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Abstract. This paper deals with a free boundary problem for a
reaction-diffusion equation with moving boundary, whose dynamics is
governed by the Stefan condition. We will mainly discuss the problem
for the case of multi-stable nonlinearity, which is a function with a mul-
tiple number of positive stable equilibria. The first result is concerned
with the classification of solutions in accordance with large-time behav-
iors. As a consequence, one can observe a multiple number of spreading
phenomena corresponding for each positive stable equilibrium. Here it
is seen that there exists a certain group of spreading solutions whose el-
ement accompanies a propagating terrace. We will derive sharp asymp-
totic estimates of free boundary and profile of every spreading solution
including spreading one with propagating terrace.
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1. Introduction

This paper is concerned with the following free boundary problem for reaction-
diffusion equations:

(FBP)


ut = duxx + f(u), t > 0, 0 < x < h(t),

ux(t, 0) = 0, u(t, h(t)) = 0, t > 0,

h′(t) = −µux(t, h(t)), t > 0,

h(0) = h0, u(0, x) = u0(x), 0 ≤ x ≤ h0,
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where d, µ and h0 are positive constants and x = h(t) is a free boundary.
Nonlinearity f is a function of class C1[0,∞) satisfying

f(0) = f(u∗) = 0 with some u∗ > 0 and f(u) < 0 for u > u∗ (1)

and u0 is a nonnegative function of class C2[0, h0] such that

u′0(0) = u0(h0) = 0 and u0 6≡ 0. (2)

Since Du and Lin published a pioneer work [4] on (FBP) in 2010, a lot of authors
have studied (FBP) and related free boundary problems. Among them, we
should refer to the paper of Du and Lou [5], who obtained very important results
on large-time behaviors of solution (u(t, ·), h(t)) of (FBP) for typical types of
nonlinearity f such as monostable, bistable and combustion types. Moreover,
we should also note the work of Du, Matsuzawa and Zhou [9], who derived sharp
asymptotic estimates of (u(t, ·), h(t)) as t→∞ in the case limt→∞ h(t) =∞.

The main purpose of the present paper is to study (FBP) when f is a multi-
stable function, that is, f has a multiple number of positive stable equilibria.
For the sake of simplicity, we assume that f ∈ C1[0,∞) satisfies the following
conditions:

(PB) f(u) = 0 has solutions u = 0, u∗1, u
∗
2, u
∗
3 (0 < u∗1 < u∗2 < u∗3),

f ′(0) > 0, f ′(u∗1) < 0, f ′(u∗2) ≥ 0, f ′(u∗3) < 0,

∫ u∗
3

u∗
1

f(u)du > 0,

and f(u) 6= 0 for u 6= 0, u∗1, u
∗
2, u
∗
3.

When f satisfies (PB), we say that f is a function of positive bistable type.
For such nonlinearity, we will show that solutions of (FBP) exhibit interesting
large-time behaviors which are different from those discussed in previous works
(see, e.g., Du and Lou [5] for monostable type and bistable type). Our first
aim is to investigate what kind of asymptotic behaviors can be found for (FBP)
with positive bistable nonlinearity. We will classify all solutions of (FBP) into
the following four types:

(i) lim
t→∞

h(t) <∞ and lim
t→∞

u(t, x) = 0 for x ≥ 0 (vanishing),

(ii) lim
t→∞

h(t) =∞ and lim
t→∞

u(t, x) = u∗1 for x ≥ 0 (small spreading),

(iii) lim
t→∞

h(t) =∞ and lim
t→∞

u(t, x) = u∗3 for x ≥ 0 (big spreading),

(iv) lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, x) = vdec(x) for x ≥ 0, where vdec is a

uniquely determined decreasing function such that limx→∞ vdec(x) = u∗1
(transition).
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For numerical simulations of these typical types of solutions, see Figure 1.
Here, if we consider (FBP) for u0 = σu∗0 with parameter σ ≥ 0 and any
fixed nonnegative function u∗0 satisfying (2), we can prove the existence of two
threshold numbers σ∗1 and σ∗2 (σ∗1 < σ∗2) with the following properties:

The solution of (FBP) satisfies vanishing (i) for all σ ∈ [0, σ∗1 ], small spread-
ing (ii) for all σ ∈ (σ∗1 , σ

∗
2), big spreading (iii) for all σ ∈ (σ∗2 ,∞) and transi-

tion (iv) for exactly σ = σ∗2 . It should be noted that, for any stable equilibrium
of f , one can observe the corresponding spreading phenomenon for (FBP).

Our second aim is to study asymptotic speed of h(t) and asymptotic profile
of u(t, x) as t→∞ when (u(t, x), h(t)) exhibits spreading property (ii) or (iii)
(or (iv)). It is shown by Du and Lou [5] that the study of asymptotic estimates
of u(t, x) and h(t) is closely related with the following problem

(SWP)

{
dq′′ − cq′ + f(q) = 0, q(z) > 0 for z ∈ (0,∞),

q(0) = 0, µq′(0) = c, lim
z→∞

q(z) = u∗,

with u∗ = u∗1 or u∗ = u∗3. When (q(z), c) = (q∗(z), c∗) satisfies (SWP), q∗(z)
is called a semi-wave with speed c∗. Let (u, h) be a solution of (FBP) with
limt→∞ u(t, x) = u∗ (u∗ = u∗1 or u∗3) and let (SWP) possess a solution pair
(q∗, c∗). Then it will be proved that (q∗, c∗) gives sharp estimates in the fol-
lowing sense:

lim
t→∞
{h(t)− c∗t} = H∗ with some H∗ ∈ R,

lim
t→∞

sup
0≤x≤h(t)

|u(t, x)− q∗(h(t)− x)| = 0.

The same estimates have been obtained by Du, Matsuzawa and Zhou [9] in the
case that f is monostable or bistable type of nonlinearity.

The analysis of (SWP) can be carried out by using the phase plane analysis
(see, e.g. [5]). It can be shown that (SWP) with u∗ = u∗1 always has a unique
solution pair, whereas (SWP) with u∗ = u∗3 does not have a solution under
a certain circumstance. Numerical simulations in this situation suggest that
a spreading solution accompanies a propagating terrace (see Figure 2). In
order to estimate such a terrace, we will use a travelling wave for the following
problem:

(TWP)

{
dQ′′ − cQ′ + f(Q) = 0, Q(z) > 0 for z ∈ (−∞,∞),

lim
z→−∞

Q(z) = u∗1, Q(0) = (u∗1 + u∗3)/2, lim
z→∞

Q(z) = u∗3.

