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1. Introduction

Recent numerical studies in [5] have shown chaotic aspects in a model describing
the motion of charged particles inside a tokamak magnetic field.

A tokamak is a device, invented in the 1950s by the Soviet physicists
Sakharov and Tamm, which employs a powerful magnetic field to confine hot
plasma in the shape of a torus and keep it away from the machine walls. At the
current stage of scientific knowledge and engineering capabilities, tokamaks are
still considered among the most promising devices for a possible future produc-
tion of energy through controlled atomic fusion. From this point of view, the
study of mathematical and physical models describing the motion of charged
particles inside toroidal (or cylindrical) magnetic fields like those generated by
the tokamak coils is of great significance for the possible applications to plasma
physics. In the recent past, periods of great expectation on the possibility of
obtaining a stable controlled nuclear fusion process using the tokamaks were fol-
lowed by periods of disappointment for the failure of some critical experiments.
This happened due to the discovery of several new and unexpected instability
phenomena that have compromised the performance of the device, including
dangerous fluctuations of the plasma going in contact with the walls of the
reactor. The sensitive dependence on initial conditions is one of the typical
instability phenomena appearing in connection with so-called “chaotic behav-
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ior”. Although stable and random motions can coexist and thus the presence
of some chaotic dynamics may be compatible with results about the bounded-
ness of the solutions, nevertheless in many cases (typical examples come from
celestial mechanics, see [9, Introduction]) small instability effects due to chaos
phenomena may produce relevant long term consequences. From this point of
view, investigating the possibility of chaos in differential equations models for
tokamak magnetic confinement, is not only a topic with its own theoretical
interest, but it may also suggest some possible issues to be taken into account
by the scientists involved in the design of these devices.

In [5] the Authors have considered two different configurations leading to
Hamiltonian chaos for charged particle motions in a toroidal magnetic field. In
the (r, θ, φ) coordinates for the torus (cf. [5, Fig. 1]) the tokamak magnetic
field has the following form

B =
B0R

ξ
(êφ + f(r)êθ), (1)

where ξ = R + r cos(θ) and êφ, êθ are the unit vectors associated respectively
with the φ and θ directions. The toroidal component along êφ depends upon the
external magnetic field generated by the coils around the device. The constant
B0, according to [5] is the typical magnetic intensity at the center of the torus.
If the plasma is present, a generated current inside the tokamak leads to the
creation of a poloidal component for the magnetic field, expressed by the term
f(r)êθ

1.
In a recent paper [7], we have examined the first configuration considered

by the Authors in [5], namely the case in which the poloidal component is
negligible. This situation is useful for the study of the motion on an hypothetic
single charged particle inside the tokamak with no plasma inside.

In the present article we focus our attention to the second case discussed
in [5] in which the effect of the plasma is substantial. In order to simplify the
model, in [5, Section C and IV] the Authors consider a cylindrical magnetic
geometry, which is the limit, when R tends to infinity, of the toroidal system. In
this approximation, the direction êφ becomes a stationary vector, subsequently
identified to the z-component. In this manner, instead of an empty toroidal
solenoid, we are led now to consider a cylindrical plasma tube. An application
of Newton law to a charged particle of mass m and charge q moving in this
magnetic field (see Section 2 for the details), leads to an integrable system with
an associated effective Hamiltonian of the form

Heff =
mṙ2

2
+
mA2

2r2
+

(qB0)2

8m
r2 +

q2

2m
F 2(r), r > 0, (2)

1The terms “toroidal” and “poloidal” refer to directions relative to a torus of reference.
The poloidal direction follows a small circular ring around the surface, while the toroidal
direction follows a large circular ring around the torus (according to Wikipedia). The intro-
duction of these terms comes from [6] for the study of the Earth’s magnetic field.
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where A is a positive constant and F (r) =
∫ r
f(x) dx (see [5, Appendix B]).

Clearly the choice of f and then F greatly influences the Hamiltonian and
hence the corresponding dynamics of the particles.

Writing (2) in a dimensionless form and deriving the corresponding differ-
ential equation for the new variable x := r > 0, we find that the trajectories of
the charged particles can be described by a second-order Duffing equation

ẍ+ g(x) = 0

with a singularity at the origin. In [5] the Authors propose a mechanism
to produce chaotic dynamics by a perturbation of (2). More precisely, the
constant A in (2) (indicated in [5] by C ′′ in the dimensionless version of Heff )
is now considered as a slowly time dependent variable. Numerical evidence of
chaos for the stroboscopic (Poincaré) map is provided by the analysis of the
Poincaré section. Inspired by this example, we try to analyze this problem
with a different approach, by considering a time-periodic perturbation of the
associated Duffing equation. Our perturbation can be produced either by a
slow modification of the constant A as in [5] o, by modifying the magnetic
intensity B0 . In each case, we produce chaotic dynamics by assuming that a
formerly presumed constant coefficient in (2) becomes a slowly varying stepwise
periodic function. The choice of a stepwise function (following [11, 12]) has
the advantage that the corresponding differential equation system becomes
a switched system for which we can apply recent results from the theory of
topological horseshoes and therefore we can give a rigorous analytical proof of
the existence of chaos.

