinates for homogeneous
and inhomogeneous Dirichlet boundary conditions, as well as for homogeneous
Neumann boundary conditions.

2. The Logistic Equation with Spatial Heterogeneity.

In this section, we apply the collocation spectral method developed in the
Appendix to approximate the positive solutions of (1). As a consequence of
the presence of the weight function m(x, y) in front of the non-linear term, the
richness of the set of positive solutions of (1) increases extraordinarily. Actually
the model can exhibit classical positive solution, large positive solutions and
metasolutions of (1). Subsequently, we will compute all these types of solutions.

It should be emphasized that, without a deep previous knowledge of the
analytical results of López-Gómez [18] and [21], the numerical resolution of (1)
would be an extremely hard task, by the lack of a priori bounds in L∞ for
the gradients of all these classical and non-classical solutions, which might be-
come infinity even in some open sub-domains of the underlying domain. When
necessary, we will refer to [18] for the available theoretical results about (1).

2.1. Classical solutions and metasolutions in B1((0, 0))
under Dirichlet boundary conditions

In this section we consider the problem (1) with homogeneous Dirichlet bound-
ary conditions: {

−∆u = λu−m(x, y)u2 in B1((0, 0)),

u = 0 on ∂B1((0, 0)),
(4)
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where m : B1((0, 0))→ [0,∞) is given by:

m(x, y) =

{
−
(√

x2 + y2 − 0.5
)(√

x2 + y2 − 0.3
)

if (x, y) ∈ A(0.3, 0.5),

0 otherwise.
(5)

Figure 2 shows a plot of m(x, y) for this choice.

Figure 2: Plot of m(x, y) for the choice (5).

In polar coordinates, the problem (4) becomes into
−∂

2u

∂r2
− 1

r

∂u

∂r
− 1

r2

∂2u

∂θ2
= λu−m(r, θ)u2 in (0, 1)× [0, 2π)

u(1, θ) = 0 on [0, 2π),

u(r, θ) = u(r, θ + π) in [0, 1]× (−∞,∞),

(6)

where m : [0, 1]× [0, 2π)→ [0,∞) is given by

m(r, θ) =

{
−(r − 0.5)(r − 0.3) if (r, θ) ∈ (0.3, 0.5)× [0, 2π),

0 otherwise.
(7)

Naturally, this model fits into the abstract setting of this paper with

Ω+ = A(0.3, 0.5), Ω0 = B0.3((0, 0)) ∪A(0.5, 1).

Table 1 collects the theoretical and numerical values of the principal eigenvalue
λ1 of −∆ in the most relevant subdomains of Ω from the point of view of de-
scribing the dynamics of (3). Namely, Ω and each of the two components of
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Ω0. We call theoretical λ1 the value of the approximation obtained by using
Bessel function and computed λ1 the value calculated through the Inverse Power
Method applied to the differentiation matrices approximating the Laplace op-
erator with N + 1 nodes in the r-direction and Nθ nodes in the θ-direction.

Subdomain Theoretical λ1 Computed λ1 Computed λ1

N=17, Nθ = 40 N=42, Nθ = 40
B1((0, 0)) 5.783185962946 5.783185962959 5.783185962956
A(0.5,1) 39.013288499083 39.013288499012 39.013288498923
B0.3((0, 0)) 64.257621810519 64.257621810502 64.257621810334

Table 1: The principal eigenvalues in the relevant subdomains.

Thanks to Table 1, if we take

Ω0,1 = A(0.5, 1), Ω0,2 = B0.3((0, 0)),

then λ1[−∆,D,Ω0,1] < λ1[−∆,D,Ω0,2]. The existence of classical positive
solutions of (1) is guaranteed from the following theorem borrowed from [18].
As all the remaining results going back to [18] and [12], it is collected here by
the sake of completeness.

Theorem 2.1. Suppose m(x, y) satisfies (A). Then,

1. The problem (4) possesses a classical positive solution if, and only if,

λ1[−∆,D,Ω] < λ < λ1[−∆,D,Ω0,1]. (8)

Moreover, it is unique if it exists.

2. Suppose (8) and let θλ denote the unique classical positive solution of (4).
Then

lim
λ↓λ1[−∆,D,Ω]

||θλ||L∞(Ω) = 0, (9)

and

lim
λ↑λ1[−∆,D,Ω0,1]

||θλ||L∞(Ω) =∞ (10)

uniformly in (Ω0,1 ∪ Ω0,2)\∂Ω.

3. The mapping λ→ θλ is point-wise increasing and, if we regard to it as a
mapping from (λ1[−∆,D,Ω], λ1[−∆,D,Ω0,1]) into C1,ν(Ω), 0 < ν < 1,

then it is differentiable and ∂θλ
∂λ ∈W

2,p(Ω) ∩W 1,p
0 (Ω) for all p > 1.



A COLLOCATION-SPECTRAL METHOD 319

In order to compute some distinguished solutions along the global curve
of classical positive solutions of (4) we apply the collocation spectral method
already described in Appendix A to obtain a nonlinear system of equations that
we solve using the Newton method. Succeeding in the choice of an appropriate
initial data for the Newton method is utterly based on a good knowledge of
the available analytical results.