We will prove that a semi-wave of (SWP) with u∗ = u∗1 together with a trav-
elling wave of (TWP) gives a good approximation of any spreading solution of
(FBP) with limt→∞ u(t, x) = u∗3 in the case that there exists no solution pair
of (SWP) with u∗ = u∗3.
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The contents of the present paper are as follows. In Section 2 we will
prepare some basic results of solutions for (FBP) with general nonlinearity f .
Section 3 is devoted to the analysis of (FBP) for positive bistable nonlinearity.
We will give a classification theorem and sharp estimates of spreading solutions
when the corresponding semi-wave problem has a unique solution pair. In
Section 4 we will estimate any spreading solution with propagating terrace by
using solutions of (SWP) and (TWP). Finally, in Section 5, we will state two
related topics. The first one is concerned with a free boundary problem in a
radial symmetric environment of RN and the second is the study of (FBP)
with Neumann condition at x = 0 replaced by zero Dirichlet condition.

2. Basic results for (FBP)

In this section, we will collect some basic results on (FBP) with general non-
linearity f . The first result is the existence and uniqueness of a global solution
to (FBP) (see Du-Lin [4, Theorems 2.1, 2.3 and Lemma 2.2] and Du-Lou [5,
Theorem 2.4 and Lemma 2.8]).

Theorem 2.1. Let f and u0 satisfy (1) and (2), respectively. Then (FBP)
admits a unique solution (u, h) in the following class

(u, h) ∈
{
C(1+α)/2,1+α(Ω) ∩ C1+α/2,2+α(Ω)

}
× C1+α/2[0,∞)

for any α ∈ (0, 1) with Ω = {(t, x) ∈ R2| t > 0, 0 < x < h(t)}. Moreover,
(u, h) possesses the following properties:

(i) It holds that

0 < u(t, x) ≤ C1 for t > 0 and 0 < x < h(t),

0 < h′(t) ≤ C2 for t > 0,

where C1 and C2 are positive constants depending only on ‖u0‖C[0,h0] and
‖u0‖C1[0,h0], respectively.

(ii) ux(t, x) < 0 for all t ∈ (0,∞) and x ∈ [h0, h(t)].

The second result is the comparison theorem which is a very important tool
in the analysis of dynamic behavior of solutions of (FBP) (see [4, Lemma 3.5]).

Theorem 2.2. For T > 0, let (u∗, h∗) ∈ {C0,1(Ω∗T )∩C1,2(Ω∗T )}×C1[0, T ] with
Ω∗T = {(t, x) ∈ R2| 0 < t < T, 0 < x < h∗(t)} satisfy

u∗t ≥ du∗xx + f(u∗) for (t, x) ∈ Ω∗T ,

u∗x(0, t) ≤ 0, u∗(t, h∗(t)) = 0 for t ∈ [0, T ],

(h∗)′(t) ≥ −µu∗x(t, h∗(t)) for t ∈ [0, T ].

(3)
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Let (u∗, h∗) ∈ {C0,1(Ω∗,T ) ∩ C1,2(Ω∗,T )} × C1[0, T ] satisfy (3) with inequality
signs replaced by inverse inequality signs, where Ω∗,T = {(t, x) ∈ R2| 0 < t <
T, 0 < x < h∗(t)}. If

h∗(0) ≥ h∗(0) and u∗(0, x) ≥ u∗(0, x) for 0 ≤ x ≤ h∗(0),

then

h∗(t) ≥ h∗(t) for t ∈ [0, T ] and u∗(t, x) ≥ u∗(t, x) for (t, x) ∈ Ω∗,T .

Remark 2.3: If (u∗, h∗) satisfies (3), h∗(0) ≥ h0 and

u∗(0, x) ≥ u0(x) for 0 ≤ x ≤ h0,

then (u∗, h∗) is called a super-solution of (FBP). Similarly, a sub-solution of
(FBP) is defined with obvious modification.

We now introduce the notion of vanishing and spreading of solutions of
(FBP).

Definition 2.4. Let (u, h) be a solution of (FBP). Then (u, h) is called a
vanishing solution if lim

t→∞
‖u(t)‖C[0,h(t)] = 0 and it is called a spreading solution

if
lim
t→∞

h(t) =∞ and lim inf
t→∞

‖u(t)‖C[0,h(t)] > 0.

As an application of the comparison theorem (Theorem 2.2), we will give
one of sufficient conditions for the spreading.

Theorem 2.5. For positive number `, let ϕ be a solution of{
dϕ′′ + f(ϕ) = 0, ϕ > 0 in (0, `),

ϕ′(0) = ϕ(`) = 0.
(4)

Suppose that (u0, h0) satisfies h0 ≥ ` and u0(x) ≥ ϕ(x) for x ∈ [0, `]. Then the
solution (u, h) of (FBP) satisfies

lim
t→∞

h(t) =∞ and lim inf
t→∞

u(t, x) ≥ v∗(x) for all x ≥ 0,

where v∗ is a minimal solution of

(SP)

{
dv′′ + f(v) = 0, v > 0 in (0,∞),

v′(0) = 0

satisfying v∗(x) ≥ ϕ(x) for all x ∈ (0, `).
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This theorem can be proved by repeating the arguments used in the proofs
of Theorem 2.11 and Corollary 2.12 in [17].

The following result gives a necessary and sufficient condition for the van-
ishing of solutions.

Theorem 2.6. Assume f ′(0) 6= 0. Then a solution (u, h) of (FBP) is vanishing
if and only if lim

t→∞
h(t) < ∞. In particular, if f ′(0) > 0, then a vanishing

solution satisfies

lim
t→∞

h(t) ≤ `∗ :=
π

2

√
d

f ′(0)
.

Proof. Let (u, h) be a solution of (FBP) such that limt→∞ h(t) <∞. Then it is
possible to prove the vanishing of the solutions, i.e, limt→∞ ‖u(t)‖C[0,h(t)] = 0
essentially in the same way as the proof of Theorem 2.10 of [17].

As to the necessity part, we will first discuss the case f ′(0) > 0. When (u, h)
is a vanishing solution, assume limt→∞ h(t) > `∗ = (π/2)

√
d/f ′(0) to derive a

contradiction. Then there exists a large number T > 0 such that h(T ) > `∗.
Here it should be noted that, for every ` > `∗ there exists a unique solution
ϕ(x; `) of (4) and that lim

`→`∗
‖ϕ(·; `)‖C[0,`] = 0. Therefore, we can find a suitable

` ∈ (`∗, h(T )) such that u(T, x) ≥ ϕ(x; `) for x ∈ [0, `]. Therefore, it follows
from Theorem 2.5 that

lim
t→∞

h(t) =∞ and lim inf
tto∞

u(t, x) ≥ v∗(x) > 0 for x > 0,

where v∗ is a suitable positive solution of (SP). This is a contradiction to the
vanishing of (u, h); so that h must satisfy limt→∞ h(t) ≤ `∗.