In our investigation and following [5], we assume for the function F (the
primitive of the amplitude of the poloidal field), the expression

F (x) := ax2 exp

(
−x

2

c2

)
,

where a, c > 0 are suitable constants. With such a choice of the function F and
tuning suitably the constants a and c (the Authors in [5] provide physically
meaningful values for these constants), we can produce, for the planar system

ẋ = y, ẏ = −g(x),

a phase-portrait which consists of two local centers surrounded by periodic or-
bits of increasing period and bounded by two homoclinic trajectories departing
from an intermediate saddle point, thus altogether shaping a typical eight fig-
ure. After a small perturbation of the magnetic field we obtain another eight
shaped figure which partially overlaps with the previous one. Near the inter-
sections of the homoclinic trajectories associated with the two portraits we can
define some appropriate rectangular regions where we can prove the existence



10 O. GJATA AND F. ZANOLIN

of chaos on m-symbols (m ≥ 2), for the Poincaré map, using the “stretching
along the paths” (SAP) technique [13, 17]. It is well known that for periodic
planar systems obtained as a perturbation of an autonomous system with a
homoclinic orbit at a saddle point, the Melnikov method (see [8]) is a powerful
tool to verify the existence of chaotic dynamics. Relevant developments for
periodically perturbed Duffing equations are given in [3, 15]. In the applica-
tions of the Melnikov method one has to prove the existence of simple zeros
for suitable integrals depending on the explicit analytical expression of the ho-
moclinic solution. Unfortunately, in our example, such analytical expression is
not available and this motivates the use of a different approach.

The plan of the paper is the following. In Section 2 we briefly describe the
mathematical model considered in [5] in order to give a physical justification
about the Hamiltonian defined in (2). In Section 3 we choose a special form for
F (x) (as proposed in [5]) which produces a double well potential in Heff . Next
in the same section, we also discuss the corresponding phase-portrait for the
associated Duffing equation and then, as a further step, we introduce the time-
periodic perturbation on the differential equation and define six rectangular
regions where we will focus our analysis for the SAP technique. Section 4
contains our main result about chaotic dynamics whose proof is finally given
in the subsequent Section 5.

2. Mathematical model

We follow the calculations in [5, Appendix B], in order to introduce the math-
ematical model that we are going to study. In [5] the Authors introduce a
cylindrical magnetic geometry, which is considered as the limit, when R tends
to infinity, of the toroidal system. The approximation to new geometric con-
figuration leads to a magnetic field rewritten as

B = B0êz + f(r)êθ.

This is derived in [5] from (1) as a limit for R → ∞ and considering the z-
direction identified with the axes along with êφ, which is considered now as a
constant. In order to avoid misunderstanding, it is important to notice (cf. [5,
Appendix B]) that the z-direction here is not the one considered originally in [5,
Fig. 1]. Moreover, with respect to (1), now the function f already incorporates
the effect of B0 .

In order to find the differential system describing the dynamics of the par-
ticle of mass m and charge q moving in this magnetic field, we use the fact that
the force acting on the charged particle is given by F = q~v ∧ B (where ~v is the
velocity of the particle). Next we recall also the expressions of the velocity and
the acceleration in cylindrical coordinates, namely

~v = ṙêr + rθ̇êθ + żêz
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and
~a = (r̈ − rθ̇2)êr + (rθ̈ + 2ṙθ̇)êθ + z̈êz.

Then, an application of the Newton second law, yields to
r̈ − rθ̇2 = q

m (B0rθ̇ − f(r)ż)

rθ̈ + 2ṙθ̇ = − qB0

m ṙ

z̈ = q
m ṙf(r)

(3)

Multiplying by r the second equation and then integrating the second and the
third equations, we obtain {

θ̇ = A
r2 −

qB0

2m

ż = q
mF (r)

(4)

where A is a constant and F (r) =
∫ r
f(x)dx. Substituting the two equations

of (4) into the first equation of (3), we obtain the second-order ODE

r̈ − A2

r3
+

(
qB0

2m

)2

r +
q2

m2
f(r)F (r) = 0. (5)

Multiplying equation (5) by ṙ and then integrating we finally obtain∫
ṙr̈dt−

∫
r=r(t)

A2

r3
dr +

(
qB0

2m

)2 ∫
r=r(t)

rdr

+
q2

m2

∫
r=r(t)

F (r)F ′(r)dr = constant.