Figure 3 shows some of the classical positive solutions that we have com-
puted with our method. The value λ1[−∆,D, B1((0, 0))] = 5.783185 is the
unique value of λ for which bifurcation to positive solutions from u = 0 occurs.
It should be noted how these solutions grow in Ω0,1, while, in strong apparent
contrast, they stabilize in B1((0, 0))\Ω0,1, as λ increases.

As λ moves up from λ1[−∆,D, B1((0, 0))] = 5.783185, the principal eigen-
value of the linearization around the positive solutions grows from zero up to
reach its maximum value critical λ, where it becomes decreasing for any further
value λ up to approach the critical value where the bifurcation from infinity
takes place, where it converges to zero. As this feature, was not previously
observed in the specialized literature, we conjecture that

lim
λ↑λ1[−∆,D,Ω0,1]

λ1[−∆ + 2m(x, y) θλ − λ,D,Ω] = 0.

Table 2 collects some representative values of λ together with the L∞-norms
of the corresponding positive solutions and the principal eigenvalues of their
linearizations (p.e.l.).

Value of λ p.e.l. ||u||∞
30.0 1.9279 2.3520e+005
32.5 1.0511 1.3294e+006
33.6 0.7035 5.0819e+006
34.0 0.4480 1.0785e+007

Table 2: The principal eigenvalues of the linearizations.

Now, we will show the results of our numerical experiments for computing
the metasolutions of (4). First, we need to introduce some concepts going back
to [12].

Definition 2.2. Consider the problem{
−∆u = λu−m(x, y)u2 in D,

u =∞ on ∂D,
(11)

where D is un proper subdomain of Ω. A function u ∈ C2+µ(D) is said to be
a large (or explosive) solution of (11) if it satisfies the differential equation in
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Figure 3: Plots of the classical positive solutions of (4) for λ ∈ {6, 13, 22, 29, 34}.
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D, u = 0 on ∂D ∩ ∂Ω, and

lim
dist((x,y),∂D\∂Ω)↓0

u(x, y) =∞.

Definition 2.3. Consider (11) with D ∈ {Ω\Ω0,1,Ω+}. Then, a function
M : Ω → [0,∞] is said to be a metasolution of (11) supported in D if there
exists a large solution L of (11) in D for which

M =

{
∞ in Ω\D,
L in D.

(12)

According to López-Gómez [18] and [21] , it is known that:

• If λ1[−∆,D,Ω] ≤ λ < λ1[−∆,D,Ω0,1], the problem (4) admits a classical
positive solution.

• If λ1[−∆,D,Ω0,1] ≤ λ < λ1[−∆,D,Ω0,2], the problem (4) admits a meta-
solution supported in Ω\Ω0,1.

• If λ ≥ λ1[−∆,D,Ω0,2], the problem (4) admits a metasolution supported
in Ω+.

Moreover, the minimal metasolutions in these ranges describe the limiting
profiles of all positive solutions of the evolution problem (3), when the initial
data u0 is a subsolution of problem (1), see Theorem 5.2 in [21]. So, the impor-
tance of computing them from the point of view of the design, or restoration,
of spatially heterogeneous ecosystems. According to the previous analytical
results, (1) possesses a metasolution supported in Ω\Ω0,1 if

λ1[−∆,D,Ω0,1] w 39.013288 ≤ λ < λ1[−∆,D,Ω0,2] w 64.257622. (13)

To compute this metasolution, we first computed the large solution u of{
−∆u = λu−m(x, y)u2 in B0.5((0, 0)),

u =∞ on ∂B0.5((0, 0)).
(14)

The most natural strategy to approximate the large solution of (14) is to com-
pute the unique positive solution of{

−∆u = λu−m(x, y)u2 in B0.5((0, 0)),

u = β on ∂B0.5((0, 0)),
(15)

for sufficiently large β. Figure 4 shows some numerical solutions of (15) with
β = 3 ∗ 105. Our numerics reveal that the metasolutions supported in Ω\Ω0,1
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are point-wise increasing in Ω\Ω0,1 with respect to λ. They grow at a faster
rate in A(0.5, 1), where m = 0, than in B0.5((0, 0)), where m > 0. Each of these
metasolutions takes the value β on ∂B0.5((0, 0)). As λ ↑ λ1[−∆,D,Ω0,2], the
corresponding metasolution exhibits a complete blow-up in B0.3((0, 0)), while
it stabilizes in A(0.3, 0.5). Finally, to obtain the metasolution supported in Ω+

for λ ≥ λ1[−∆,D,Ω0,2]), we computed the large solution of{
−∆u = λu−m(x, y)u2 in A(0.3, 0.5),

u =∞ on ∂A(0.3, 0.5),
(16)

approximating it by the unique solution of{
−∆u = λu−m(x, y)u2 in A(0.3, 0.5),

u = β on ∂A(0.3, 0.5),
(17)

for β sufficiently large. Figure 5 shows some plots of these metasolutions.
Since the problems (14) and (17) are radially symmetric, the positive large

solution of each of these problems is unique, by, e.g., Theorem 7.1 of J. López-
Gómez [21] (see also [19]). Moreover, due to Theorem 4.7 of [21], we already
know that the positive solutions of (14) and (17) approximate these unique
large solutions as β ↑ ∞. For uniqueness results in more general settings, the
reader is sent to the more recent paper of J. López-Gómez and L. Maire [22].
Figure 6 shows a zoom of the profiles of the positive solutions of (15) for
λ = 40, as well as the profiles of the positive solutions of (17) for λ = 70 and
β ∈ {3 ∗ 105, 4 ∗ 105, 5 ∗ 105}.