We next consider the case f ′(0) < 0. Note that there exist positive con-
stants η and δ such that

f(u) ≤ −δu for all u ∈ [0, η].

We define (u∗(t, x), h∗(t)) by

h∗(t) = H

(
1− 1

2
e−δt

)
and u∗(t, x) = ρe−δt cos

(
πx

2h∗(t)

)
,

where H and ρ are positive constants to be determined later. We will show
that (u∗, h∗) satisfies (3). If ρ satisfies ρ ≤ η, then

u∗t − du∗xx − f(u∗) = −δu∗ + ρe−δt · πx(h∗)′(t)

2h∗(t)2
· sin

(
πx

2h∗(t)

)
+

π2d

4h∗(t)2
u∗ − f(u∗)

≥ −δu∗ +
π2d

4h∗(t)2
u∗ + δu∗ =

π2

4h∗(t)2
u∗ > 0.
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Moreover, if H satisfies H2δ ≥ 2µρπ, then

(h∗)′(t) + µu∗x(t, h∗(t)) =
Hδ

2
e−δt − πµρ

2h∗(t)
e−δt

≥ H2δ − 2πµρ

2H
e−δt > 0.

It is easy to see u∗x(t, 0) = 0 and u∗(t, h∗(t)) = 0. Since (u, h) is a vanishing
solution, we can take a sufficiently large T > 0 such that ‖u(T )‖C[0,h(T )] ≤ η.
Furthermore, choose sufficiently large H satisfying h(T ) ≤ h∗(0) = H/2 and
u(T, x) ≤ ρ cos(x/H) for 0 ≤ x ≤ h(T ). Then Theorem 2.2 allows us to
conclude

h(t+ T ) ≤ h∗(t) for t ≥ 0 and u(t+ T, x) ≤ u∗(t, x)

for t ≥ 0 and 0 ≤ x ≤ h(t + T ). The above estimates implies limt→∞ h(t) ≤
limt→∞ h∗(t) = H: so that the free boundary remains bounded.

Theorem 2.7. Assume f ′(0) 6= 0 and let (u, h) be a solution of (FBP) satisfy-
ing limt→∞ h(t) =∞. Then it holds taht for any R > 0

lim
t→∞

u(t, x) = v∗(x) uniformly in x ∈ [0, R], (5)

where v∗ is a non-increasing solution of (SP).

Proof. We consider an even extension of u(t, x) for x ∈ [−h(t), h(t)] and apply
the general convergence theorem due to Du and Lou [5, Theorem 1.1] (see
also [6]). It can be seen from limt→∞ h(t) = ∞ that u(t, x) satisfies (5) for a
nonnegative function v∗, which is a solution of

dv∗xx + f(v∗) = 0 in I := [0,∞) and v∗x(0) = 0.

Suppose v∗(x0) = 0 for some xo ∈ I. Then v∗x(x0) = 0; so that the uniqueness
of solutions for the initial value problem for second-order ordinary differen-
tial equations leads to v∗ ≡ 0 in I. Then it follows that (u, h) must be a
vanishing solution. Therefore, Theorem 2.6 implies limt→∞ h(t) < ∞, which
is a contradiction to the assumption. Thus v must satisfy v∗(x) > 0 for all
x ∈ I; so that v∗ is a solution of (SP). The non-increasing property is an easy
consequence of (ii) of Theorem 2.1.

Let S be the set of non-increasing solutions of (SP). In order to determine
the complete structure of S, we will take two types of typical examples of f :

(M) Monostable type: f ∈ C1[0,∞) and there exists a positive number u∗

such that f(0) = f(u∗) = 0 with f ′(0) > 0, f ′(u∗) < 0, f(u) > 0 for
u ∈ (0, u∗) and f(u) < 0 for u > u∗.
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(B) Bistable type: f ∈ C1[0,∞) and there exist two positive numbers u∗

and θ with 0 < θ < u∗ such that f(0) = f(θ) = f(u∗) = 0, f ′(0) <
0, f ′(u∗) < 0, f(u) > 0 for u ∈ (θ, u∗), f(u) < 0 for u ∈ (0, θ) ∪ (u∗,∞)

and

∫ u∗

0

f(u)du > 0.

When f is a monostable type of function, the phase plane analysis of (SP)
enables us to prove S = {u∗}. Then we can obtain the following result as in [4].

Theorem 2.8. Let f satisfy (M) and let (u, h) be the solution of (FBP). Then
(u, h) satisfies one of the following properties:

(i) Vanishing; lim
t→∞

h(t) ≤ (π/2)
√
d/f ′(0) and lim

t→∞
‖u(t)‖C[0,h(t)] = 0.

(ii) Spreading; lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, x) = u∗ uniformly in x ∈ [0, R]

for any R > 0.

When f is a bistable type of function, one can see from the phase plane
analysis that S = {u∗, θ, v̂}. Here v̂ is a monotone decreasing solution of (SP)
satisfying v̂(0) = û and limx→∞ v̂(x) = 0, where û ∈ (θ, u∗) is a unique num-

ber satisfying
∫ û
0
f(u)du = 0. Furthermore, we can exclude the possibility of

limt→∞ u(t, x) = θ by usig the zero number arguments (for details, see the
proof of Theorem 3.1) . More precisely, it is possible to prove the following
(see [5]):

Theorem 2.9. Let f satisfy (B) and let (u, h) be the solution of (FBP). Then
(u, h) satisfies one of the following properties:

(i) Vanishing; lim
t→∞

h(t) <∞ and lim
t→∞

‖u(t)‖C[0,h(t)] = 0.

(ii) Spreading; lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, x) = u∗ uniformly in x ∈ [0, R]

for any R > 0.

(iii) Transition; lim
t→∞

h(t) =∞ and lim
t→∞

u(t, x) = v̂(x) uniformly in x ∈ [0, R]

for any R > 0.
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3. Large-time behaviors of solutions for positive bistable
nonlinearity

3.1. Positive bistable nonlinearity and classification of
large-time behaviors

We will take multi-stable nonlinearity f in (FBP), that is, f has a multiple
number of positive stable equilibrium points. A typical example is given by

f(u) = ru

(
1− u

q

)
− u2

1 + u2
, with q, r > 0, (6)

which is a combination of a logistic term ru(1 − u/q) and a predation term
called Holling type III, −u2/(1 + u2). For ecological background of such f and
its analysis, see the paper of Ludwig, Aronson and Weinberger [22]. It is known
that, if q and r satisfy suitable conditions, then above f has two positive stable
equilibria and satisfies (PB) given in Section 1.

