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Abstract. We consider the Cauchy problem for an attraction-
repulsion chemotaxis system in two-dimensional space. The system
consists of three partial differential equations; a drift-diffusion equa-
tion incorporating terms for both chemoattraction and chemorepulsion,
and two elliptic equations. We denote by β1 the coefficient of the attrac-
tant and by β2 that of the repellent. The boundedness of nonnegative
solutions to the Cauchy problem was shown in the repulsive dominant
case β1 < β2 and the balance case β1 = β2. In this paper, we study the
boundedness problem to the Cauchy problem in the attractive dominant
case β1 > β2.
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1. Introduction

We consider the Cauchy problem for the following attraction-repulsion chemo-
taxis system in R2:

∂tu = ∆u−∇ · (β1u∇v1) +∇ · (β2u∇v2), t > 0, x ∈ R2,

0 = ∆vj − λjvj + u, t > 0, x ∈ R2 (j = 1, 2),

u(0, x) = u0(x), x ∈ R2,

(P)

where βj and λj (j = 1, 2) are positive constants. We assume that

u0 ≥ 0 on R2, u0 6≡ 0, u0 ∈ L1 ∩ L∞, (1)
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and consider nonnegative solutions to the Cauchy problem (P). Here, Lp :=
Lp(R2) (1 ≤ p ≤ ∞) stand for the usual Lebesgue spaces on R2 with norm
‖ · ‖Lp , and in what follows, we denote ‖ · ‖Lp by ‖ · ‖p for simplicity.

The system (P) is a simplified mathematical model introduced in [19] to
describe the aggregation of Microglia in the central nervous system. In the
system (P), the functions u, v1 and v2 denote the density of Microglia, the
concentration of attractive and repulsive chemical substances, respectively.

In the case β2 = 0, the system (P) becomes a minimal version of the classical
Keller-Segel model (e.g., [10, 13]):

∂tu = ∆u− β1∇ · (u∇v1), t > 0, x ∈ R2,

0 = ∆v1 − λ1v1 + u, t > 0, x ∈ R2,

u(0, x) = u0(x), x ∈ R2,

(KS)

where λ1 is a nonnegative constant. The mass conservation for u holds and
plays an important role in the existence of nonnegative global solutions to the
Cauchy problem (KS). Indeed, in the case β1

∫
R2 u0 dx ≤ 8π, the nonnega-

tive solutions exist globally in time (e.g., [4, 5, 6, 21, 22, 29]), meanwhile, in
the case β1

∫
R2 u0 dx > 8π, a nonnegative solution may blow up in finite time

(e.g., [2, 5, 15, 29]). The boundedness of nonnegative solutions to the Cauchy
problem (KS) was shown under the assumption β1

∫
R2 u0 dx < 8π by using

rearrangement techniques ([6, 20]). In the critical mass case
∫
R2 u0 dx = 8π to

the Cauchy problem (KS) with β1 = 1 and λ1 = 0, the boundedness of non-
negative solutions has been studied in [3, 18, 23], and it was shown in [23] that
supt>0 ‖u(t)‖∞ <∞ for the nonnegative radial solutions under the assumption
lim infR→∞(R2

∫
|x|>R u0 dx) > 0. We also remark that limt→∞ ‖u(t)‖∞ = ∞

if
∫
R2 |x|2u0(x) dx <∞ ([4]).
The Cauchy problem (P) has a unique nonnegative smooth solution locally

in time for initial data u0 satisfying (1) ([26]). The nonnegative solutions exist
globally in time and are bounded in the repulsive dominant case β1 < β2

([26]) and the balance case β1 = β2 ([12, 24]). In the attractive dominant case
β1 > β2, the nonnegative solutions exist globally in time under the assumption
(β1 − β2)

∫
R2 u0 dx ≤ 8π ([24, 25]), whereas there exists a blowing-up solution

in finite time under the assumption (β1−β2)
∫
R2 u0 dx > 8π ([26]). We remark

that if supt>0 ‖(u(t), v1(t), v2(t))‖∞ <∞, then for all 1 < p ≤ ∞,

‖(u(t), v1(t), v2(t))‖p ≤ C(1 + t)−1+1/p (t > 0)

(see the proof of [26, Theorem 1.3]), and

lim
t→∞

t1−1/p
∥∥∥u(t)−

∫
R2

u0 dxG(t)
∥∥∥
p

= 0,

where G(t, x) = (4πt)−1e−|x|
2/(4t) is the heat kernel (see the proof of Theo-

rem 1.2 and Remark 1.1 in [12]). Concerning the boundedness problem to the



BOUNDEDNESS OF SOLUTIONS 133

Cauchy problem for the parabolic system of an attraction-repulsion chemotaxis
model, see, e.g., [12] for the balance case.

