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Abstract. We consider a superlinear indefinite problem with homo-
geneous Neumann boundary conditions and a parameter appearing in
the domain of the differential equation. Such a problem is an extension
of the one studied in [33], in the sense that also negative values of the
parameter are allowed.
First, we show how to discretize the problem in a way that is suitable
to perform numerical continuation methods and obtain the associated
bifurcation diagrams. Then, we analyze the results of the simulations,
also studying the stability of the solutions.
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1. Introduction

The term superlinear indefinite problems is used in the literature to refer to
nonlinear boundary value problems of elliptic type which are characterized by
the presence of a sign-changing nonlinearity. These problems have attracted
the attention of many researches in the last decades, since they have revealed
a wide phenomenology of multiplicity of positive solutions. We refer to [1,
3–6, 16, 20, 21, 29, 31] for some pioneering works, to the book [22] for some
related results (see, in particular, Chapter 9), and to the monograph [10] for
an extended review on the existing literature, up to the most recent one.

In [28], we have considered, together with J. López-Gómez and F. Zanolin,
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the following one-dimensional problem with Dirichlet boundary conditions{
−u′′ = λu+ a(t)up, t ∈ (0, 1),
u(0) = u(1) = M,

(1)

with λ < 0, p > 1 (which makes the problem superlinear), and the weight a(t)
defined as the piecewise constant function

a(t) =

{
−c, for t ∈ (0, α) ∪ (1− α, 1),
b, for t ∈ (α, 1− α),

(2)

where α ∈
(
0, 12
)

and b, c > 0. Thus, it is apparent that problem is indefinite.
As for the boundary condition, M is taken in (0,+∞] and, when M = +∞,
the condition is understood in the limiting sense and gives rise to the so called
large or blow-up solutions.

The main result of [28] is that problem (1) admits, for certain values of
the parameters, an arbitrarily high number of positive solutions. We mention
that a different mechanism for obtaining high multiplicity of positive solutions
for superlinear indefinite problems had been previously observed numerically
in [16], and analytically proved - in a different setting - in [7, 8, 12, 13, 15].
Nonetheless, these results substantially differ from the one of [28], since the
multiplicity was originated by the high number of positive parts of the weight.
Instead, [28] is the first work where a high multiplicity result has been obtained
with weights having only one positive part (cf. (2)).

In addition, the fact of considering the piecewise constant weight (2) allowed
us in [28] to determine the structure of the global bifurcation diagrams, which
become more and more complex (i.e., they exhibit an increasing number of
turning points and secondary bifurcations) as the number of solutions increases.
Such bifurcation diagrams have been obtained analytically, and the value of the
weight in the positive part, b, has been used as a main continuation parameter,
an idea that originally goes back to [21].

To complete the reference to previous results related to problem (1), we
mention [27], where with J. López-Gómez we considered, in place of (2), an
asymmetric weight, which entailed a break-up of the bifurcation diagrams into
several connected components, and [32], where we studied the relation be-
tween the symmetric and asymmetric case in a neighborhood of the bifurcation
points. Finally, in [24], together with J. López-Gómez and M. Molina-Meyer,
we considered the same problem in a bounded domain Ω ⊂ RN , N ≥ 1, and
obtained general (minimal) multiplicity results in that context, also studying
the stability of the solutions.

The numerical computation of the complex bifurcation diagrams arising in
such situation has turned to be an intricate question, since the increasing num-
ber of singular points (secondary bifurcations and turning point) which were
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closer and closer one to each other required some refinements in the algorithms.
We refer to [23,25,26] for these numerical aspects.

In [33], instead, we have considered the superlinear indefinite problem with
homogeneous Neumann boundary conditions{

−u′′ = λu+ a(t)up, for t ∈ (0, 1),
u′(0) = u′(1) = 0,

(3)

This change made the use of b as a continuation parameter no longer possible.
Instead, we used the parameter α, which measures the amplitude of the positive
part of the weight; this idea was suggested by [18]. The main results of [33]
can be summarized as follows (see also Figure 1, which is taken from [33]).