In what follows, we always assume that f satisfies (PB). Note that f(u) is
a monostable type for 0 ≤ u ≤ u∗1 and is a bistable type for u∗1 ≤ u ≤ u∗3. Our
first result is the following classification result of solutions of (FBP) based on
their large-time behaviors (see [19, Theorem 3.1]).

Theorem 3.1. Let (u, h) be the solution of (FBP). Then it satisfies one of the
following properties:

(i) Vanishing; lim
t→∞

h(t) ≤ (π/2)
√
d/f ′(0) and lim

t→∞
‖u(t)‖C[0,h(t)] = 0.

(ii) Small spreading; lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, x) = u∗1 uniformly in x ∈
[0, R] for any R > 0.

(iii) Big spreading; lim
t→∞

h(t) =∞ and lim
t→∞

u(t, x) = u∗3 uniformly in x ∈ [0, R]

for any R > 0.

(iv) Transition; lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, x) = vdec(x) uniformly in x ∈
[0, R] for any R > 0, where vdec is a solution of (SP) satisfying

(vdec)
′(x) < 0 for x > 0 and lim

x→∞
vdec(x) = u∗1.

Proof. Let S be the set of non-increasing solutions of (SP). Using the phase
plane analysis one can show

S = {u∗1, u∗2, u∗3, vdec}.

By virtue of Theorems 2.6 and 2.7, it is sufficient to exclude the possibility
limt→∞ u(t, x) = u∗2 in order to complete the proof.
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Assuming
lim
t→∞

u(t, ·) = u∗2 uniformly in [0, R] (7)

for any R > 0, we will derive a contradiction. Let v be a periodic solution of
(SP) satisfying v(0) = maxx≥0 v(x) > u∗2. The phase plane analysis yields

u∗1 < min
x≥0

v(x) < u∗2 < max
x≥0

v(x) < u∗3.

Set w(t, x) = u(t, x)− v(x). Then

wt = dwxx + c(t, x)w,

where c(t, x) =

∫ 1

0

f ′(θu(t, x) + (1 − θ)v(x))dθ is a bounded and continuous

function. For a continuous function ϕ(x) defined in a closed interval I, we
denote by ZI(ϕ) the number of zero-points of ϕ in I. Setting I(t) = [0, h(t)]
we consider ZI(t)(w(t)). Note that w(t, h(t)) = −v(h(t)) < 0 and w(t, 0) =
u(t, 0)− v(0) < 0 for t ≥ T with sufficiently large T > 0. Then it follows from
the zero number result of Angenent [1, Theorems C and D] that t→ ZI(t)(w(t))
is finite and non-increasing for t ≥ T . However,

ZI(t2)(w(t2)) > ZI(t1)(w(t1)) for t2 > t1 ≥ T

if t2 − t1 is large because limt→∞ h(t) =∞, u satisfies (7) and v(x) is periodic
with respect to x. This result contradicts to the non-increasing property of
ZI(t)(w(t)); so that (7) never happens.

Remark 3.2: We consider (FBP) with initial condition replaced by

h(0) = h0, u(0, x) = σu∗0(x), 0 ≤ x ≤ h0,

where σ ≥ 0 is a parameter and u∗0 is a nonnegative function satisfying (2).
Denote by (uσ(t, x), hσ(t)) the solution of the above problem. By virtue of
Theorems 3.7 and 3.8 in [19] there exist two threshold numbers σ∗1 and σ∗2
(σ∗1 < σ∗2) with the following properties:

• For σ ∈ [0, σ∗1 ], (uσ, hσ) is a vanishing solution.

• For σ ∈ (σ∗1 , σ
∗
2), (uσ, hσ) is a small spreading solution.

• For σ = σ∗2 , (uσ, hσ) is a transition solution.

• For σ > σ∗2 , (uσ, hσ) is a big spreading solution.

As a result, the transition is a special solution which occurs as a borderline
behavior between the small spreading and the big spreading.
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(a) Vanishing (b) Small spreading

(c) Big spreading (d) Transition

Figure 1: Four types of large-time behaviors of u(t, x) for (FBP) are shown as
(a) vanishing, (b) small spreading, (c) big spreading and (d) transition. The
right-end point of each curve represents h(t) and moves forward as t goes on.

Numerical simulations for (FBP) are shown in Figure 1 for d = 1, µ = 0.1
and f given by (6) with q = 40/3 and r = 0.3. As to small spreading, big
spreading and transition of solutions, these simulations suggest that u(t, x)
proceeds like a “ travelling wave ” near the spreading front x = h(t) for large t.
We will investigate asymptotic behaviors of (u(t, x), h(t)) as t → ∞ in the
subsequent subsections.

3.2. Large-time behaviors of solutions and semi-wave
problem

We will study large-time behaviors of solutions of (FBP) which possess prop-
erties (ii) and (iii) of Theorem 3.1. In the case limt→∞ h(t) =∞, we infer from
the preceding numerical simulations that such a spreading solution converges
to a pair (u(t, x), h(t)) of the following form as t→∞:

h(t) = ct+H (H : constant), u(t, x) = q(h(t)− x), 0 ≤ x ≤ h(t), (8)

where c is a positive constant and q = q(z) is a positive function defined for
z ≥ 0. Substitution of (8) into the first equation of (FBP) yields

dq′′ − cq′ + f(q) = 0, q(z) > 0 for z > 0. (9)
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At x = h(t) in (FBP), we get

q(0) = 0 and µq′(0) = c. (10)

Moreover, since limt→∞ u(t, x) = u∗i (i = 1, 3) uniformly in x ∈ [0, R] for any
R > 0, q must satisfy

lim
z→∞

q(z) = u∗i (i = 1, 3). (11)

Summarizing (9), (10) and (11) we arrive at (SWP) given in Section 1. This
problem was first introduced by Du and Lou [5] and it is called a semi-wave
problem. They have shown the existence of a unique solution pair (q, c) =
(q∗, c∗) when f is a monostable type or a bistable type.

Let f satisfy (PB) and consider a small spreading solution or a big spreading
solution of (FBP). When we discuss a small (resp. big) spreading solution, the
corresponding semi-wave problem (SWP) with u∗ = u∗1 (resp. u∗ = u∗3) is
denoted by (SWP-1) (resp. (SWP-3)). The solvability of these problems has
been established by Kawai and Yamada [19, Theorem 4.1].