2.2. Classical positive solutions in A(R0, R1) under
Dirichlet boundary conditions

In this subsection, we compute numerically some classical positive solutions of{
−∆u = λu−m(x, y)u2 in A(10, 100),

u = 0 on ∂A(10, 100),
(18)

where m : A(10, 100)→ [0,∞) is defined by:

m(x, y) =


0 if (x, y) ∈ A(95, 100),

10−11p(x, y)(x2 + y2 − 102)(952 − x2 − y2)

if (x, y) ∈ A(10, 95)\B6((30, 40)),

0 if (x, y) ∈ B6((30, 40)).

(19)

where p(x, y) = (x − 30)2 + (y − 40)2 − 36. Figure 7 shows a plot of m(x, y)
defined in (19).
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Figure 4: Plots of the solutions of (15) in B1(0)\A(0.5, 1) for λ ∈ {40, 48, 55, 60, 64}.
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Figure 5: Plots of the solutions of (17) in A(0.3, 0.5) for λ ∈ {70, 100}.

Figure 6: Profiles approximating the large solution of (14) for λ = 40 and, of (16)

for λ = 70.

Figure 7: Plots of m(x, y) and its contour lines for the choice (19).
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Consequently, the problem is far from being radially symmetric. The ex-
istence of classical positive solutions of (18) is guaranteed by Theorem 2.1.
Problem (18) can be rewritten as:
−∂

2u

∂r2
− 1

r

∂u

∂r
− 1

r2

∂2u

∂θ2
= λu−m(r, θ)u2 in (10, 100)× [0, 2π)

u(10, θ) = 0 on [0, 2π)

u(100, θ) = 0 on [0, 2π)

u(r, θ) = u(r, θ + π) in [10, 100]× (−∞,∞).

(20)

In Table 3 we are giving the theoretical and numerical values of the principal
eigenvalue of −∆ in some of the relevant subdomains of Ω. The theoretical
value is calculated from the estimate 2.4048 for the first zero of the Bessel
function J0.

Subdomain Theoretical λ1 Computed λ1

A(10,100) 0.001097 0.001098
B6((30, 40)) 0.160640 0.160644
A(95,100) 0.394757 0.394757

Table 3: The principal eigenvalues in some relevant subdomains.

The corresponding model fits into the general setting of this paper with

Ω+ = A(10, 95)\B6((30, 40)), Ω0,1 = B6((30, 40)) Ω0,2 = A(95, 100).

Figure 8 shows some of the classical positive solutions that we have com-
puted. These solutions grow in B6((30, 40)), while they stabilize in the set
A(10, 100)\B6((30, 40)), as λ increases. As λ increases from 0.001098 approxi-
mating the principal eigenvalue in B6((30, 40)), which is given by 0.160644, the
solutions blow up in B6((30, 40)) as λ ↑ 0.160644.

2.3. Classical positive solutions in B1((0, 0)) under
Neumann conditions

In this subsection we compute the classical positive solution of−∆u = λu−m(x, y)u2 in B1((0, 0)),
∂u

∂η
= 0 on ∂B1((0, 0)),

(21)

using the collocation spectral method described in the Appendixes. Here, η
stands for the outward unit normal along ∂B1((0, 0)). So, η(x, y) = (x, y)
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Figure 8: Plots of the classical solutions of (18) in A(10, 100) for λ ∈
{0.004, 0.03, 0.06}.
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for all (x, y) ∈ ∂B1((0, 0)). The existence of solutions of (21) for any domain
Ω ⊂ R2 is guaranteed by the next theorem going back to Ouyang [25]. The
case of general boundary operators on ∂Ω was first considered by J. M. Fraile
et al. [11], where the open set Ω0 consists of a single component with Ω0 ⊂ Ω.
Nevertheless, in this paper we will investigate numerically some cases where Ω0

consists of two disjoint components. Our numerical experiments show that the
positive classical solutions of (21) tend to infinity in Ω0,1 as λ ↑ λ1[−∆,D,Ω0,1].

Theorem 2.4. Assume that m ≥ 0 (6≡ 0) is a smooth function in Ω.

1. If Ω0 = ∅, then for every λ > 0 there exists a unique solution u(λ) of
problem (21).

2. If Ω0 6= ∅, then for any λ ∈ (0, λ1[−∆,D,Ω0]) there exists a unique
solution of (21), whereas (21) cannot admit a positive solution if λ ≥
λ1[−∆,D,Ω0].

Moreover

lim
λ↑λ1[−∆,D,Ω0]

||u(λ)||L2(Ω) =∞. (22)

Note that problem (21) can be written as:
−∂

2u

∂r2
− 1

r

∂u

∂r
− 1

r2

∂2u

∂θ2
= λu−m(r, θ)u2 in (0, 1)× [0, 2π),

∂u

∂r
(1, θ) = 0 on [0, 2π),

u(r, θ) = u(r, θ + π) in [0, 1]× (−∞,∞).