The boundedness problem to attraction-repulsion chemotaxis systems has
been studied on a smooth bounded domain under Neumann boundary condi-
tions (e.g., [7, 11, 16, 17, 28]). When the system (P) is considered on a smooth
bounded domain Ω in R2 under Neumann boundary conditions for u and vj
(j = 1, 2), the boundedness of nonnegative solutions in the attractive dominant
case β1 > β2 was obtained in [7] under the assumption (β1− β2)

∫
Ω
u0 dx < 4π

by showing the boundedness of the entropy
∫

Ω
u(t) log u(t) dx with respect to

t ∈ [0,∞). However, the entropy
∫
R2 u(t) log u(t) dx on R2 is not appropriate

to get the boundedness of nonnegative solutions to the Cauchy problem (P).
The reason is that if limt→∞ ‖u(t)‖2 = 0, we observe that∫

R2

u(t) log u(t) dx ≤ ‖u(t)‖1 log
( 1

‖u(t)‖1

∫
R2

u2(t) dx
)

= ‖u0‖1
(

log ‖u(t)‖22 − log ‖u0‖1
)
→ −∞ (t→∞).

Here we used Jensen’s inequality for the concave function log u and ‖u(t)‖1 =
‖u0‖1 (t > 0). For this reason, we introduce the modified entropy

∫
R2(1 +

u(t)) log(1 + u(t)) dx in place of
∫
R2 u(t) log u(t) dx.

For the nonnegative solutions (u, v1, v2) to the Cauchy problem (P), the
following relation is satisfied ([26, Lemma 3.1]): For p > 1,

1

p

d

dt
‖u(t)‖pp +

4(p− 1)

p2
‖∇up/2(t)‖22 + (β2 − β1)

(
1− 1

p

)
‖u(t)‖p+1

p+1

= −β1λ1

(
1− 1

p

)∫
R2

up(t)v1(t) dx+ β2λ2

(
1− 1

p

)∫
R2

up(t)v2(t) dx.

(2)

In the repulsive dominant case β1 < β2, we get the boundedness of ‖u(t)‖p in
t > 0 from (2) thanks to β2 − β1 > 0 in the third term on the left-hand side
of (2). In the attractive dominant case β1 > β2, we need a smallness condition
on initial data to get the boundedness of ‖u(t)‖p in t > 0. Hence, we first study
the boundedness of the modified entropy

∫
R2(1 + u(t)) log(1 + u(t)) dx in t > 0

under the assumption (β1 − β2)
∫
R2 u0 dx < 4π, and then apply (2) to get the

boundedness of ‖u(t)‖p in t > 0.
The a priori estimate of

∫
R2(1 + u(t)) log(1 + u(t)) dx has been studied for

the Keller-Segel model (KS) in [21] and for the Cauchy problem (P) in [24]
by applying the Brezis-Merle type inequality established in [21]. However,
the a priori bound of

∫
R2(1 + u(t)) log(1 + u(t)) dx for 0 < t < T obtained

in [21, 24] depends on T , which does not give the uniform boundedness of
the solutions on [0,∞). Another approach from the application of radially
symmetric decreasing rearrangement does not seem to work for the Cauchy
problem (P) due to the term for chemorepulsion, although it is useful for getting
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the uniform boundedness of the solutions to the Keller-Segel model (KS) (e.g.,
[6, 18, 20]). We prove the boundedness of

∫
R2(1 + u(t)) log(1 + u(t)) dx on

[0,∞) by applying the sharp form of the Gagliardo-Nirenberg inequality under
the assumption (β1 − β2)

∫
R2 u0 dx < 4π, but the uniform boundedness of the

solutions is expected under the assumption (β1 − β2)
∫
R2 u0 dx < 8π.

Theorem 1.1. Let β1 > β2 and assume that

(β1 − β2)

∫
R2

u0 dx < 4π. (3)

Then, supt>0 ‖(u(t), v1(t), v2(t))‖p <∞ for all 1 ≤ p ≤ ∞.

We next study the boundedness of nonnegative radial solutions to the
Cauchy problem (P). For the nonnegative radial initial data u0 satisfying (1),
the uniqueness of solutions to the Cauchy problem (P) ensures that the solution
(u, v1, v2) for the initial data u0 is radial in x. Considering the mass function
U(t, s) =

∫ s
0
ũ(t, σ) dσ of u, where u(t, x) = ũ(t, s) (s = π|x|2), we reduce the

boundedness of u to the following (see Lemma 4.2): There exist s0 > 0 and
C > 0 such that

U(t, s) ≤ C
√
s (t ≥ 0, 0 ≤ s ≤ s0). (4)

Constructing a comparison function and applying the comparison principle for
parabolic equations, we show (4) to have the following.

Theorem 1.2. Let β1 > β2 and assume that the nonnegative initial data u0 is
radial and

(β1 − β2)

∫
R2

u0 dx < 8π. (5)

Then, supt>0 ‖(u(t), v1(t), v2(t))‖p <∞ for all 1 ≤ p ≤ ∞.

We lastly study the boundedness problem to the Cauchy problem (P) in
the critical mass case (β1 − β2)

∫
R2 u0 dx = 8π. Using the idea of getting the

boundedness of radial solutions to the Cauchy problem (KS) in [23], we have
the following theorem under a restricted condition on βj and λj (j = 1, 2).