Proposition 3.3. (i) For every µ > 0, (SWP-1) has a unique solution pair
(q, c) = (qS , cS).

(ii) Case A: For every µ > 0, (SWP-3) has a unique solution pair (q, c) =
(qB , cB).
Case B: There exists a positive number µ∗ such that (SWP-3) has a unique
solution pair (q, c) = (qB , cB) for µ ∈ (0, µ∗), whereas (SWP-3) has no
solution for µ ∈ [µ∗,∞).

(iii) q′S(z) > 0, q′B(z) > 0 for z ≥ 0 and cB > cS when (qB , cB) exists.

The semi-wave of (SWP) is useful for the study of asymptotic behaviors of
spreading solutions as t → ∞. The following result gives a rough estimate of
the spreading speed of h(t) (see [19, Theorem 4.2]).

Proposition 3.4. Let cS , cB and µ∗ be positive constants given in Proposi-
tion 3.3.

(i) If (u, h) is a small spreading solution of (FBP), then

lim
t→∞

h(t)

t
= cS .

(ii) Let (u, h) be a big spreading solution of (FBP). Then

lim
t→∞

h(t)

t
=

{
cB if (SWP-3) has a solution pair (qB , cB),

cS if (SWP-3) has no solution pair.

(iii) If (u, h) is a transition solution of (FBP), then

lim
t→∞

h(t)

t
= cS .
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3.3. Sharp asymptotic estimates of spreading solutions

We will show that the unique solution pair of (SWP) with u∗ = u∗1 or u∗3 gives
a good approximation of any spreading solution of (FBP) for large t whenever
the corresponding semi-wave exists.

We begin with the analysis of a small spreading solution (u(t, x), h(t)) of
(FBP). The following result gives a rough estimate of (u, h) with use of (qS , uS).

Lemma 3.5. Let (u, h) be a small spreading solution of (FBP). Then there exist
positive constants δ,M1, T1 and H1 such that

h(t) ≤ cSt+H1,

u(t, x) ≤ (1 +M1e
−δt)qS(cSt+H1 − x),

for all t ≥ T1 and 0 ≤ x ≤ h(t).

Proof. Define (u∗, h∗) by{
h∗(t) = cS(t− T ) + ρ(e−δT − e−δt) +H, t ≥ T,
u∗(t, x) = (1 +Me−δt)qS(h∗(t)− x), t ≥ T, 0 ≤ x ≤ h∗(t),

where δ is a positive constant satisfying

f ′(u) ≤ −δ for u ∈ [u∗1 − η, u∗1 + η]

with some η > 0 and ρ,M, T and H are constants to be determined later. We
will show that (u∗, h∗) is a super-solution of (FBP) for t ≥ T ; that is,

u∗t ≥ du∗xx + f(u∗), t ≥ T, 0 ≤ x ≤ h∗(t), (12)

u∗x(t, 0) ≤ 0, u∗(t, h∗(t)) = 0, t ≥ T, (13)

(h∗)′(t) ≥ −µu∗x(t, h∗(t)), t ≥ T, (14)

h∗(T ) ≥ h(T ), u∗(T, x) ≥ u(T, x), 0 ≤ x ≤ h(T ). (15)

Clearly, (13) holds and, moreover,(14) is satisfied if ρδ ≥ McS . If we follow
the arguments in the work of Du, Matsuzawa and Zhou [9, Lemma 3.2], we
can prove (12) provided that ρ is sufficiently large. Finally, taking sufficiently
large T such that u(T, x) ≤ u∗1 + ε for 0 ≤ x ≤ h(T ) with sufficiently small
ε > 0 and choosing sufficiently large M and H such that

h∗(T ) = H ≥ h(T ) and u∗(T, x) = (1 +Me−δT )qS(H − x) ≥ u(T, x),

for 0 ≤ x ≤ h(T ), one can verify (15).
The application of Theorem 2.2 leads to

h(t) ≤ h∗(t) and u(t, x) ≤ u∗(t, x) (16)

for t ≥ T and 0 ≤ x ≤ h(t). Since qS(z) is strictly increasing in z ≥ 0, it is
easy to derive the assertion from (16).
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Similarly, one can also show the following rough estimate from below.

Lemma 3.6. Let (u, h) be a small spreading solution of (FBP). Then there exist
positive constants δ,M2, T2 and H2 ∈ R such that

h(t) ≥ cSt+H2,

u(t, x) ≥ (1−M1e
−δt)qS(cSt+H2 − x),

for all t ≥ T2 and 0 ≤ x ≤ cSt+H2.

For the proof of this lemma, see, e.g. [9, Lemma 3.3].

We can get sharper estimates than Lemmas 3.5 and 3.6 if we repeat the
arguments in [9] (see also [13, Proposition 1.3]).

Theorem 3.7. Let (u, h) be a small spreading solution of (FBP) and let (qS , cS)
be the solution pair of (SWP-1). Then there exists HS ∈ R such that

lim
t→∞

(h(t)− cSt) = HS and lim
t→∞

h′(t) = cS

and

lim
t→∞

sup
0≤x≤h(t)

|u(t, x)− qS(h(t)− x)| = 0.

Theorem 3.7 shows that (qS , cS) plays a very important role in the estimate
of any small spreading solution (u, h) of (FBP): cS gives an asymptotic constant
speed of the free boundary x = h(t) and a simple function q(z) is enough to
approximate u(t, x) in the form of q(h(t) − x) over the whole interval [0, h(t)]
for large t. An analogous result is also valid for any big spreading solution
when (SWP-3) has a unique solution pair (qB , cB).

Theorem 3.8. Let (u, h) be a big spreading solution of (FBP) and assume that
(SWP-3) admits a unique solution pair (qB , cB). Then there exists HB ∈ R
such that

lim
t→∞

(h(t)− cBt) = HB and lim
t→∞

h′(t) = cB

and

lim
t→∞

sup
0≤x≤h(t)

|u(t, x)− qB(h(t)− x)| = 0.

This theorem gives a sharp estimate of any big spreading solution (u(t, x), h(t))
over the whole interval [0, h(t)] when the corresponding semi-wave exists. We
will discuss its asymptotic estimate for the remaining case in the next section.
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µ = 3 µ = 10

Figure 2: Numerical simulations of (FBP) for d = 1 and f(u) = u(0.5 −
0.055u)− u2/(1 + u2) with u∗1 ≈ 0.672 and u∗3 = 6.258

4. Sharp asymptotic estimates of solutions with
propagating terrace

We will derive asymptotic estimates of a big spreading solution (u, h) of (FBP)
under the following condition

(A) Semi-wave problem (SWP-3) has no solution pair.