(23)

In order to show the excellent accuracy of the numerical method, we are
taking m ≡ 1 in the first simulation. In this case, the corresponding model fits
into the abstract setting of Theorem 2.4, with Ω+ = B1((0, 0)) and Ω0 = ∅.
Thus, the problem (21) has a unique positive solution for all λ > 0. In this case,
we know that the solution of (21) is u ≡ λ. Figure 9 shows the plots of some
classical positive solutions computed through the spectral collocation method
introduced in this paper, and the distribution of the error E(x, y) = |u(x, y)−λ|
in B1((0, 0)) for λ = 8 and λ = 100. Note that the maximum value of the error
is of order 10−13 for λ = 8 and 10−12 for λ = 100.

Finally, for the last simulation, we take m as in (5). It should be remember
that for this choice the model fits into the abstract setting of this paper with
Ω+ = A(0.3, 0.5), Ω0 = B0.3((0, 0)) ∪ A(0.5, 1), Ω0,1 = A(0.5, 1) and Ω0,2 =
B0.3((0, 0). In this case, combining the abstract theory of Fraile et al. [11]
with López-Gómez [21, Ch. 4], it becomes apparent that (21) has a classical
positive solution if, and only if, 0 < λ < λ1[−∆,D,Ω0,1]. Actually, this is a
rather direct consequence of Daners and López-Gómez [7, Th. 1.1].
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Figure 9: Numerical solution of (21) for λ ∈ {8, 100} with m ≡ 1 and the corre-

sponding errors E(x, y).

Figure 10 shows the plots of the numerical solutions of (21) for λ ∈ {0.0003, 5}.
Although it is well known that the solutions are point-wise increasing in Ω with
respect to λ, our experiments suggest that they grow at a faster rate on Ω0,1.
Actually, these solutions grow up to infinity on Ω̄0,1 as λ ↑ λ1[−∆,D,Ω0,1].

2.4. Case Neumann II : Numerical Computation of
Classical Positive Solutions in the circular annulus
Ω = A(R0, R1)

Firstly, we consider the problem

−∆u = λu−m(x, y)u2 in A(4, 10),
∂u

∂η
= 0 on ∂A(4, 10),

(24)

where η is the unit outward vector on ∂A(4, 10) and m ≡ 1. The existence
of solutions of (24) is guaranteed by Theorem 2.4. The problem (24) in polar
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Figure 10: Plots of the classical solutions of (23) with m as in (5) for λ ∈ {0.0003, 5}.
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coordinates can be rewritten as:

−∂
2u

∂r2
− 1

r

∂u

∂r
− 1

r2

∂2u

∂θ2
= λu−m(r, θ)u2 in (4, 10)× [0, 2π),

−∂u
∂r

(4, θ) = 0 on [0, 2π),

∂u

∂r
(10, θ) = 0 on [0, 2π),

u(r, θ) = u(r, θ + π) in [4, 10]× (−∞,∞).

(25)

Since Ω+ = A(4, 10) and Ω0 = ∅, by the Theorem 2.4, there exists a clas-
sical positive solution for all λ > 0. Naturally, as in the previous section, the
solutions of (24) must be u ≡ λ. Figure 11 shows some of the numerical solu-
tions that we computed.

Figure 11: Numerical solution of (24) in A(4, 10) for λ ∈ {4, 15} with m ≡ 1.

To end this paper, we consider (24) in A(4, 10) with two different coefficients
m : A(4, 10)→ [0,∞) defined by

m(x, y) =

{
(
√
x2 + y2 − γ)(9− (

√
x2 + y2) if (x, y) ∈ A(γ, 9),

0 if (x, y) ∈ A(4, γ) ∪A(9, 10).
(26)

where γ ∈ {4.9, 5.5}. Figure 12 shows a plot of m(x, y) for γ = 5.5. For this
choice, Ω+ = A(γ, 9) and Ω0 = A(4, γ) ∪ A(9, 10). Table 4 provides the nu-
merical values of the principal eigenvalues of −∆ in some relevant subdomains
of Ω. These values have been computed applying the Inverse Power Method
to the discretization matrix of the Laplace operator, taking 85 nodes in the
r-direction and 60 nodes in the θ-direction.

Although it is possible to give a theoretical value for the underlying prin-
cipal eigenvalues as in the tables above, in this occasion it is much faster and
versatile to compute them through the Inverse Power Method applied to the
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Figure 12: Plot of m(x, y) for the choice (26) with γ = 5.5.

corresponding differentiation matrix. Actually, our method might be far more
accurate than using the available tables.

Subdomain A(4,10) A(4,5.5) A(9,10) A(4,4.9)
Computed λ1 0.268642 4.375300 9.866831 12.172021

Table 4: The principal eigenvalue of some relevant subdomains.