Theorem 1.3. Let β1 > β2, λ1 ≤ λ2 and β1λ1 ≥ β2λ2. Assume that the
nonnegative initial data u0 is radial and

(β1 − β2)

∫
R2

u0 dx = 8π, (6)

lim inf
R→∞

(
R2

∫
|x|>R

u0 dx
)
> 0. (7)

Then, supt>0 ‖(u(t), v1(t), v2(t))‖p <∞ for all 1 ≤ p ≤ ∞.
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The rest of the paper is organized as follows. In Section 2, we mention
some properties of nonnegative solutions to the Cauchy problem (P) and give
function inequalities on R2 used in the proof of Theorem 1.1. In Section 3, we
give the proof of Theorem 1.1, and in Section 4, the proofs of Theorems 1.2
and 1.3.

Throughout the paper, we use a universal constant C to describe a vari-
ous constant, and C(∗, · · · , ∗) when C depends on the quantities appearing in
parentheses.

2. Preliminaries

For the nonnegative solutions to the Cauchy problem (P), the conservation
of mass is one of important properties, which is obtained by integrating the
equations for u and vj (j = 1, 2) over R2.

Lemma 2.1. Let (u, v1, v2) be the nonnegative solution to the Cauchy prob-
lem (P) with nonnegative initial data u0 satisfying (1). Then,∫

R2

u(t) dx = λ1

∫
R2

v1(t) dx = λ2

∫
R2

v2(t) dx =

∫
R2

u0 dx (t > 0).

For λ > 0 and f ∈ Lp (1 ≤ p ≤ ∞), we denote by (λ−∆)−1f the convolution
of the Bessel kernel Bλ and f , namely,

(λ−∆)−1f = Bλ ∗ f,

where

Bλ(x) =

∫ ∞
0

e−λσG(σ, x) dσ, x ∈ R2

and G(t, x) is the heat kernel given by G(t, x) = (4πt)−1e−|x|
2/(4t). For f ∈ Lp

(1 < p < ∞), the function v := (λ − ∆)−1f on R2 belongs to W 2,p and a
solution of

(λ−∆)v = f in R2.

By the following estimates

‖∂αxBλ‖p <∞ for 1 ≤ p <∞ if |α| = 0 and 1 ≤ p < 2 if |α| = 1,

applying Young’s inequality for convolution gives Lp estimates on (λ−∆)−1f
in Lemma 2.2 below, which are often used in the course of the proof of Theo-
rem 1.1. For the Bessel kernel, see, e.g., [9, 27].
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Lemma 2.2. For λ > 0, it holds that

‖(λ−∆)−1f‖p ≤ C(λ, p, q)‖f‖q, 1 ≤ q ≤ p <∞,
‖(λ−∆)−1f‖∞ ≤ C(λ, q)‖f‖q, 1 < q ≤ ∞,
‖∇(λ−∆)−1f‖∞ ≤ C(λ, q)‖f‖q, 2 < q ≤ ∞.

For later uses, we give some function inequalities on R2. We begin with
the Gagliardo-Nirenberg inequality on R2 (e.g., [8]): For 1 < p <∞, there is a
positive constant C depending on p such that for any f ∈ L1 with |∇f | ∈ L2,

‖f‖p ≤ C‖∇f‖1−1/p
2 ‖f‖1/p1 . (8)

The next inequality is a version of the Gagliardo-Nirenberg inequality on R2:
For any f ∈ L2 with |∇f | ∈ L1,

‖f‖2 ≤
1√
4π
‖∇f‖1. (9)

Here, 1/
√

4π is the best constant (e.g., [30, Theorem 2.7.4]).
We give two lemmas below, which are proven by applying (9).

Lemma 2.3. For 0 < ε < 1 and nonnegative functions g ∈ L1 ∩W 1,2,∫
R2

g2 dx ≤ 1 + ε

4π

(∫
R2

g dx
)(∫

R2

|∇g|2

1 + g
dx
)

+
2

ε

∫
R2

g dx. (10)

Proof. Let α > 1. We have that∫
R2

g2 dx =

∫
g>α

g2 dx+

∫
g≤α

g2 dx =

∫
g>α

{(g − α) + α}2 dx+

∫
g≤α

g2 dx

=

∫
g>α

(g − α)2 dx+ 2α

∫
g>α

(g − α) dx+

∫
g>α

α2 dx+

∫
g≤α

g2 dx

≤
∫
R2

(g − α)2
+ dx+ 2α

∫
g>α

g dx+ α

∫
g≤α

g dx

≤
∫
R2

(g − α)2
+ dx+ 2α

∫
R2

g dx,

where (g − α)+ = max{g − α, 0}. We estimate
∫
R2(g − α)2

+ dx as follows. By
the Gagliardo-Nirenberg inequality (9),∫

R2

(g − α)2
+ dx ≤

1

4π

(∫
R2

|∇(g − α)+| dx
)2

=
1

4π

(∫
g>α

|∇g| dx
)2

=
1

4π

(∫
g>α

√
1 + g

|∇g|√
1 + g

dx
)2

≤ 1

4π

(∫
g>α

(1 + g) dx
)(∫

g>α

|∇g|2

1 + g
dx
)
,
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and then,∫
g>α

(1 + g) dx =

∫
g>α

dx+

∫
g>α

g dx ≤ 1

α

∫
g>α

g dx+

∫
g>α

g dx

=
(

1 +
1

α

)∫
g>α

g dx.