Theorem 1.1 ([33], Theorem 5.1). Let λn := − (nπ)2

p−1 , n ∈ N, and assume that

λ ∈ [λn+1, λn) for some n ∈ N. Then:

(i) if n = 0, the minimal bifurcation diagram in α for problem (3) consists
of a curve starting from {α = 0} and bifurcating from +∞ at α = 1/2.
Such a curve, that contains symmetric solutions, will be referred to as
principal curve (see Figure 1(A));

(ii) if n = 1, the minimal bifurcation diagram in α for problem (3) con-
sists of one component containing the principal curve with two additional
branches, containing asymmetric solutions, that start from {α = 0} and
merge in a bifurcation point on the principal curve (see Figure 1(B));

(iii) if n = 2k + 1, k ∈ N∗, the minimal bifurcation diagram in α for problem
(3) consists of k+ 1 components: one, as in (ii), containing the principal
curve with two branches bifurcating from it and reaching the axis {α = 0},
plus k additional bounded components, each formed by four branches (two
with symmetric solutions and two with asymmetric solutions) that start
from the axis {α = 0} and three of which merge in a bifurcation point,
while (at least) two of them merge in a subcritical turning point (see Figure
1(D));

(iv) if n = 2k, k ∈ N∗, the minimal bifurcation diagram in α for problem (3)
consists of k+1 components: one, as in (ii), containing the principal curve
with two branches bifurcating from it and reaching the axis {α = 0}, k−1
bounded components as in (iii), each consisting of four branches (two with
symmetric solutions and two with asymmetric solutions) that start from
{α = 0} and form a subcritical turning point and a bifurcation point, and
an additional bounded component formed by two branches of symmetric
solutions that start from the axis {α = 0} and merge in a subcritical
turning point (see Figure 1(C));
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Figure 1: Bifurcation diagrams in α for problem (3) corresponding to the follow-
ing cases: (A) λ ∈ [λ1, λ0), (B) λ ∈ [λ2, λ1), (C) λ ∈ [λ3, λ2), (D) λ ∈ [λ4, λ3).
The blue branches are formed by symmetric solutions, the red ones by asym-
metric solutions.

In particular, the previous result establishes that the bifurcation diagrams in
α, with α ≥ 0, are always non connected for sufficiently negative λ’s (precisely,
for λ < λ2), which was not the case in [28]. However, one may think that
this non-connectedness is only apparent and is due to the fact that in [33] we
only considered α ≥ 0. Indeed, one can extend the problem also for negative
α’s, and might think that the several branches combine to form a connected
diagram, like the ones of [28].

One of the main goals of this work is to give numerical evidence that this
does not happen, and the global diagrams of the extended problem remain dis-
connected. In addition, with our numerical study, we will analyze the stability
of the solutions of the problem.

In order to extend problem (3) for α < 0, first of all, we extend the weight
as follows

a1(t) =

{
−c, for t ∈ (α, 0) ∪ (1, 1− α),
b, for t ∈ (0, 1),

α < 0.
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Then, we impose the Neumann boundary conditions on the boundary of the
new domain, arriving at{

−u′′ = λu+ a1(t)up, t ∈ (α, 1− α),
u′(α) = 0 = u′(1− α),

α < 0. (4)

A motivation for considering such a boundary condition arises from the bio-
logical interpretation of superlinear indefinite problems, which can be used to
describe the stationary states of the evolution of the density of a population,
taking into account intra-specific competition, according to the classical logistic
model, in the regions where the weight is negative, and intra-specific facilita-
tive effects in the region where the weight is positive. Under this perspective,
Neumann boundary conditions describe the fact that the habitat is isolated
and no inner or outer flux of individuals takes place.

One of the main issues to numerically deal with problems (3) and (4) is the
fact that the bifurcation parameter does not appear explicitly in the differential
equations, but only implicitly in its domain. Indeed, for the numerical continu-
ation methods one has to differentiate the approximating problem with respect
to the bifurcation parameter. For this to be possible, one cannot use the collo-
cation procedure, used in [23, 25, 26] to compute the bifurcation diagrams in b
for problem (1), which is very efficient from the computational point of view.
Instead, as suggested by [30], one can use a Galerkin method which makes the
differentiation with respect to α treatable, but entails the disadvantage of being
much slower for the computations.