Thanks to the values given in Table 4, we have that Ω0,1 = A(4, 5.5) and
Ω0,2 = A(9, 10) if γ = 5.5, since

λ1[−∆,D, A(4, 5.5)] < λ1[−∆,D, A(9, 10)],

whereas Ω0,1 = A(9, 10) and Ω0,2 = A(4, 4.9) if γ = 4.9, because in such case

λ1[−∆,D, A(9, 10)] < λ1[−∆,D, A(4, 4.9)].

So, the relative position of these principal eigenvalues have inter-exchanged.

Figures 13 and 14 show the plots of some positive solutions of (24) with
m(x, y) defined by (26); these plots were computed for γ = 5.5 and γ = 4.9,
respectively. In both cases, as predicted by the theory, the solutions are point-
wise increasing with respect to λ. However, these solutions grow faster in
Ā(4, 5.5) than in Ā(9, 10) if γ = 5.5, while they grow faster in Ā(9, 10) than in
Ā(4, 5.5) if γ = 4.9, as expected from the existing theory.

Actually, these solutions grow to infinity in Ā(4, 5.5) as λ ↑ λ1[−∆,D,Ω0,1]
if γ = 5.5, stabilizing to some fixed profile in Ā(9, 10), whereas they grow-up
to infinity in Ā(9, 10) as λ ↑ λ1[−∆,D,Ω0,1] if γ = 4.9, staying bounded in its
complement.
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Figure 13: Numerical solution of (24) in A(4, 10) for λ ∈ {1, 1.1} with m(x, y) given

by (26) with γ = 5.5.

2.5. Final remarks

Table 5 collects the number of collocation points used in the simulations pre-
sented in this paper. When the domain is a disk, it equals

(
Nr+1

2

)
Nθ, while it

is given by (Nr + 1)Nθ if, instead, it is an annulus.
As illustrated in Table 5, for obtaining Figure 8, in order to capture the

fastest growth of the solution in Ω0,1 = B6((30, 40)), we had to increase the
number of collocations points up to 2300.

In the simulations sketched by Figure 5, we have taken more collocations
points than in the simulations of Figures 3-4 to approximate the growth of the
solution on ∂A(0.3, 0.5). Finally, note that, in order to get Figures 13 and 14,
where Ω0,1 6= ∅, we have used more collocation points than in the simulations
necessary to get Figure 11, where Ω0 = ∅.

Appendix

A. Construction of the differentiation matrices in the
unit disk

The main goal of this appendix is to discretize the Laplace operator in po-
lar coordinates in the unit disk B1((0, 0)) in order to impose inhomogeneous
Dirichlet and homogeneous Neumann conditions. First, we will discretize the
disk spectrally by taking a periodic Fourier grid in θ and a nonperiodic Cheby-
shev grid in r. Note that, when performing the radial interpolation, as the
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Figure 14: Numerical solution of (24) in A(4, 10) for λ ∈ {1, 1.8} with m(x, y) given

by (26) with γ = 4.9.

radius is positive, the collocation points (ri, θj) with negative ri, correspond to
those which have the same radius and θ increased by π (see [4, 9, 15, 23]). The

collocation points are (ri, θj) =
(

cos
(

(i−1)π
Nr

)
, 2π j
Nθ

)
for 1 ≤ i ≤ N + 1 and

1 ≤ j ≤ Nθ, where N = (Nr − 1)/2. To avoid the inherent loss of regularity at
the origin, the grid parameter Nr in the r-direction is taken to be odd, and Nθ
must be even to be able to apply the symmetry properties in θ.

Some pioneer results about Chebyshev-Fourier expansion can be found in
[2, 5, 8, 28, 30, 31]. In Gottlied, Hussaini and Orszag [14] it was shown that
the trigonometric interpolant of a smoothly differentiable function with period

Figure Domain Nr Nθ Total
3 B1((0, 0)) 55 30 990
4 B0.5((0, 0)) 55 30 990
5 A(0.3, 0.5) 45 30 1380
8 A(10, 100) 45 50 2300
9 B1((0, 0)) 35 30 540
11 A(4, 10) 40 30 1230
13 A(4, 10) 61 30 1830
14 A(4, 10) 61 30 1830

Table 5: Total number of collocations points.
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2π, g(θ) can be written as

g(θ) =

Nθ∑
l=1

g(θl)SNθ (θ − θl)

where SNθ is the periodic sinc function:

SNθ (θ) =
sin
(
Nθθ

2

)
Nθ tan

(
θ
2

) .
Thus, let us consider

uN+1,Nθ (r, θ) =

Nr∑
k=1

Lk(r) Pk(θ)

where Lk’s are the Lagrange polynomials Lk(r) =
∏
i 6=k(r − ri)/(rk − ri) and

Pk(θ) =

Nθ∑
l=1

ak,lSNθ (θ − θl)

is the trigonometric interpolant of u(rk, θ) in the points θl, l = 1, . . . , Nθ. Then

uN+1,Nθ (r, θ) =

Nr+1∑
k=1

Nθ∑
l=1

ak,l SNθ (θ − θl) Lk(r). (27)

Note that the approximate solution used in Huang and Sloan [16] coincides with
the expression in (27) but there, the collocation points in the radial direction

are of the form
1−cos( (i−1)π

Nr
)

2 for 1 ≤ i ≤ N + 1.