Hence, ∫
R2

(g − α)2
+ dx ≤

1

4π

(
1 +

1

α

)(∫
R2

g dx
)(∫

R2

|∇g|2

1 + g
dx
)
.

Therefore,∫
R2

g2 dx ≤ 1

4π

(
1 +

1

α

)(∫
R2

g dx
)(∫

R2

|∇g|2

1 + g
dx
)

+ 2α

∫
R2

g dx.

By putting ε = 1/α, (10) is derived.

Lemma 2.4. It holds that for any nonnegative function g ∈ L1 ∩W 1,2,∫
R2

g3 dx ≤ ε
(∫

R2

(1 + g) log(1 + g) dx
)(∫

R2

|∇g|2 dx
)

+ C(ε)

∫
R2

g dx,

where ε is any positive number and C(ε)→∞ (ε→ 0).

For the proof of Lemma 2.4, see, e.g., [21, Lemma 2.1].
We lastly mention the following interpolation inequality, which is obtained

by applying Hölder’s inequality: Let 1 ≤ p1 < p2 ≤ ∞ and f ∈ Lp1 ∩ Lp2 .
Then f ∈ Lp for all p with p1 ≤ p ≤ p2 and

‖f‖p ≤ ‖f‖λp1‖f‖
1−λ
p2 where

1

p
=

λ

p1
+

1− λ
p2

, 0 ≤ λ ≤ 1. (11)

3. Boundedness of solutions by entropy estimates

Let (u, v1, v2) be the nonnegative solution to the Cauchy problem (P) corre-
sponding to the initial data u0 satisfying (1). For the proof of Theorem 1.1,
we need the following proposition, which is proven in Subsection 3.1.

Proposition 3.1. Let 0 < T ≤ ∞ and assume that

E := sup
0<t<T

‖(1 + u(t)) log(1 + u(t))‖1 <∞. (12)

Then,
‖u(t)‖∞ ≤ C(‖u0‖1, ‖u0‖∞, E), 0 < t < T.
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Remark 3.2: The assumption β1 > β2 is not required for proving Proposi-
tion 3.1.

We put ψ = β1v1 − β2v2 in the equations of u and vj (j = 1, 2) in (P).
Then,

∂tu = ∆u−∇ · (u∇ψ), −∆ψ = (β1 − β2)u+ h (t > 0, x ∈ R2), (13)

where h = λ2β2v2 − λ1β1v1. As vj = (λj − ∆)−1u (j = 1, 2), applying
Lemma 2.2 as f = u(t), we observe that for j = 1, 2 and t > 0,

‖vj(t)‖p ≤ C(p, q)‖u(t)‖q, 1 ≤ q ≤ p <∞, (14)

‖vj(t)‖∞ ≤ C(q)‖u(t)‖q, 1 < q ≤ ∞, (15)

‖∇vj(t)‖∞ ≤ C(q)‖u(t)‖q, 2 < q ≤ ∞. (16)

Here and in what follows, we drop λj from C(λj , p, q) and C(λj , q) for simplicity.
In particular, thanks to (14) for q = 1 and ‖u(t)‖1 = ‖u0‖1 by Lemma 2.1, we
have

‖vj(t)‖p ≤ C(p)‖u0‖1, 1 ≤ p <∞. (17)

We give the following lemma for the modified entropy.

Lemma 3.3. It holds that

d

dt

∫
R2

(1 + u) log(1 + u) dx+

∫
R2

|∇u|2

1 + u
dx

= −
∫
R2

u∆ψ dx+

∫
R2

log(1 + u) ∆ψ dx,

(18)

where ψ = β1v1 − β2v2.

Proof. Using ∂tu = ∆u − ∇ · (u∇ψ) in (13) and noting
∫
R2 ∂tu dx = 0, by

integration by parts, we have that

d

dt

∫
R2

(1 + u) log(1 + u) dx =

∫
R2

∂tu log(1 + u) dx+

∫
R2

∂tu dx

=

∫
R2

∆u log(1 + u) dx−
∫
R2

∇ · (u∇ψ) log(1 + u) dx

= −
∫
R2

|∇u|2

1 + u
dx+

∫
R2

u

1 + u
∇u · ∇ψ dx

= −
∫
R2

|∇u|2

1 + u
dx+

∫
R2

∇u · ∇ψ dx−
∫
R2

1

1 + u
∇u · ∇ψ dx

= −
∫
R2

|∇u|2

1 + u
dx−

∫
R2

u∆ψ dx−
∫
R2

∇ log(1 + u) · ∇ψ dx

= −
∫
R2

|∇u|2

1 + u
dx−

∫
R2

u∆ψ dx+

∫
R2

log(1 + u)∆ψ dx.
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Thus, we derive (18).