In Section 2 we present such a method to discretize problem (4) and in
Section 3 we present the results of the numerical experiments that we have
performed, using the obtained discretization. Finally, in Section 4, we present
some remarks on two different extensions of problem (3) for α < 0.

2. Discretization of problem (4)

One of the main difficulties to study problem (4) as α < 0 varies is the fact that
the domain grows without restrictions as α becomes more and more negative.
For this reason, first of all, we perform the change of variable x = t−α

1−2α to
transform (4) into the following equivalent problem, which is set in a domain
of fixed size: {

− 1
(1−2α)2u

′′ = λu+ a2(x)up, x ∈ (0, 1),

u′(0) = 0 = u′(1),
(5)

where the ′ now indicates derivatives with respect to x and

a2(x) := a1(t(x)) =

 −c, for x ∈
(

0, −α1−2α

)
∪
(

1−α
1−2α , 1

)
,

b, for x ∈
(
−α

1−2α ,
1−α
1−2α

)
,

α < 0.
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We observe that problem (5) shares some features with (3): both are super-
linear indefinite problems set in (0, 1) with homogeneous Neumann boundary
conditions, and in both cases the position of the points of discontinuity of the
weight varies with α. Moreover, for α = 0, both problems reduce to the same
purely superlinear one, i.e., with a positive weight. Nonetheless, their behavior
with respect to α might be substantially different, since the coefficient in front
of the second derivative in (5) also depends on α, while it is constant in (3).
Equivalently, (5) can be seen as a variant of (3) in which λ and the values of
the weight depend on α. In the light of Theorem 1.1, the number of solutions
of (3) depends on the value of λ, thus it is not easy to relate one problem to
the other.

Since the analysis is not easy, we perform numerical simulations to get
insight into problem (5) and, hence, on the equivalent problem (4). To do so,
we have to discretize (5). We consider p = 2 and, as suggested by [30], we
apply a Fourier–Galerkin method. It consists in approximating a solution u(x)
by the truncated Fourier series

u(x) =

n∑
j=1

ujφj(x), where φj(x) := cos((j − 1)πx), (6)

in multiplying the differential equation of (5) by the i-th element of the Fourier
basis φi(x), and in integrating over (0, 1). In this way, we obtain the i-th
equation of the discretized problem, which will be denoted by Fi, and the
unknown is now the vector of Fourier coefficients u = (uj)

n
j=1 ∈ Rn, considered

as a column vector. The fact of taking only cosine terms in (6) is due to the
boundary conditions in (5). Hence, the equation Fi, 1 ≤ i ≤ n, reads

n∑
j=1

(
λ−

(
(j − 1)π

1− 2α

)2
)
uj

∫ 1

0

φj(x)φi(x) dx

− c
∫ −α

1−2α

0

 n∑
j=1

ujφj(x)

2

φi(x) dx+ b

∫ 1−α
1−2α

−α
1−2α

 n∑
j=1

ujφj(x)

2

φi(x) dx

− c
∫ 1

1−α
1−2α

 n∑
j=1

ujφj(x)

2

φi(x) dx. (7)

On the one hand, the orthogonality conditions give

∫ 1

0

φj(x)φi(x) dx =


1 if i = j = 1,

1/2 if i = j > 1,

0 otherwise,
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on the other one we observe that n∑
j=1

ujφj(x)

2

=

 n∑
j=1

ujφj(x)

( n∑
k=1

ukφk(x)

)
=

n∑
j=1

n∑
k=1

ujukφj(x)φk(x),

and that

4φi(x)φj(x)φk(x) = cos((i+ j + k − 3)πx) + cos((i+ j − k − 1)πx)