By Proposition 3.4 such a big spreading solution satisfies

lim
t→∞

h(t)

t
= cS ,

where cS is the speed of semi-wave qS for (SWP-1). Thus (qS , cS) will be
helpful to approximate (u(t, x), h(t)) around the spreading front x = h(t). On
the other hand,

lim
t→∞

u(t, x) = u∗3 uniformly in x ∈ [0, R]

for any R > 0. Taking account of these facts we guess that there must be a
function like a “travelling wave”, which connects u∗1 with u∗3. Numerical simula-
tions of such big spreading solutions are given in Figure 2 when f satisfies (A).
These simulations suggest the following dynamics:

A big spreading solution proceeds like a small spreading solution around the
spreading front x = h(t) and a propagating function (connecting u∗1 and u∗3)
subsequently appears with slower speed in the intermediate range.
As a candidate of such a connecting function, we will take a travelling wave

for (TWP) (see Section 1). It is known that (TWP) has a unique solution
(Q∗(z), c∗). Moreover, it follows from the result of [19, Remark 4.1] that con-
dition (A) assures

c∗ < cS . (17)

Hereafter we will study a big spreading solution (u, h) by assuming (17).
We will briefly explain the arguments developed by Kaneko, Matsuzawa and
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Yamada [13] to obtain sharp asymptotic estimates for (u(t, x), h(t)) with use
of both (qS , cS) and (Q∗, c∗).

As the first step, define

u∗(t, x) = Q∗(c∗t+H − ρe−δt − x) +Me−δt, (18)

where δ > 0 is a constant satisfying

f ′(u) ≤ −δ for u ∈ [u∗1 − η, u∗1 + η] ∪ [u∗3 − η, u∗3 + η]

with some η > 0. Then one can choose sufficiently small M > 0 and large
positive ρ,H and T such that

u∗t ≥ du∗xx + f(u∗) for t ≥ T, 0 ≤ x ≤ h(t),

u∗x(t, 0) < 0, u∗(t, h(t)) > 0 for t ≥ T,
u∗(T, x) ≥ u(T, x) for 0 ≤ x ≤ h(T ).

The comparison principle for parabolic equations yields

u(t, x) ≤ u∗(t, x)

for t ≥ T and 0 ≤ x ≤ h(t). Since Q∗(z) is strictly increasing in z, the above
estimate together with (18) allows us to show the following result (see [13,
Lemma 3.5]).

Lemma 4.1. Let (u, h) a big spreading solution of (FBP). Then there exist
positive constants δ,M1, H1 and T1 such that

u(t, x) ≤ Q∗(c∗t+H1 − x) +M1e
−δt

for all t ≥ T1 and 0 ≤ x ≤ h(t).

The second step is to derive the following rough estimate for (u, h) from
below.

Lemma 4.2. Let (u, h) be a big spreading solution of (FBP). Then there exists
constants T2 > 0 and H2 ∈ R such that

h(t) ≥ cSt+H2, u(t, x) ≥ qs(cSt+H2 − x)

for all t ≥ T2 and 0 ≤ x ≤ cSt+H2.

Proof. We define

h∗(t) = cSt+H, u∗(t, x) = q∗(cSt+H − x),
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where H is a number to be determined later. It is easy to verify

(u∗)t = d(u∗)xx + f(u∗), t > 0, 0 ≤ x ≤ h∗(t),
u∗(t, h∗(t)) = 0, t > 0,

(h∗)
′(t) = −µ(u∗)x(t, h∗(t)), t > 0.

We can choose a sufficiently large T > 0 such that

u∗(t, 0) < u∗1 < u(t+ T, 0) for t ≥ 0;

then

h∗(0) = H < h(T ), u∗(0, x) = qS(H − x) ≤ u(T, x) for 0 ≤ x ≤ H

with small H > 0. Therefore, the comparison principle allows us to derive

h∗(t) ≤ h(t+ T ), u∗(t, x) ≤ u(t+ T, x)

for t ≥ 0 and 0 ≤ x ≤ h∗(t); so that the assertion follows from the above
inequalities.

In Lemmas 4.1 and 4.2, note (17) and lim
z→−∞

Q∗(z) = u∗1. Therefore, if c

satisfies c∗ < c < cS , then u(t, ct)→ u∗1 as t→∞. More precisely, it is possible
to show the following result from Lemmas 4.1 and 4.2:

Proposition 4.3. Let (u, h) be any big spreading solution of (FBP). Then

lim
t→∞

sup
c1t≤x≤c2t

|u(t, x)− u∗1| = 0

for any c1 and c2 satisfying c∗ < c1 < c2 < cS.

Roughly speaking, Proposition 4.3 implies that u(t, x) stays at almost con-
stant u∗1 when x lies in an intermediate range [c1t, c2t] of (0, h(t)) with c∗ < c1 <
c2 < cS . Taking account of this fact we will be able to obtain a similar result
to Lemma 3.5. As the third step, one can repeat the proof of Lemma 3.5 with
some modification and prove the following lemma (see also [13, Lemma 3.9]).

Lemma 4.4. Let (u, h) be a big spreading solution of (FBP). Then for any
c ∈ (c∗, cS) there exist positive constants δ,M3, T3 and H3 ∈ R such that

h((t) ≤ cSt+H3,

u(t, x) ≤ (1 +M3e
−δt)qS(cSt+H3 − x),

for all t ≥ T3 and ct ≤ x ≤ h(t).
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Lemmas 4.2 and 4.4 yield rough estimates of any big spreading solution
u(t, x) over [ct, h(t)] for any c ∈ (c∗, cS) if t is sufficiently large. Therefore, the
arguments developed by Du, Matsuzawa and Zhou [9] are valid and allow us to
get the following sharp estimate (for details, see the proofs of (1.11) and (1.12)
in [13]).

Theorem 4.5. Let (u, h) be any big spreading solution of (FBP). Then there
exists Hs ∈ R such that

lim
t→∞

(h(t)− cSt) = HS , lim
t→∞

h′(t) = cS

and, for any c ∈ (c∗, cS),

lim
t→∞

sup
ct≤x≤h(t)

|u(t, x)− qS(h(t)− x)| = 0.

The final step is to estimate u(t, x) from below when x lies in [0, ct] for any
c ∈ (c∗, cS).