Proof of Theorem 1.1. Since the nonnegative solution exists globally in time
under the assumption (β1−β2)

∫
R2 u0 dx < 8π by [24, Theorem 1.1], all we have

to do is to show boundedness under the assumption (β1 − β2)
∫
R2 u0 dx < 4π

by applying Proposition 3.1 as T =∞.

Since −∆ψ = (β1 − β2)u+ h (h = λ2β2v2 − λ1β1v1) by (13), plugging this
relation into the right-hand side of (18) yields that

d

dt

∫
R2

(1 + u) log(1 + u) dx+

∫
R2

|∇u|2

1 + u
dx

= (β1 − β2)

∫
R2

u2 dx+

∫
R2

uh dx− (β1 − β2)

∫
R2

u log(1 + u) dx

−
∫
R2

log(1 + u)h dx

≤ (β1 − β2)

∫
R2

u2 dx+
ε

2

∫
R2

{
u2 + (log(1 + u))2} dx

− (β1 − β2)

∫
R2

u log(1 + u) dx+ C(ε)

∫
R2

h2 dx,

(19)

where 0 < ε < 1. By log(1 + u) ≤ u, we have that

ε

2

∫
R2

{
u2 + (log(1 + u))2} dx− (β1 − β2)

∫
R2

u log(1 + u) dx

≤ ε
∫
R2

u2 dx− (β1 − β2)

∫
R2

(1 + u) log(1 + u) dx+ (β1 − β2)

∫
R2

u dx.

(20)

Substituting (20) into the right-hand side of (19) and using ‖h‖22 ≤ C‖u0‖21
obtained by (17), we obtain that

d

dt

∫
R2

(1 + u) log(1 + u) dx+

∫
R2

|∇u|2

1 + u
dx

≤ (β1 − β2 + ε)

∫
R2

u2 dx− (β1 − β2)

∫
R2

(1 + u) log(1 + u) dx

+ C(‖u0‖1, ε).

(21)

Applying Lemma 2.3 as g = u(t) yields that∫
R2

u2(t) dx ≤ 1 + ε

4π
‖u0‖1

∫
R2

|∇u(t)|2

1 + u(t)
dx+

2

ε
‖u0‖1.
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Here we used ‖u(t)‖1 = ‖u0‖1. Plugging this inequality into (21), we have that

d

dt

∫
R2

(1 + u) log(1 + u) dx

+
{

1− (β1 − β2 + ε)
1 + ε

4π
‖u0‖1

}∫
R2

|∇u|2

1 + u
dx

≤ −(β1 − β2)

∫
R2

(1 + u) log(1 + u) dx+ C(‖u0‖1, ε).

(22)

Thanks to (β1−β2)‖u0‖1 < 4π by assumption (3), we can take 0 < ε < 1 such
that

1− (β1 − β2 + ε)
1 + ε

4π
‖u0‖1 ≥ 0.

Hence, it follows from (22) that

‖(1+u(t)) log(1+u(t))‖1 ≤ e−(β1−β2)t‖(1+u0) log(1+u0)‖1+C(‖u0‖1), t > 0.

Therefore, we conclude the boundedness of ‖u(t)‖∞ on [0,∞) by Proposi-
tion 3.1.

3.1. Proof of Proposition 3.1

The proof of Proposition 3.1 relies on the following lemma, which is proven by
Moser’s iteration technique (e.g., [1, 14, 26]).

Lemma 3.4. Let 0 < T ≤ ∞ and assume

A := sup
0<t<T

‖∇(β1v1(t)− β2v2(t))‖∞ <∞.

Then, ‖u(t)‖∞ ≤ C(‖u0‖1, ‖u0‖∞, A), 0 < t < T .

To prove Proposition 3.1, we begin with showing

‖u(t)‖2 ≤ C(‖u0‖1, ‖u0‖2, E), 0 < t < T, (23)

where E = sup0<t<T ‖(1 +u(t)) log(1 +u(t))‖1. By (2) for p = 2, we have that

d

dt
‖u(t)‖22 + 2‖∇u(t)‖22 − (β1 − β2)‖u(t)‖33

≤ β2λ2

∫
R2

u2v2 dx ≤ β2λ2‖u(t)‖23‖v2(t)‖3 ≤ β2‖u(t)‖33 + C‖v2(t)‖33,

from which it follows that

d

dt
‖u(t)‖22 + 2‖∇u(t)‖22 − β1‖u(t)‖33 ≤ C‖v2(t)‖33 ≤ C‖u0‖31.
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Here we used ‖v2(t)‖3 ≤ C‖u0‖1 by (17). To control ‖u(t)‖3, we recall the
following inequality on R2 (see Lemma 2.4): For any ε > 0, there exists C(ε) >
0 such that for any nonnegative function g ∈ L1 ∩W 1,2,