+ cos((i− j + k − 1)πx) + cos((i− j − k + 1)πx);

thus, if we set

hi,1jk (x) =

{
x if i+j+k=3,
sin((i+j+k−3)πx)

(i+j+k−3)π otherwhise,

hi,2jk (x) =

{
x if i+j−k=1,
sin((i+j−k−1)πx)

(i+j−k−1)π otherwhise,

hi,3jk (x) =

{
x if i−j+k=1,
sin((i−j+k−1)πx)

(i−j+k−1)π otherwhise,

hi,4jk (x) =

{
x if i−j−k=−1,
sin((i−j−k+1)πx)

(i−j−k+1)π otherwhise,

we have that a primitive of φi(x)φj(x)φk(x) is

hijk(x) :=
1

4

(
hi,1jk (x) + hi,2jk (x) + hi,3jk (x) + hi,4jk (x)

)
.

As a consequence, (7) reads

n∑
j=1

(
λ−

(
(j − 1)π

1− 2α

)2
)
uj

∫ 1

0

φj(x)φi(x) dx

− c

 n∑
j=1

n∑
k=1

uj

(
hijk

(
−α

1− 2α

)
− hijk(0)

)
uk


+ b

 n∑
j=1

n∑
k=1

uj

(
hijk

(
1− α
1− 2α

)
− hijk

(
−α

1− 2α

))
uk


− c

 n∑
j=1

n∑
k=1

uj

(
hijk(1)− hijk

(
1− α
1− 2α

))
uk
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and, observing that hijk(0) = 0, it reduces to

n∑
j=1

(
λ−

(
(j − 1)π

1− 2α

)2
)
uj

∫ 1

0

φj(x)φi(x) dx

+ (b+ c)

 n∑
j=1

n∑
k=1

uj

(
hijk

(
1− α
1− 2α

)
− hijk

(
−α

1− 2α

))
uk


− c

n∑
j=1

n∑
k=1

ujh
i
jk(1)uk,

which leads to

F1 = λu1 + (b+ c) ut
(
H1

(
1− α
1− 2α

)
−H1

(
−α

1− 2α

))
u− cutH1(1) u,

and, for i > 1,

Fi =

(
λ−

(
(i− 1)π

1− 2α

)2
)
ui
2

+ (b+ c) ut
(
Hi

(
1− α
1− 2α

)
−Hi

(
−α

1− 2α

))
u

− cutHi(1) u,

where we have set Hi(x) := (hijk(x))nj,k=1 and ut denotes the transposed of
vector u. As a consequence, the discretized problem is

F (u, α) = 0, F = (Fi)
n
i=1.

Before concluding this section, we remark that, for the numerical bifurca-
tion algorithms that we use in our simulations, it is necessary to differentiate
the discretized equations also with respect to the parameter α. The advan-
tage of employing the Fourier–Galerkin method described above consists in the
fact that such a derivative can be easily computed from (7) by means of the
fundamental theorem of Calculus.

3. Results of the numerical experiments

In this section we show the results of the experiments performed by applying
numerical continuation methods to the discretized problem obtained in Sec-
tion 2. We send the interested reader to [2, 9, 17, 19] for general references
on numerical continuation methods, and to [25, 26] for more recent references
where some improvements to the algorithms are performed in order to be able
to compute complex bifurcation diagrams as those appearing in this work.
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Structure of the bifurcation diagrams. For our numerical experiments,
we have used the following values of the parameters:

b = c = 1, p = 2,

and λ ∈ {−4,−25,−60,−120}, which are the same values used to obtain the
diagrams in Figure 1. The choice of the number of discretization points has
been n = 300 with the aim of achieving a good precision (measured by the
size of the Fourier coefficients uj , n − 10 ≤ j ≤ n, whose modulus in all
our simulation is smaller than 10−4 and, in many cases, smaller than 10−8)
in a reasonable computational time. The resulting bifurcation diagrams are
represented in Figure 2.

In particular we observe that for α = 0 problems (3) and (4) coincide,
thus the number of solutions is necessarily the same, and the branches are
continuous. Moreover, the global patterns of the branches for α < 0 are the
same as those for α > 0 described in Theorem 1.1, the only difference being
that the principal curve seems to be continuable for all α < 0.