Thus we end up with an effective Hamiltonian, which is precisely the one con-
sidered in (2), namely

Heff :=
mṙ2

2
+
mA2

2r2
+

(qB0)2

8m
r2 +

q2

2m
F 2(r).

3. Geometric configurations

Following [5] we consider now the effective Hamiltonian

Heff :=
ṙ2

2
+
A2

2r2
+
B2

0

8
r2 + F 2(r) (6)

for

F (r) := ar2 exp

(
−r

2

c2

)
, (7)
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where A, a, c are suitable positive constants and B0 is the intensity (magnitude)
of the magnetic field. Without loss of generality, we have considered in (6) a
unitary mass m and a unitary charge q (cf. formula (B7) in [5]). According
to (2), the term depending on f(r) should be of the form F 2(r)/2, but clearly
there is no mistake in replacing it with F 2(r) (just rename the original function
f or replace a with a

√
2 in (7)). As in [5] we assume that the constants in the

function F are adjusted in order to generate a double well potential in the
effective Hamiltonian. We split Heff as

Heff = Ec + V0(r) + F 2(r),

where Ec, is the kinetic energy and V0 is the potential in absence of the com-
ponent of the magnetic field given by f(r). To explain the details, the potential
V0(r) tends to infinity for r → 0+ and r → +∞ and it has a unique point of
minimum at r0 > 0, where r2

0 := 2A/B0. In [5], the Authors propose to fix the
parameters a and c for the function F in order to produce a maximum point
near r0, so that the new potential V0(r) + F 2(r) assumes a double-well shape
as in Figure 1 below. This is obtained by choosing c2 close to r2

0 and a > 0
sufficiently large.

Figure 1: A possible profile of the modified potential V0(r) + F 2(r) for r > 0. The
coefficients are tuned-up with a choice of c2 > r2

0.

The level lines of the effective Hamiltonian function in the right half-plane
R+

0 × R describe a phase-portrait with two centers separated by homoclinic
orbits emanated from an intermediate saddle point. The typical portrait is like
in Figure 2.

The level lines of Heff are associated with the orbits of the second-order
Duffing equation

ẍ+ g(x) = 0, (8)

or, equivalently, the planar conservative system{
ẋ = y

ẏ = −g(x),
(9)
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Figure 2: Some level lines associated with the Hamiltonian Heff in the plane (r, ṙ)
for r > 0.

for x := r > 0, y = ṙ and

g(x) :=
d

dx

(
V0(x) + F (x)2

)
= −A

2

x3
+
B0

2

4
x+ 2F (x)f(x), (10)

where we have set

f(x) := F ′(x).

If we choose F in order to produce a potential as described in [5, Section IV]
and in Figure 1, we find that the map g has precisely three simple zeros for
x > 0 that we denote and order as

a < xs < b.

In the phase-plane R+
0 × R, the points (a, 0) and (b, 0) are local centers, while

(xs, 0) is a saddle point.
The level line of the Hamiltonian/energy function (from now on denoted simply
by H) passing through (xs, 0) is given by

H(x, y) :=
y2

2
+ V0(x) + F 2(x) = cs := V0(xs) + F 2(xs).

Such level line is a double homoclinic loop, namely, it splits as

Ol ∪ {(xs, 0)} ∪ Or ,
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where Ol and Or two homoclinic orbits at the saddle point {(xs, 0)}. By con-
vention, we suppose that Ol is contained in the strip 0 < x < xs and surrounds
(a, 0), while Or is contained in the half-plane strip x > xs and surrounds (b, 0).
We denote by (a, 0) and the (b, 0) the intersection points of Ol and, respectively,
Or with the x-axis. By definition, we have

0 < a < a < xs < b < b,

with a, xs, b the three solutions of V0(x) + F 2(x) = cs (see Figure 1).
We also introduce the open regions

Wl := {(x, y) : 0 < x < xs , H(x, y) < cs}

and

Wr := {(x, y) : x > xs , H(x, y) < cs}.

By construction, we have

∂Wl = Ol ∪ {(xs, 0)} and ∂Wr = Or ∪ {(xs, 0)}

(see Figure 3).

Figure 3: The saddle point (xs, 0) with the homoclinic orbits Ol,Ol and the resulting
regions Wl,Wl.