‖g‖33 ≤ ε‖(1 + g) log(1 + g)‖1‖∇g‖22 + C(ε)‖g‖1. (24)

Thanks to E = sup0<t<T ‖(1 + u(t)) log(1 + u(t))‖1 < ∞ by assumption (12),
applying (24) as g = u(t) and using ‖u(t)‖1 = ‖u0‖1, we have

‖u(t)‖33 ≤ εE‖∇u(t)‖22 + C(ε)‖u0‖1, 0 < t < T,

and hence,

d

dt
‖u(t)‖22 + (2− εβ1E)‖∇u(t)‖22 ≤ C(‖u0‖1, ε), 0 < t < T,

where 0 < ε < 1. Take ε such as 2 − εβ1E ≥ 1, that is, 0 < ε ≤ 1/(β1E).
Then,

d

dt
‖u(t)‖22 + ‖∇u(t)‖22 ≤ C(‖u0‖1, E), 0 < t < T. (25)

Applying (8) as f = u(t) and using ‖u(t)‖1 = ‖u0‖1 yield that

‖u(t)‖22 ≤ C‖∇u(t)‖2‖u0‖1 ≤ ‖∇u(t)‖22 + C‖u0‖21.

Substituting this inequality into (25), we have that

d

dt
‖u(t)‖22 + ‖u(t)‖22 ≤ C(‖u0‖1, E), 0 < t < T,

from which (23) follows.
We next show that

‖u(t)‖4 ≤ C(‖u0‖1, ‖u0‖4, E), 0 < t < T. (26)

By (2) for p = 4,

d

dt
‖u(t)‖44 + 3‖∇u2(t)‖22 − 3(β1 − β2)‖u(t)‖55

≤ 3β2λ2

∫
R2

u4(t)v2(t) dx ≤ 3β2λ2‖u(t)‖45‖v2(t)‖5 ≤ 3β2‖u(t)‖55 + C‖v2(t)‖55.

Putting w = u2 yields that

d

dt
‖w(t)‖22 + 3‖∇w(t)‖22 − 3β1‖w(t)‖5/25/2 ≤ C‖u0‖51.
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Here we used ‖v2(t)‖5 ≤ C‖u0‖1 by (17). Applying the Gagliardo-Nirenberg
inequality (8) for p = 5/2 and using Young’s inequality, we have that

‖w(t)‖5/25/2 ≤ C‖∇w(t)‖3/22 ‖w(t)‖1 ≤ η‖∇w(t)‖22 + C(η)‖w(t)‖41,

where η is a positive number determined later. Hence, for 0 < t < T ,

d

dt
‖w(t)‖22 + 3(1− β1η)‖∇w(t)‖22 ≤ 3β1C(η)‖w(t)‖41 + C‖u0‖51. (27)

Take η > 0 such that 3(1− β1η) ≥ 1 and note that by (23),

‖w(t)‖1 = ‖u(t)‖22 ≤ C(‖u0‖1, ‖u0‖2, E), 0 < t < T.

Then, as in the proof of the boundedness of ‖u(t)‖2, we derive from (27) that

‖u(t)‖44 = ‖w(t)‖22 ≤ C(‖u0‖1, ‖u0‖4, E), 0 < t < T.

Here we used the fact that ‖u0‖2 is estimated by ‖u0‖1 and ‖u0‖4 by virtue of
interpolation inequality (11). Thus, (26) is derived.

By (15) for q = 2 and (23),

‖vj(t)‖∞ ≤ C‖u(t)‖2 ≤ C(‖u0‖1, ‖u0‖2, E), 0 < t < T,

and by (16) for q = 4 and (26),

‖∇vj(t)‖∞ ≤ C‖u(t)‖4 ≤ C(‖u0‖1, ‖u0‖4, E), 0 < t < T.

Hence, since ‖∇(β1v1(t) − β2v2(t))‖∞ ≤ C(‖u0‖1, ‖u0‖4, E) (0 < t < T ),
Lemma 3.4 ensures that

‖u(t)‖∞ ≤ C(‖u0‖1, ‖u0‖∞, E), 0 < t < T.

Thus, we establish the assertion of Proposition 3.1.

4. Boundedness of radial solutions

In this section, we assume that the nonnegative initial data u0 satisfying (1) is
radial in x. Then, by the uniqueness of solutions to the Cauchy problem (P),
the nonnegative solution (u, v1, v2) corresponding to the initial data u0 is radial
in x.

Define the functions ũ(t, s) and ṽj(t, s) (j = 1, 2) by

u(t, x) = ũ(t, s), vj(t, x) = ṽj(t, s), s = π|x|2
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and ũ0(s) by u0(x) = ũ0(s). We next define U and Vj (j = 1, 2) by

U(t, s) =

∫ s

0

ũ(t, σ) dσ, Vj(t, s) =

∫ s

0

ṽj(t, σ) dσ (28)

and U0(s) =
∫ s

0
ũ0(σ) dσ. By Lemma 2.1, we observe that

U(t,∞) =

∫ ∞
0

ũ(t, s) ds = 2π

∫ ∞
0

ũ(t, πr2) rdr =

∫
R2

u(t, x) dx =

∫
R2

u0(x) dx,

and

Vj(t,∞) =

∫ ∞
0

ṽj(t, s) ds =

∫
R2

vj(t, x) dx =
1

λj

∫
R2

u0(x) dx.