To understand this difference, we observe that a necessary condition for (3)
and (4) to possess positive solutions, which can be easily obtained by integrating
the differential equation and using the boundary conditions, is that the weight
has to change sign. This condition is no longer true for problem (3) when α = 1

2 ,
thus all the solutions are lost before such a value of the parameter is reached.
Instead, the weight in (4) changes sign for all α < 0, thus no restrictions exist
on α, and actually our simulations suggest that existence occurs for all α < 0.

Moreover, we observe that the diagrams are non-connected for sufficiently
negative λ’s and the number of connected components increases as λ becomes
more and more negative.

This is not a priori evident, since, as commented above, problem (5) can be
equivalently written as

−u′′ = λ̃(α)u+ (1− 2α)2a2(x)up, x ∈ (0, 1),

with λ̃(α) = (1− 2α)2λ, and we have the following opposite trends coinciding
as α→ −∞:

i) first, as above, the positive part of the weight, whose size is 1
1−2α , becomes

smaller and smaller, thus the necessary condition for the existence of so-
lutions - the change of sign of the weight - tends to be violated, though
it is so only in the limiting case α = −∞. This makes one infer that the
solutions are lost as α < 0 decreases;

ii) contrastingly, the value of λ̃(α) goes to −∞ as α → −∞, thus, if all the
other parameters were fixed, Theorem (1.1) would guarantee the existence
of an increasing number of solutions. Nonetheless, the values of α for
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which such a high number of solution is present depends on λ: essentially,
one should study the dependence of the turning points on λ, which is a
very interesting open problem both from the analytical and the numerical
point of view;

iii) finally, the values of the weight, both in the negative and the positive
part, go to +∞ as α→ −∞, and the overall effect is not clear in this case
(cf. [11] for a similar problem).
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Figure 2: Numerical bifurcation diagrams in α obtained for problem (3) (α > 0,
with dash-dotted line) and problem (4) (α < 0, with continuous line) corre-
sponding to the following values of λ:

(A) λ = −4, (B) λ = −25, (C) λ = −60, (D) λ = −120.

On the vertical axes we plot the values of u(α) for α > 0 and u(0) for α < 0,
i.e. we represent the value of the solution where the weight changes sign for
the first time. As in Figure 1, the blue branches are formed by symmetric
solutions, while the red ones by asymmetric solutions. The bifurcation points
have been marked with squares.



BIFURCATION DIAGRAMS WITH A PARAMETER IN THE DOMAIN 299

Remark 3.1: A natural question, that arises after the comments performed
above on the general properties of the bifurcation diagram, is whether the
branches are differentiable, with respect to α, at α = 0. By using a finite
difference method, the results that we obtain for the approximation of the
left and right derivatives of the several branches appearing in the diagrams of
Figure 2 have been gathered in Table 1.

λ Point Right derivative Left derivative
-4 (0, 4.00000) 10.2952 -10.2952
-25 (0, 2.09423) 63.8469 -42.0332
-25 (0, 25.0000) -333.815 333.815
-25 (0, 37.3889) -4.71944 2.46041
-60 (0, 0.311947) 14.5182 -9.67665
-60 (0, 17.3092) -129.934 290.669
-60 (0, 60.0000) 1040.64 -1040.64
-60 (0, 87.1313) -312.416 262.173
-60 (0, 89.9989) 10.861 -10.8944
-120 (0, 0.0251730) 1.72774 -1.17619
-120 (0, 6.14466) -7.37161 76.2526
-120 (0, 45.5856) 1197.07 -765.859
-120 (0, 120.000) -2503.6 2503.6
-120 (0, 170.378) -432.671 262.252
-120 (0, 179.797) 16.8713 -21.3551
-120 (0, 180.000) 43.8456 -43.8475

Table 1: Values of the derivatives with respect to α of the branches in the
bifurcation diagrams of Figure 2, evaluated at α = 0.