Taking into account that

rNr+2−i = −ri and θ
j+

Nθ
2

= θj + π, for 1 ≤ j ≤ Nθ
2

and 1 ≤ i ≤ Nr + 1

2
,

we can conclude that

u(rNr+2−i cos θj , rNr+2−i sin θj) = u(ri cos θ
j+

Nθ
2

, ri sin θ
j+

Nθ
2

). (28)

Since
aNr+2−i,j = u(rNr+2−i, θj), a

i,j+
Nθ
2

= u(ri, θj+Nθ
2

),

from (28) we finally obtain that

aNr+2−i,j = a
i,j+

Nθ
2

, 1 ≤ j ≤ Nθ
2
, 1 ≤ i ≤ Nr + 1

2
. (29)
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Very recently, using (29) , the authors proved in [24] that uN+1,Nθ (r, θ) can be
rewritten as:

uN+1,Nθ (r, θ) =

Nr+1
2∑

k=1

Nθ∑
l=1

ak,l

[
SNθ (θ−θl)Lk(r)+SNθ

(
θ−θ

l+
Nθ
2

)
LNr+2−k(r)

]
where ak,l = u(rk, θl).

Therefore, there exist
(
Nr+1

2

)
Nθ unknowns in uN+1,Nθ (r, θ).

Thus, the associated matrix to the Laplacian in polar coordinates on the
full grid is an (N + 1)Nθ × (N + 1)Nθ matrix consisting of Kronecker products
where N = (Nr − 1)/2. Let us define the differentiation matrices D1, D2, E1,

E2 and D
(2)
θ by

(E1)i,j = L′j(ri); 1 ≤ i, j ≤ N + 1,

(E2)i,j = L′Nr+2−j(ri); 1 ≤ i, j ≤ N + 1,

(D1)i,j = L′′j (ri); 1 ≤ i, j ≤ N + 1, (30)

(D2)i,j = L′′Nr+2−j(ri); 1 ≤ i, j ≤ N + 1,

(D
(2)
θ )k,l = S′′Nθ (θk − θl); 1 ≤ l, k ≤ Nθ.

Consequently, the discretization matrix of the Laplacian in polar coordinates,
denoted by L∆, takes the following form:

L∆ = (D1 +RE1)⊗
(
I 0
0 I

)
+ (D2 +RE2)⊗

(
0 I
I 0

)
+R2 ⊗D(2)

θ

where I stands for the identity of order Nθ
2 ×

Nθ
2 and R is the diagonal matrix

Ri i = r−1
i , i = 1, . . . , N + 1, see [33] and [27].

Finally, one should extract the Nθ- first rows of L∆ because they correspond
to the discretization of the Laplacian on the boundary points (r1, θj) for j =
1, . . . , Nθ. So, the discretization matrix of the Laplace operator on the inner
collocations points is given by L̃ where L̃ is obtained by stripping L∆ of its Nθ-
first rows, so,

L∆ =

 · · ·

L̃

 .

Throughout the rest of this section, we will set:

u = (u(r1, θ1), . . . , u(r1, θNθ ), u(r2, θ1), . . . , u(r2, θNθ ), . . .

. . . , u(rN+1, θ1), . . . , u(rN+1, θNθ ))
T ,

u0 = (u(r1, θ1), . . . , u(r1, θNθ ))
T ,

ũ = (u(r2, θ1), . . . , u(r2, θNθ ), . . . , u(rN+1, θ1), . . . , u(rN+1, θNθ ))
T .
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Note that u = (u0, ũ)T and N + 1 = Nr+1
2 . Finally,

(L̃ ũ)(i−2)Nθ+j =

(
∂2uN+1,Nθ

∂r2
+

1

r

∂uN+1,Nθ

∂r
+

1

r2

∂2uN+1,Nθ

∂θ2

)∣∣∣∣
(ri,θj)

for every i = 2, . . . , N + 1 and j = 1, . . . , Nθ. It should be noted that the
subsequent analysis depends on the nature of the boundary conditions of the
problem we want to solve.

A.1. Inhomogeneous Dirichlet condition (u = f 6≡ 0 on
∂B1((0, 0)))

To impose the boundary condition we fix (u0)j = u(r1, θj) = f(θj) for j =

1, . . . , Nθ. Then, we divide L̃ as:

L̃ =

(
L1 L2

)
(31)

where L1 and L2 are the matrices obtained by stripping L̃ of its NNθ-last and
Nθ-first columns, respectively. Note that

L̃ u = L1 u0 + L2 ũ.

Thus, L2 provides us with the discretization matrix of the Laplace operator on
the inner collocation points.

A.2. Homogeneous Neumann conditions (∂u
∂η

= 0 on

∂B1((0, 0)))

Let E be the differentiation matrix of ∂
∂r on the colocation points (ri, θj) for

i = 1, . . . , N and j = 1, . . . , Nθ:

E := E1 ⊗
(
I 0
0 I

)
+ E2 ⊗

(
0 I
I 0

)
where E1 and E2 are the matrices defined in (30), and I stands for the identity
of order Nθ

2 ×
Nθ
2 . In order to impose the Neumann boundary conditions on

the collocation points on ∂B1((0, 0)), we are interested in the portion of E that
discretizes the first derivative on these points. Thus, we introduce the matrix

A = FE1
1 ⊗

(
I 0
0 I

)
+ FE2

1 ⊗
(

0 I
I 0

)
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where FE1
1 and FE2

1 denote the first row of the matrices E1 and E2, respectively.
Note that, for any j = 1, . . . , Nθ fixed, the discrete partial derivative with
respect to r in (r1, θj) corresponds to the j-th row of the matrix A. That is,

∂

∂r

∣∣∣∣
(r1,θj)

= FAj for j = 1, . . . , Nθ.