Lemma 4.1. It holds that

∂tU = 4πs∂2
sU+(β1−β2)U∂sU−(β1λ1V1−β2λ2V2)∂sU (t > 0, s > 0). (29)

Proof. Calculating that

∂xj
u = ∂sũ∂xj

s = 2πxj∂sũ, ∂2
xj
u = 4π2x2

j∂
2
s ũ+ 2π∂sũ,

∆u = 4πs∂2
s ũ+ 4π∂sũ = 4π∂s(s∂sũ),

∇ · (u∇vj) = 4πs∂s(ũ∂sṽj) + 4πũ∂sṽj = 4π∂s(sũ∂sṽj),

we have

∂tũ = 4π∂s(s∂sũ)− 4π∂s(sũ∂s(β1ṽ1 − β2ṽ2)), (30)

0 = 4π∂s(s∂sṽj)− λj ṽj + ũ (j = 1, 2). (31)

Integrating (30) and (31) with respect to s, we have that

∂tU = 4πs∂sũ− 4πsũ∂s(β1ṽ1 − β2ṽ2)

= 4πs∂2
sU − ∂sU{4πs∂s(β1ṽ1 − β2ṽ2)},

4πs∂sṽj = −U + λjVj (j = 1, 2).

Hence,

∂tU = 4πs∂2
sU + (β1 − β2)U∂sU − (β1λ1V1 − β2λ2V2)∂sU.

To obtain the boundedness of the solution (u, v1, v2), by Lemma 3.4 it
suffices to show that

sup
t>0
‖∇vj(t)‖∞ <∞ (j = 1, 2). (32)
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Thanks to 4πs∂sṽj = λjVj − U and s = π|x|2, we have that

|∇vj(t, x)| = 2π|x||∂sṽj(t, s)| =
1

2
√
πs
|U(t, s)− λjVj(t, s)|. (33)

By Hölder’s inequality we observe that for 0 < λ < 1,

0 ≤ Vj(t, s) =

∫ s

0

ṽj(t, σ) dσ ≤ sλ
(∫ ∞

0

|ṽj(t, σ)|1/(1−λ) dσ
)1−λ

= sλ‖vj(t)‖1/(1−λ) ≤ C(λ)‖u0‖1sλ.
(34)

Here we used ‖vj(t)‖1/(1−λ) ≤ C(λ)‖u0‖1 (t > 0) by (17). Since 0 ≤ Vj(t, s) ≤
C‖u0‖1

√
s by (34) for λ = 1/2, we have the following lemma by virtue of (33).

Lemma 4.2. If there exist s0 > 0 and C > 0 such that

U(t, s) ≤ C
√
s (t ≥ 0, 0 ≤ s ≤ s0),

then (32) is satisfied. Hence, supt>0 ‖(u(t), v1(t), v2(t))‖∞ <∞.

Proof of Theorem 1.2. By (29) and ∂sU ≥ 0,

∂tU ≤ 4πs∂2
sU + βU∂sU + β2λ2V2∂sU,

where β = β1 − β2 > 0. As V2(t, s) ≤ C(λ)‖u0‖1sλ for 0 < λ < 1 by (34),
putting B(λ) = β2λ2C(λ)‖u0‖1, we have that

∂tU ≤ 4πs∂2
sU + βU∂sU +B(λ)sλ∂sU, t > 0, s > 0.

In what follows, for simplicity we put

N g = 4πs∂2
sg + βg∂sg +B(λ)sλ∂sg, (35)

where 0 < λ < 1. We then get the following:
∂tU ≤ NU, t > 0, s > 0,

U(t, 0) = 0, U(t,∞) = ‖u0‖1, t > 0,

U(0, s) = U0(s), s ≥ 0.

For b > 0 and γ > 0, we define Wb,γ(s) by

Wb,γ(s) =
8π

γ

s

s+ b
(s ≥ 0).
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The function satisfies

4πs
d2Wb,γ

ds2
+ γWb,γ

dWb,γ

ds
= 0 (s > 0). (36)

As β‖u0‖1 < 8π by assumption (5), we can choose γ and λ in (35) such that

1 <
γ

β
< min

{ 8π

β‖u0‖1
, 2
}
,
(1

2
<
)β
γ
< λ < 1,

and as a comparison function we take

W (s) = Wb,γ(sλ) (s ≥ 0).