As we can see from the previous table, the right derivative always has the
opposite sign of the left one; thus, our numerical simulations suggest that none
of the branches is differentiable at α = 0. Moreover, we see that, at the points
(0,−λ), with λ ∈ {−4,−25,−60,−120}, the right and the left derivative have
the same absolute value. In view of this, we conjecture that, for all λ < 0, the
following relation holds true:

d

dα
ûλ(0;α)

∣∣∣∣
α=0+

= − d

dα
ûλ(0;α)

∣∣∣∣
α=0−

, (8)

where ûλ(·;α) is the unique solution of (3) for α > 0 and (4) for α < 0 such
that uλ(0; 0) = −λ. To try to prove this relation, one could perform some
asymptotic expansions for α ∼ 0, in the spirit of the ones - carried out in a
completely different context - of [11, Section 7], but this goes outside the scope
of this work, and we leave it as an open question.
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Stability of the solutions. As established in [14, Theorem 3.8], problems
(3) and (4) do not admit any positive stable solutions, since λ < 0 = σ0 (we
use the same notation of [14] and denote by σ0 the principal eigenvalue of the
linearized problem at u = 0).

Here, we study the linear stability of the solutions of (5) following [9], i.e.
by considering the parabolic counterpart of (5)

ut −
1

(1− 2α)
2uxx = λu+ a2(x)up, t > 0, x ∈ (0, 1) (9)

taking time-dependent approximating functions

u(t, x) =

n∑
j=1

uj(t)φj(x),

and obtaining, by reasoning as in Section 2, a system of ordinary differential
equations for the unknown functions uj(t). This nonlinear system is then lin-
earized around a steady state of (9), i.e. a solution of (5), and the dimension
of the unstable manifold of such a steady state corresponds to the number of
eigenvalues of the linearization having positive real part.

The observed stability patterns can be summarized as follows and are il-
lustrated in Figure 3 (we use the notation of Theorem 1.1 and assume that
λ ∈ [λn+1, λn) for some n ∈ N):

• for α = 0, problem (5) has 2n + 1 solutions. We denoted them by u(i),
i = 1, 2, . . . , 2n + 1, (we use superscripts in order not to confuse them
with the coefficients of the Fourier expansions used above) so that

u(1)(0) < u(2)(0) < . . . < u(2n+1)(0).

For all i = 1, 2, . . . , n+ 1, the dimension of the unstable manifold of the
solution u(i) coincides with the one of the solution u(2n+2−i) and equals
i;

• on the branches of asymmetric solutions (represented in red in Figure 3),
the dimension of the unstable manifold of the solution does not change;

• on the branches of symmetric solutions (represented in blue in Figure 3),
the dimension of the unstable manifold changes by 1 as a bifurcation or
a turning point is crossed, monotonically on each branch. Moreover, the
unique solution of the problem for α → −∞, which lies on the principal
branch, has a 1-dimensional unstable manifold.

We point out that the observed stability patterns for problem (3) with α > 0
are exactly the same.
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Figure 3: Dimensions of the unstable manifold for the solutions of problem (4)
with λ = −120 ∈ [λ4, λ3) (case (D) of Figure 2).

Profiles of the solutions. To conclude the presentation of the results of our
numerical experiments, we plot in Figure 4 the profiles of the solutions in a
case of high multiplicity, corresponding to the values of the parameters that
give rise to the bifurcation diagram of Figure 2(D).

□□

□□
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0.0 0.2 0.4 0.6 0.8 1.0
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t

u(t)

Figure 4: Bifurcation diagram in α for problem (4) with λ = −120 (left) and
profiles of the seven solutions of the problem for α = −0.015 (right). The level
α = −0.015 has been marked in the bifurcation diagram with a dashed line.
Observe that the position of each solution of the right plot can be determined
in the bifurcation diagram, at the level α = −0.015, from its value at t = 0 and
its symmetry.

Moreover, in order to make apparent that the behavior of the solutions
is similar for positive and negative α’s, we now present a description of the
behavior of the solutions along each of the branches of the bifurcation diagram.
Once again, we present the plots corresponding to the bifurcation diagram of
Figure 2(D), since it is the most illustrative one.