As a next step, we suppose that the modulus of the magnetic field B0 is
effected by a small change so that the three equilibrium points (a, 0), (xs, 0) and
(b, 0) are shifted along the x-axis. We suppose that the effect is small enough
so that the new point (xs, 0) will belong to the region surrounded by Ol or

the one surrounded by Or. More precisely, if we denote by B
(1)
0 and B

(2)
0 two

different values of the magnetic field and associated the index i = 1, 2 to the
corresponding equilibrium points and homoclinic orbits, we will assume that

H(1)(x(2)
s , 0) < H(1)(x(1)

s , 0) and H(2)(x(1)
s , 0) < H(2)(x(2)

s , 0). (11)
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We tacitly use the convention that the apex i = 1, 2 is associated to the points,
orbits and regions of the phase-plane associated with the differential systems

having Hamiltonians H(1) and H(2) for the magnetic fields B
(1)
0 and B

(2)
0 . Un-

der the assumption (11) the homoclinic loops associated with the two Hamil-
tonian systems, overlap as in Figure 4.

Figure 4: An example of the double homoclinic loops overlapping. The effect is
obtained by moving the saddle point xs. This occurs via a change of parameters
in the equation. The aspect/ratio has been slightly modified in order to make the
overlapping more evident.

Our plan is to construct some regions homeomorphic to rectangles which
are obtained as intersections of suitable narrow bands around the homoclinics.

Let us consider the level line H(1)(x, y) = c(1) with c(1) < H(1)(x
(1)
s , 0) and

H(1)(x
(1)
s , 0) − c(1) small enough. This level line splits into two components,

which are contained in the open regions W(1)
l and W(1)

r , respectively. Now the

equation V0(x) + F 2(x) = c(1) has four solutions that we will denote a
(1)
± and

b
(1)
± , so that

a(1) < a
(1)
− < a(1) < a

(1)
+ < x(1)

s < b
(1)
− < b(1) < b

(1)
+ < b(1) .

For the system associated with B
(2)
0 , we can similarly determine some corre-

sponding points with

a(2) < a
(2)
− < a(2) < a

(2)
+ < x(2)

s < b
(2)
− < b(2) < b

(2)
+ < b(2) .

By suitably selecting the energy levels, it is always possible to enter in a setting
such that the crossing condition

(CC)

a
(1)
− < a(2) < a

(2)
− < a

(1)
+

b
(1)
− < a

(2)
+

b
(2)
− < b

(1)
+ < b(1) < b

(2)
+

holds.
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Let us consider now the ∞-shaped regions

Ai := {(x, y) : x > 0 , c(i) ≤ H(i)(x, y) ≤ c(i)s }, for i = 1, 2,

which are bounded by homoclinics O(i)
l and O(i)

r .
As previously observed, the level line H(i)(x, y) = c(i) has two components

which are closed orbits contained in the regions W(i)
l and W(i)

r , respectively.
We set, for i = 1, 2,

Γ
(i)
l := {(x, y) : 0 < x < x(i)

s , H(i)(x, y) = c(i)} ⊂ W(i)
l ,

Γ(i)
r := {(x, y) : x > x(i)

s , H(i)(x, y) = c(i)} ⊂ W(i)
r

and denote by τ
(i)
l and τ

(i)
r the fundamental periods of the orbits Γ

(i)
l and Γ

(i)
r ,

respectively.
The sets A1 and A2 intersects into six rectangular regions that we denote

by a±, b±, c±, respectively, labelling from left to right and using the sign +
or − according to the fact that the region is contained in the upper or lower
half-plane (see Figure 5).

Figure 5: An example of intersection of A1 with A2 producing the six rectangular
regions a±, b±, c±.

Each one of the six regions introduced above can be “orientated” in two
different manners. By an orientation of a topological rectangle R, we mean
the selection of two opposite sides whose union is denoted by R−. The two
components of R− are conventionally called the left and the right side (the
order according to which we select to associate the terms “right” or “left” with
the two sides of R− is not relevant). The pair (R,R−) is called an oriented
rectangle.

Now, let R be any of the a±, b±, c±. We observe that we can give a natural
orientation to the regionR in two different manners, by choosing asR− the two

intersection of R with H(1) = c(1) and with H(1) = c
(1)
s or the two intersection
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of R with H(2) = c(2) and with H(2) = c
(2)
s . The corresponding oriented

rectangle (R,R−) will be denoted as
^

R in the former case and as
_

R in the latter

one. For example and with reference to Figure 5, the oriented rectangle
_

b− is
the region b− (center-below) in which we have selected as a couple of opposite
sides forming b−− the intersections of b− with the level lines H(2) = c(2) and

H(2) = c
(2)
s . Analogously, the oriented rectangle

^
c + is the region c+ (upper-

right) in which we have selected as a couple of opposite sides forming c−+ the

intersections of c+ with the level lines H(1) = c(1) and H(1) = c
(1)
s .