Then, we obtain the following partion of E:

E =

 A

· · ·

 .

Next, we break up A as follows:

A =

(
A1 A2

)
where A1 and A2 stand for the matrices obtained by stripping of A the NNθ-
last and the Nθ-first columns, respectively. Finally, the homogeneous Neumann
boundary conditions

∂u

∂η

∣∣∣∣
∂B1((0,0))

=
∂u

∂r

∣∣∣∣
∂B1((0,0))

= 0

implies that

0 = A u = A1 u0 +A2 ũ.

Thus, u0 satisfies
u0 = −A−1

1 A2 ũ.

Considering L̃ as in (31), we have:

L̃u = L1u0 + L2ũ

= (−L1A
−1
1 A2 + L2)ũ.

Therefore, the discretization matrix of the Laplacian on the inner collocation
points with homogeneous Neumann boundary conditions becomes

˜̃L = −L1 A
−1
1 A2 + L2.

We claim that A1 is non-singular. Indeed, since

A1 = (E1)11 ⊗
(
I 0
0 I

)
+ (E2)11 ⊗

(
0 I
I 0

)
,
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using (30) and the well known Chebyshev differentiation matrix (see, e.g., [26],
[5] or [33]), it follows that

(E1)11 =
2N2

r + 1

6
, (E2)11 =

1

2
(−1)Nr .

Thus,

det(A1) =
[
((E1)11)2 − ((E2)11)2

]Nθ
2 6= 0.

B. The differentiation matrices in a circular annulus

The rotational symmetry of A(R0, R1) enables us to use polar coordinates.
In such case, there is an isomorphism between A(R0, R1) and the rectangle
[R0, R1]× [0, 2π]. Hence, we need to take a linear transformation of the Cheby-
shev grid in the r-direction and a periodic Fourier grid in θ. The grid in the
ρ-direction is obtained from the usual Chebyshev grid r ∈ [−1, 1]. So, the
collocation points in the annulus are

(ρi, θj) =

(
(R1 −R0)ri + (R1 +R0)

2
,

2π j

Nθ

)
1 ≤ i ≤ Nr + 1, 1 ≤ j ≤ Nθ.

It should be remembered that ρ1 = R1 and ρNr+1 = R0 correspond to the
boundary points of the annulus. As a by-product, the discretization of the
Laplace operator in polar coordinates in the annulus is the matrix of order
((Nr + 1)Nθ)× ((Nr + 1)Nθ) defined by

L∆ = (p2 D2
r + p R Dr)⊗ I +R2 ⊗D(2)

θ

where p = 2
R1−R0

, I stands for the Nθ ×Nθ identity matrix, R is the diagonal

matrix with entries Ri i = 1
ρi

for i = 1, . . . , Nr+1, and Dr is the full Chebyshev
differentiation matrix

(Dr)i,j = L′j(ri); 1 ≤ i, j ≤ Nr + 1. (32)

Note that in this case we are not discarding any blocks of Dr because we need to
consider exactly r in the closed interval [−1, 1]. Before imposing the boundary
conditions on L∆, we set

u0 = (u(ρ1, θ1), . . . , u(ρ1, θNθ ))
T ,

ũ = (u(ρ2, θ1), . . . , u(ρ2, θNθ ), . . . , u(ρNr , θ1), . . . , u(ρNr , θNθ ))
T ,

u1 = (u(ρNr+1, θ1), . . . , u(ρNr+1, θNθ ))
T .

So, u is factorized as (u0, ũ, u1)T .



A COLLOCATION-SPECTRAL METHOD 339

B.1. Homogeneous Dirichlet conditions (u = 0 on
∂A(R0, R1))

First, set w := L∆ u. Next, we factorize w in the same way as u, so that
w = (w0, w̃, w1)T with w0, w1 ∈ RNθ and w̃ ∈ RNθ(Nr−1). Then, the procedure
scheme adopted here to impose the homogeneous Dirichlet conditions on L∆

consists in fixing the vectors u0 and u1 at zero, and ignoring w0 and w1 because,
as already mentioned above, the Laplacian is computed in the interior of domain
where the differential equation holds. This implies that the Nθ-first and Nθ-last
columns of L∆ have no computational effects, because they correspond to the
discretization of the Laplacian at points along the boundary. Accordingly, the
discretization matrix for the Laplacian is the matrix L̃ obtained by stripping
L∆ of its Nθ-first and Nθ-last rows and columns.

L∆ =

 L̃

 .