Lemma 4.6. Let (u, h) be any big spreading solution of (FBP). Then, for any
c ∈ (c∗, cS), there exist positive constants δ,M4, T4 and H4 ∈ R such that

u(t, x) ≥ Q∗(c∗t+H4 − x)−M4e
−δt

for all t ≥ T4 and 0 ≤ x ≤ ct.

For the proof of this lemma, see [13, Lemma 3.8].
Since we have established Lemmas 4.1 and 4.6, we are ready to approxi-

mate u(t, x) over [0, ct] for any c ∈ (c∗, cS) by using travelling wave (Q∗, c∗) of
(TWP). Indeed, we have the following theorem whose proof can be found in
[13, Section 5].

Theorem 4.7. Let (u, h) be any big spreading solution of (FBP). Then there
exists H∗ ∈ R such that for any c ∈ (c∗, cS)

lim
t→∞

sup
0≤x≤ct

|u(t, x)−Q∗(c∗t+H∗ − x)| = 0.

Owing to Theorems 4.5 and 4.7, we have obtained sharp asymptotic esti-
mates of any big spreading solution under assumption (A). In this situation,
the semi-wave of (SW-1) gives a good approximation of u(t, x) near the spread-
ing front x = h(t), whereas u(t, x) is sharply estimated by the travelling wave
of (TWP) over the other range in [0, h(t)]. In particular, we can say that for
large t a big spreading solution proceed at almost constant speed cS and it is
accompanied by a propagating terrace with slower speed c∗.
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Remark 4.8: It is also possible to derive sharp estimates for a transition so-
lution. Indeed, a transition solution (u, h) satisfies the same assertion as The-
orem 4.5 for any c ∈ (0, cS) and, furthermore,

lim
t→∞

sup
0≤x≤ct

|u(t, x)− vdec(x)| = 0

for any c ∈ (0, cS) (see [13, Theorem C]).

5. Concluding remarks

5.1. Free boundary problem in RN

In this subsection we will consider a free boundary problem for a reaction-
diffusion equation in RN . We focus on the problem in a radially symmetric
environment. So it is formulated in the following form for a pair of unknown
function u = u(t, r) with r = |x| (x ∈ RN ) and h = h(t):

ut = d∆u+ f(u), t > 0, 0 < r < h(t),

ur(t, 0) = u(t, h(t)) = 0, t > 0,

h′(t) = −µur(t, h(t)), t > 0,

h(0) = h0, u(0, r) = u0(r), 0 ≤ r ≤ h0,

(19)

where d, µ and h0 are positive constants, ∆u = urr + (N − 1)ur/r and u0 is
a nonnegative function satisfying (2). When f satisfies (1), it is shown by Du
and Guo [2] that (19) admits a unique global solution which possesses sim-
ilar properties to those in Theorem 2.1. Moreover, basic properties on the
comparison principle and large-time behaviors of solutions hold true as in the
one-dimensional case (see [2], [7] and [12]). In particular, if f satisfies (M)
(resp. (B)), it is also possible to show the same classification result as The-
orem 2.8 (resp. Theorem 2.9) established for N = 1. For the study of free
boundary problems for general domain, see, for instance, [3], [7] and [8].

We will investigate (19) for positive bistable nonlinearity. In addition
to (PB), we put the following condition on f :

(PB-1) f(u)/(u− u) is non-increasing for u ∈ (u, u∗3), where u ∈ (u∗2, u
∗
3) is a

unique number determined by

∫ u

u∗
2

f(s)ds = 0.

Then it is possible to prove the following classification theorem which cor-
responds to Theorem 3.1 (see [14, Theorem A]).

Theorem 5.1. Let f satisfy (PB) and (PB-1). Then the solution (u, h) of (19)
satisfies one of the following properties:
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(i) Vanishing; lim
t→∞

h(t) ≤
√
dλ1/f ′(0) and lim

t→∞
‖u(t)‖C[0,h(t)] = 0, where λ1

is the principal eigenvalue of{
−∆ϕ = λϕ in Ω := {x ∈ RN | |x| < 1},
ϕ = 0 on ∂Ω := {x ∈ RN | |x| = 1}.

(ii) Small spreading; lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, r) = u∗1 uniformly in r ∈
[0, R] for any R > 0.

(iii) Big spreading; lim
t→∞

h(t) =∞ and lim
t→∞

u(t, r) = u∗3 uniformly in r ∈ [0, R]

for any R > 0.

(iv) Transition; lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, r) = Vdec(r) uniformly in r ∈
[0, R] for any R > 0, where Vdec is a decreasing solution of{

dVrr + (N − 1)Vr/r + f(V ) = 0, V (r) > 0 for r > 0,

Vr(0) = 0,
(20)

and it satisfies lim
r→∞

Vdec(r) = u∗1.

Note that (20) corresponds to stationary problem (SP) for N = 1. In
the proof of Theorem 5.1, it is important to study the set of non-increasing
solutions of (20). We need to take a different approach from the phase plane
analysis which is efficient for N = 1.

As to large-time behaviors of spreading solutions (u(t, r), h(t)) of (19), semi-
waves for (SWP) are still available in the analysis. Indeed, rough estimates of
the free boundary are given by the following result (see [14, Theorem C]).

Proposition 5.2. Assume that f satisfies (PB) and (PB-1). Let (u, h) be the
solution of (19). Then the same conclusions as Proposition 3.4 hold true.

This proposition implies that there is no difference between N = 1 and
N ≥ 2 in order to give rough estimates of h(t)→∞ as t→∞.

The dependence on the space dimension N appears in sharp estimates of
h(t) of spreading solutions. They have been obtained by Du, Matsuzawa and
Zhou [10] in the case that f satisfies (M) or (B). When f is positive bistable
nonlinearity satisfying (PB) and (PB-1), we can prove similar results for small
spreading solutions or big spreading solutions. Let (u, h) be a small spreading
solution or a big spreading solution of (19) and let the corresponding semi-wave
problem (SWP) possess a solution pair (q∗(z), c∗) for u∗ = u∗1 or u∗ = u∗3. Then
it is possible to show the following estimate ([15]):
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There exists a constant R∗ ∈ R such that

lim
t→∞
{h(t)− c∗t+ (N − 1)c∗ log t} = R∗,

lim
t→∞

sup
0≤r≤h(t)

|u(t, r)− q∗(h(t)− r)| = 0,

where c∗ = 1/(ζc∗),

ζ = 1 +
c∗

µ2
∫∞
0
{(q∗)′(z)}2e−c∗zdz

(see also [10, Theorem 4.1]). For a big spreading solution (u, h) whose corre-
sponding semi-wave problem (SWP-3) has no solution pair, we can also give
sharp estimates with use of semi-wave (qS , cS) of (SWP-1) and travelling wave
(Q∗, c∗) of (TWP):
There exist RS , RB ∈ R such that

lim
t→∞
{h(t)− cSt+ (N − 1)cS∗ log t} = RS

with cS∗ = 1/(ζcS),

ζ = 1 +
cS

µ2
∫∞
0
{(qS)′(z)}2e−cSzdz

and, for sufficiently large L > 0,

lim
t→∞

sup
cSt−L log t≤r≤h(t)

|u(t, r)− qS(h(t)− r)| = 0,

lim
t→∞

sup
0≤r≤cSt−L log t

sup

∣∣∣∣u(t, r)−Q∗
(
c∗t− N − 1

c∗
log t+RB − r

)∣∣∣∣ = 0.