Figure 5 shows the plots of some solutions on the upper blue branch in



302 ANDREA TELLINI

0.2 0.4 0.6 0.8 1.0

50

100

150

t

u(t)

0.2 0.4 0.6 0.8 1.0

50

100

150

t

u(t)

0.2 0.4 0.6 0.8 1.0

50

100

150

t

u(t)

0.2 0.4 0.6 0.8 1.0

50

100

150

t

u(t)

Figure 5: Plots of some solutions on the upper blue branch in Figure 2(D):
upper row for α > 0, lower row for α < 0. The arrows indicate the direction
in which the bifurcation diagram has been gone through, according to the
description in the text.

Figure 2(D), that connects the point (0, 120) to the point (0, 179.797) in the
bifurcation diagram. All the solution on this branch are symmetric. In the up-
per row of Figure 5 we represent the solutions for α > 0: in the left plot we start
from the constant solution corresponding to the point (0, 120) in the bifurcation
diagram and arrive to the turning point, which occurs at (0.0263530, 110.425),
while in the right plot the solutions go from the turning point to the upper
point (0, 179.797). In the lower row of the figure, instead, we represent the
solutions for α < 0 according to the same pattern: in the left plot from the
point (0, 120) to the turning point (−0.0316540, 98.6296), and in the right plot
from the turning point to the upper point (0, 179.797). The arrows in the figure
visually indicate the direction along which the solutions evolve on the bifurca-
tion diagram, following the starting and the endpoint specified in the previous
description.

Figure 6 shows the plots of some solutions on the lower blue branch in
Figure 2(D), starting from (0, 6.14466): the upper plot is for α > 0 and the
lower ones for α < 0. All the solutions are, again, symmetric. In the lower left
plot we represent the solutions after the change of variables that transforms
the domain (α, 1−α), which varies with α, in the fixed domain (0, 1), while in
the right plot we use the original domain of problem (4). This has been done
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Figure 6: Plots of some solutions on the lower blue branch in Figure 2(D),
starting from (0, 6.14466). The upper plot is for α > 0, the lower left plot for
α < 0, working with fixed domain (0, 1), and the lower right plot for α > 0
with the original domain of problem (4).

because the difference between the different solutions is amplified in the fixed
domain.

In Figure 7 we represent the solutions that lie on the red branch of Fig-
ure 2(D) starting from (0, 0.0251730) and arriving at (0, 180.000): on the upper
row the ones for α > 0 and on the lower row the ones for α < 0. All the solu-
tions, apart from the ones on the bifurcation points (−0.197821, 3.03203) and
(0.128325, 12.0364), are asymmetric. The left plots go from the starting point
(0, 0.0251730) on the bifurcation diagram up to the bifurcation point, while the
ones on the right go from the bifurcation point to the ending point (0, 180.000).

Finally, in Figure 8 we represent the solutions that lie on the other red
branch of Figure 2(D), starting from (0, 45.5856), arriving at (0, 170.378) and
following the same patterns used in Figure 7: top left for α > 0 up to the bifur-
cation point (0.0194360, 98.8542), top right α > 0 starting from the bifurcation
point, bottom left for α < 0 up to the bifurcation point (−0.0234266, 90.0263)
and bottom right for α < 0 starting from the bifurcation point.

4. Final remarks

To conclude this work, we observe that we may extend problem (3) also in
other different ways than the one considered above. A first possibility consists
in maintaining the condition on the derivatives at the fixed points t = 0 and
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Figure 7: Plots of some solutions on the red branch in Figure 2(D) starting
from (0, 0.0251730). The upper plots are for α > 0, the lower ones for α < 0.
The left plots represent, in the direction of the arrows, the solutions from the
starting point to the bifurcation points, where they become symmetric, while
in the right ones we start from the bifurcation points and arrive at (0, 180.000).

t = 1, obtaining{
−u′′ = λu+ a1(t)up, t ∈ (α, 1− α),
u′(0) = 0 = u′(1),

α < 0. (10)

Doing so, we no longer have to deal with a boundary value problem, but with
an “intermediate” value problem.