Take b > 0 so small that

s0 :=
( γ‖u0‖1b

8π − γ‖u0‖1

)1/λ

< 1,
λγ − β
γ

· 8π − γ‖u0‖1
b

≥ B(λ). (37)

Here we used ‖u0‖1 < 8π/γ = Wb,γ(∞) and λγ > β. Since Wb,γ(s) is decreas-
ing in b and converges to 8π/γ as b→ +0 for each s > 0 and W ′b,γ(0) = 8π/(γb)
where ′ = d/ds, we can shorten b such that

U0(s) ≤ ‖u0‖∞s < Wb,γ(s) for 0 < s ≤ s0.

By W (s0) = Wb,γ(sλ0 ) = ‖u0‖1, it is apparent that

U(t, s0) ≤ ‖u0‖1 = W (s0) for t ≥ 0.

As Wb,γ(s) is increasing in s and 0 < s < sλ for 0 < s ≤ s0(< 1), we observe
that for 0 < s ≤ s0,

U0(s) < Wb,γ(s) < Wb,γ(sλ) = W (s).

Since

dW

ds
= λsλ−1 dWb,γ

ds
(sλ), s

d2Wb,γ

ds2
= − γ

4π
Wb,γ

dWb,γ

ds
,

we have

d2W

ds2
= λ2sλ−2 · sλ d

2Wb,γ

ds2
(sλ)− λ(1− λ)sλ−2 dWb,γ

ds
(sλ)

= −λ
2γ

4π
sλ−2Wb,γ(sλ)

dWb,γ

ds
(sλ)− λ(1− λ)sλ−2 dWb,γ

ds
(sλ)

= −λγ
4π
s−1W

dW

ds
− (1− λ)s−1 dW

ds
,
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and

NW = 4πs
d2W

ds2
+ βW

dW

ds
+B(λ)sλ

dW

ds

= −(λγ − β)W
dW

ds
− 4π(1− λ)

dW

ds
+B(λ)sλ

dW

ds

= −4π(1− λ)
dW

ds
− sλ

{
(λγ − β)

8π

γ

1

sλ + b
−B(λ)

}dW
ds

.

Let 0 < s < s0, where s0 is given by (37). As λγ > β, we observe that

(λγ − β)
8π

γ

1

sλ + b
−B(λ) ≥ (λγ − β)

8π

γ

1

sλ0 + b
−B(λ)

=
λγ − β
γ

· 8π − γ‖u0‖1
b

−B(λ)

≥ 0.

Hence, NW < 0 (0 < s < s0) because of dW/ds > 0. Therefore,
∂tU ≤ NU, NW < 0 (t > 0, 0 < s < s0),

U(t, 0) = W (0) = 0, U(t, s0) ≤W (s0) (t ≥ 0),

U(0, s) = U0(s) ≤W (s) (0 ≤ s ≤ s0).

Then, the comparison principle ensures that

U(t, s) ≤W (s) ≤ 8π

γ

sλ

b
(t ≥ 0, 0 ≤ s ≤ s0).

Therefore, as 1/2 < λ < 1, we establish Theorem 1.2 thanks to Lemma 4.2.

Proof of Theorem 1.3. Let U(t, s) and Vj(t, s) (j = 1, 2) be the functions de-
fined by (28). We claim that

V1(t, s) ≥ V2(t, s) (t > 0, s ≥ 0).

In fact, as vj ≥ 0 (j = 1, 2) and λ1 ≤ λ2, by the equations for vj (j = 1, 2),

−∆(v1 − v2) + λ1(v1 − v2) = (λ2 − λ1)v2 ≥ 0 in R2.

By the maximum principle, we have v1 ≥ v2 on R2. Thus V1 ≥ V2.
By Lemma 4.1,

∂tU − 4πs∂2
sU − βU∂sU = (β2λ2V2 − β1λ1V1)∂sU,
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where β = β1 − β2. It follows from V1 ≥ V2 and β1λ1 ≥ β2λ2 that

β2λ2V2 − β1λ1V1 = β2λ2(V2 − V1) + (β2λ2 − β1λ1)V1 ≤ 0.

Hence, as ∂sU ≥ 0, we have

∂tU − 4πs∂2
sU − βU∂sU ≤ 0 (t > 0, s > 0).

We note that assumption (7) is equivalent to

lim inf
s→∞

(
s

∫ ∞
s

ũ0 dσ
)
> 0, (38)

where ũ0 is defined by u0(x) = ũ0(s), s = π|x|2. As in the proof of [23,
Lemma 3.1.(ii)], by assumption (6) and (38) we can choose b > 0 such that

U(0, s) =

∫ s

0

ũ0 dσ ≤Wb,β(s) =
8π

β

s

s+ b
(s ≥ 0).

Since U(t, 0) = Wb,β(0) = 0, U(t,∞) = Wb,β(∞) = 8π/β (t > 0) and

4πs
d2Wb,β

ds2
+ βWb,β

dWb,β

ds
= 0 (s > 0)

by (36), the comparison principle ensures that

U(t, s) ≤Wb,β(s) =
8π

β

s

s+ b
(t > 0, s ≥ 0).

Therefore, Theorem 1.3 is established by Lemma 4.2.
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