For details of these results, see [15].

5.2. Free boundary problem with Dirichlet boundary
condition

In this subsection we will consider (FBP) with zero Neumann condition at
x = 0 replaced by zero Dirichlet condition. The problem is written as follows:

ut = duxx + f(u), t > 0, 0 < x < h(t),

u(t, 0) = u(t, h(t)) = 0, t > 0,

h′(t) = −µux(t, h(t)), t > 0,

h(0) = h0, u(0, x) = u0(x), 0 ≤ x ≤ h0,

(21)
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where f is a function satisfying (1) and u0 is a nonnegative function of class
C2[0, h0] such that

u0(0) = u0(h0) = 0 and u0 6≡ 0. (22)

Basic results such as the existence and uniqueness of global solutions (Theo-
rem 2.1) and the comparison principle (Theorem 2.2) are valid with obvious
modification (see Kaneko and Yamada [17]). The notion of vanishing and
spreading of solutions to (21) is the same as Definition 2.4. It should be noted
that the following theorem holds true in place of Theorem 2.6 (see [16] and [17]).

Theorem 5.3. Assume f ′(0) 6= 0. Then a solution (u, h) of (21) is vanishing
if and only if lim

t→∞
h(t) < ∞. Moreover, if f ′(0) > 0, a spreading solution

satisfies
lim
t→∞

h(t) ≤ π
√
d/f ′(0).

For the case lim
t→∞

h(t) =∞, it is also possible to prove the following theorem

similarly to Theorem 2.7 (see [11, Proposition 4.7]).

Theorem 5.4. Assume f ′(0) 6= 0 and let (u, h) be the solution of (21) satisfying
lim
t→∞

h(t) =∞. Then it holds that for any R > 0

lim
t→∞

u(t, x) = v∗(x) uniformly in x ∈ [0, R],

where v∗ is a bounded solution of{
dv′′ + f(v) = 0, v(x) > 0 for x ∈ (0,∞),

v(0) = 0.
(23)

We now consider positive bistable nonlinearity f , which satisfies (PB). Let
S be the set of bounded solutions of stationary problem (23). The phase plane
analysis is available to get

S = {v1, v3},

where vi is an increasing solution of (23) satisfying

lim
x→∞

vi(x) = u∗i

for each i = 1, 3. Therefore, Theorems 5.3 and 5.4 enable us to show the follow-
ing classification theorem (see Endo, Kaneko and Yamada [11, Theorem 4.1]).

Theorem 5.5. Under assumption (PB), the solution (u, h) of (21) satisfies
one of the following properties:

(i) Vanishing; lim
t→∞

h(t) ≤ π
√
d/f ′(0) and lim

t→∞
‖u(t)‖C[0,h(t)] = 0.



FREE BOUNDARY PROBLEMS 87

(ii) Small spreading; lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, x) = v1(x) uniformly in

x ∈ [0, R] for any R > 0.

(iii) Big spreading; lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, x) = v3(x) uniformly in x ∈
[0, R] for any R > 0.

Remark 5.6: Differently from the classification result for the Neumann bound-
ary condition (Theorem 3.1), a transition solution does not appear as a bor-
derline one in Theorem 5.5. But small spreading solutions can be divided into
two subgroups;

(a) small spreading solutions with lim inf
t→∞

‖u(t)‖C[0,h(t)] < u∗2,

(b) small spreading solutions with lim inf
t→∞

‖u(t)‖C[0,h(t)] ≥ u∗2

(see [11, Remark 5]). We have a conjecture that a small spreading solution
in the latter subgroup exhibits a borderline behavior between small spreading
solutions in the former subgroup and big spreading solutions. For the related
problem, see the works of Liu and Lou [20, 21]. They discussed the existence
of a transition solution with a moving peak as a borderline behavior for f
satisfying (B).

In the study of large-time behaviors of solutions with limt→∞ h(t) = ∞,
semi-waves of (SWP) also play a crucial role. Indeed, we can obtain the fol-
lowing result (see [11, Theorems 5.3 and 5.5]).

Theorem 5.7. Under assumption (PB), let (u, h) be a small spreading solution
of (21) satisfying lim inf

t→∞
‖u(t)‖C[0,h(t)] < u∗2 and let (qS , cS) be the solution pair

of (SWP-1). Then there exists hS ∈ R such that

lim
t→∞
{h(t)− cSt} = hS and lim

t→∞
h′(t) = cS

and
lim
t→∞

sup
h(t)/2≤x≤h(t)

|u(t, x)− qS(h(t)− x)| = 0.

Moreover, for any c ∈ (0, cS),

lim
t→∞

sup
0≤x≤ct

|u(t, x)− v1(x)| = 0.

Remark 5.8: Let (u, h) be a small spreading solution of (21) sch that u satisfies
lim inft→∞ ‖u(t)‖C[0,h(t)] ≥ u∗2. Then u(t, x) has a moving peak at x = x∗t such
that u(t, x∗t ) ≥ x∗2−δ with some δ > 0 for sufficiently large t. On the other hand,
it satisfies limt→∞ u(t, x) = v1(x) < u∗1 for each x ∈ [0,∞). Therefore, u(t, x)
cannot be estimated by only qS and v1. Approximation of such a spreading
solution is an interesting open problem.
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When (u, h) is a big spreading solution of (21) and (SWP-3) has a solution
pair (qB , cB), it is seen from [18] that similar results to Theorem 5.7 hold true
(see also [11, Theorems 5.4 and 5.5]).

When (SWP-3) has no solution pair, a big spreading solution will be ap-
proximated with use of semi-wave (qS .cS) of (SWP-1), travelling wave (Q∗, c∗)
of (TWP) and stationary solution v3 of (23). We will discuss this problem
elsewhere.
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