This problem is less interesting, since one readily observes that its solutions
are in 1-1 correspondence with the solutions of the purely superlinear Neumann
problem {

−u′′ = λu+ bup, t ∈ (0, 1),
u′(0) = 0 = u′(1).

(11)

Indeed, one takes any solution u of (11) and extends it to (α, 0) and (1, 1− α)
with the unique solutions of the initial value problems
−u′′ = λu− cup, t ∈ (α, 0),

u(0) = u(0),

u′(0) = 0,


−u′′ = λu− cup, t ∈ (1, 1− α),

u(1) = u(1),

u′(1) = 0,

(12)
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Figure 8: Plots of some solutions on the red branch in Figure 2(D) starting
from (0, 45.5856). The upper plots are for α > 0, the lower ones for α < 0.
The left plots represent, in the direction of the arrows, the solutions from the
starting point to the bifurcation points, where they become symmetric, while
in the right ones we start from the bifurcation points and arrive at (0, 170.378).

respectively. In this way, a solution of (10) is obtained. For this reason, we
can say that the extension (10) makes the problem lose its indefinite nature.
Nonetheless, we remark that the existence of global solutions for problems (12)
depends on the values of α, since the solutions blow up in finite time, which
has to be compared with α. By studying such a blow-up time, one can also
construct the bifurcation diagrams in α of problem (10). This can be done with
the elements developed in [33].

A second possible extension is the following one{
−u′′ = λu+ a3(t)up, t ∈ (2α, 1− 2α),
u′(2α) = 0 = u′(1− 2α),

α < 0, (13)

with

a3(t) :=

{
−c, for t ∈ (2α, α) ∪ (1− α, 1− 2α),
b, for t ∈ (α, 1− α).

This problem cannot be directly related to the one extensively studied above,
since, here, both the size of the positive part of the weight and of the negative
one vary with α.

To study this problem numerically, we first had to slightly modify the dis-
cretization performed in Section 3. Once that done, we have computed the
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corresponding bifurcation diagrams and the related profiles of the solutions.
The results of our computations have been represented in Figures 9 and 10.

The left plot of Figure 9 shows the bifurcation diagram of problem (13)
with λ = −120. By comparing it with the right part of the diagram in Figure
2(D), which corresponds to the same value of λ, we observe that the qualitative
structure of the bifurcation diagrams is similar for the two extensions.

Nevertheless, a closer look at it (see the right plot of Figure 9) shows that
some differences arise in the quantitative behavior of the bifurcation diagram.
Indeed, some of the branches are not monotone, which does not occur for the
corresponding ones in Figure 2(D). Moreover, in the left plot of Figure 9 we
have marked only one bifurcation point, while in Figure 2(D) there were two
of them. We think that this is uniquely due to the fact that we have not
been able to perform the simulations for sufficiently negative values of α, since
the solutions on the three branches are very close to each other apart from
being very small. We conjecture, that the qualitative shape of the diagram for
problem (13) is exactly as for problem (4) and that, if one is able to continue
the simulations for more negative α’s, the bifurcation point should arise. In
order to do so, one may try to apply the treatment of narrow turning points
developed in [26].

Finally, if we compare the plots of the solutions of problem (13), which are
shown in Figure 10, with the corresponding ones of problem (4) (see Figures
5–8), we observe that they also follow the same qualitative patterns.

□□
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Figure 9: Bifurcation diagram of problem (13) for λ = −120 (left) and a zoom
of its lower part (right).
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Figure 10: Plots of some solutions related to the left diagram of Figure 9:
on the upper blue branch (top left), on the lower blue branch (top right), on
the biggest red branch (bottom left) and on the smallest red branch (bottom
right). The arrows indicate how the solutions evolve as the bifurcation diagrams
are gone though, as described in the text of Section 3 and as marked in the
corresponding plots of the solutions of problem (4).
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