B.2. Inhomogeneous Dirichlet conditions (u = f 6≡ 0 on
∂A(R0, R1))

We consider w as in the previous subsection. In the present situation, to impose
the inhomogeneous Dirichlet condition on L∆ we first fix u0 and u1 at the
vectors fNr+1 and f1, respectively, where (fi)j = f(ρi, θj) with i ∈ {1, Nr + 1}
fixed and j = 1, . . . , Nθ, and we ignore w0 and w1. So, the Nθ-first and Nθ-last
rows have no effects and they can be ignored. Accordingly, the matrix L∆ is
split into the three blocks

L∆ =


· · ·

L

· · ·


where L is the matrix obtained by stripping L∆ of its Nθ-first and Nθ-last rows.
Consequently, we can discard the top and bottom blocks of L∆. Next, we split
L into another three blocks, as follows

L =
(

L1 L2 L3

)
, (33)

where

• L1 is the matrix formed by the first Nθ columns of L.
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• L2 is obtained by stripping L of its Nθ-first and Nθ-last columns.

• L3 is the matrix formed by the last Nθ columns of L.

Note that, owing to (33), we have

Lu = L1u0 + L2ũ+ L3u1. (34)

Naturally, L2 is the discrete matrix of the Laplacian in polar coordinates on
the inner collocation points of the annulus.

B.3. Homogeneous Neumann conditions (∂u
∂η

= 0 on

∂A(R0, R1))

In this case, we denote by E the corresponding discratization matrix of the
first partial derivative with respect to r on the collocation points (ρi, θj) for
i = 1, . . . , Nr + 1 and j = 1, . . . , Nθ. That is,

E = p Dr ⊗ I

where I is the identity matrix of dimension Nθ ×Nθ.
Now, to impose the Neumann boundary conditions on the collocation points

contained in ∂A(R0, R1), we are just interested into the portion of E that dis-
cretizes the first derivative on the inner and outer components of the boundary
of the annulus. Accordingly, we introduce the matrices A and B as follows:

A = p FDr1 ⊗ I
B = p FDrNr+1 ⊗ I

(35)

where FDr1 and FDrNr+1 denote the first and last rows, respectively, of the matrix
Dr. Note that, for any fixed j = 1, . . . , Nθ, the discrete partial derivative
with respect to ρ at (ρ1, θj) and (ρNr+1, θj) corresponds to the j-th row of the
matrices A and B, respectively. That is,

p
∂

∂r

∣∣∣∣
(ρ1,θj)

= FAj for j = 1, . . . , Nθ,

p
∂

∂r

∣∣∣∣
(ρNr+1,θj)

= FBj for j = 1, . . . , Nθ.

Now, we divide both, A and B, in three blocks

A =

(
A1 A2 A3

)
, (36)

B =

(
B1 B2 B3

)
, (37)

where:
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• A1 (resp. B1) is obtained by stripping A (resp. B) of its NrNθ-last (resp.
-first) columns.

• A2 (resp. B2) is obtained by stripping A (resp. B) of its Nθ-first (resp.
-last) and Nθ-last (resp. -first) columns.

• A3 (resp. B3) is obtained by stripping A (resp. B) of its NrNθ-first (resp.
-last) columns.

Imposing 0 = ∂u
∂r (R0, θ) = ∂u

∂r (R1, θ), yields

0 = A u = A1 u0 +A2 ũ+A3 u1 =⇒ A1 u0 +A3 u1 = −A2 ũ

0 = B u = B1 u0 +B2 ũ+B3 u1 =⇒ B1 u0 +B3 u1 = −B2 ũ

an solving the matricial system{
A1u0 +A3u1 = −A2ũ

B1u0 +B3u1 = −B2ũ,

we obtain{
u0 = −A−1

1 (A2 +A3(B3 −B1A
−1
1 A3)−1)(B1A

−1
1 A2 −B2)ũ

u1 = (B3 −B1A
−1
1 A3)−1(B1A

−1
1 A2 −B2)ũ.

We claim that (B3 − B1A
−1
1 A3) is non-singular. Indeed, from (35), (36) and

(37) it becomes apparent that

A1 = (Dr)1 1I,

A3 = (Dr)1Nr+1I,

B1 = (Dr)Nr+1 1I,

B3 = (Dr)Nr+1Nr+1I.

Using (32) and the coefficients of the Chebyshev differentiation matrix, it fol-
lows that

(Dr)1 1 = −(Dr)Nr+1Nr+1 =
2N2

r + 1

6
and that

(Dr)1Nr+1 = −(Dr)Nr+1 1 =
1

2
(−1)Nr .

Therefore,

det(B3 −B1A
−1
1 A3) =

[
(Dr)Nr+1Nr+1

−(Dr)Nr+1 1 ((Dr)1 1)
−1

(Dr)1Nr+1

]Nθ
6= 0.
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Consequently, by substituting u0 and u1 in (34), we find the discretization
matrix of the Laplacian. Namely,

˜̃L = −L1A
−1
1 (A2 +A3(B3 −B1A

−1
1 A3)−1)(B1A

−1
1 A2 −B2)

+ L2 + L3(B3 −B1A
−1
1 A3)−1(B1A

−1
1 A2 −B2).
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[20] J. López-Gómez, Linear second order elliptic operator, World Scientific, Singa-
pore, 2013.
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