At this point we are ready to introduce a dynamical aspect, by suppos-
ing that we switch periodically between the two systems associated with the
Hamiltonians H(1) and H(2). More in detail, we consider the non-autonomous
second-order scalar equation

ẍ+ g(t, x) = 0 (12)

and also the associated first order system{
ẋ = y

ẏ = −g(t, x)
(13)

in the right-half plane x > 0, where g : R × R+
0 → R is T -periodic in the

t-variable and such that

g(t, x) :=

{
g1(x), for 0 ≤ t < T1

g2(x), for T1 ≤ t < T1 + T2 = T,
(14)

where

gi(x) :=
∂H(i)

∂x
(x, y), for i = 1, 2.

Equation (13) is a switched system (see [2] and the references therein) and its
associated Poincaré map Φ can be decomposed as

Φ = Φ2 ◦ Φ1

where Φi is the Poincaré map on the time-interval [0, Ti] associated with the
system {

ẋ = y

ẏ = −gi(x)
(15)

for i = 1, 2.
Notice that, by the particular nature of the switched system (13), we can

equivalently study the Poincaré map

Φ = Φ1 ◦ Φ2.

Indeed, in this latter case, we consider just a shift in time of the solutions.
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4. Main result

After this preliminary discussion, we are now in position to state our main
result which reads as follows.

Theorem 4.1. For any integer m ≥ 2, there are T ∗1 and T ∗2 > 0 such that for
each T1 > T ∗1 and T2 > T ∗2 , the Poincaré map Φ induces chaotic dynamics on
m symbols in each of the sets a± , b± and c± . Moreover, the result is robust in
the sense that it is stable for small perturbations of system (13).

Our definition of chaotic dynamics is linked to the concept of chaos ac-
cording to Block and Coppel [1, 4], with a special emphasis to the presence
of periodic points. More precisely, we say that a continuous and one-to-one
map ψ induces chaotic dynamics on m symbols in a set R if there exists m
pairwise disjoint compact subsets K1, . . . ,Km of R such that for each two-sides
sequence (si)i∈Z of m symbols there exists a trajectory xi+1 = ψ(xi) of ψ such
that xi ∈ Ksi for each i ∈ Z. Moreover, if the sequence of symbols (si)i∈Z is
a k-periodic sequence, then also the sequence of points (xi)i∈Z is k-periodic.
As a consequence of this definition, we have also that there exists a compact
invariant set Λ ⊂ R having the set of periodic points of ψ as dense subset such
that ψ|Λ is topologically semiconjugate (by a continuous and surjective map
h) to the full shift automorphism on m-symbols σ : Σm → Σm := {1, . . . ,m}Z.
Moreover, for each k-periodic two-sided sequence s := (si)i∈Z , the set h−1(s)
contains a k-periodic point of ψ (see [13, 16, 17]).

The proof of Theorem 4.1 is based on a variant of the theory of topological
horseshoes [10], as developed in [16, 17]. In the first part of the next section
we recall the basic tools and definitions that we are going to use.

5. Technical estimates and proof of the main result

Let M̂ := (M,M−) and N̂ := (N ,N−) be oriented rectangles and let ψ be
a continuous map. Let also m be a positive integer. We say that the triplet
(M̂, N̂ , ψ) has the SAP (stretching along the paths) property with crossing
number m, if there exist K1, . . . ,Km pairwise disjoint compact subsets of M
such that any path γ in M connecting the two components of M− possesses
m sub-paths γ1, . . . γm with γi in Ki such that ψ ◦γi is a path in N connecting
the two components of N−. When this situation occurs, we write

ψ : M̂ m−→m N̂ .

We avoid mentioning the apex m when m = 1.
The above property is compatible with composition of maps, indeed we

have that:

φ : L̂ m−→k M̂, ψ : M̂ m−→m N̂ =⇒ ψ ◦ φ : L̂ m−→km N̂ .
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The SAP property will be applied to prove the existence of complex dy-
namics for the Poincaré map, using the following result.

Lemma 5.1. Let R̂ := (R,R−) be an oriented rectangle and ψ : R → R2 be a
continuous and one-to-one map. Suppose that

ψ : R̂ m−→m R̂,

for some m ≥ 2. Then ψ induces chaotic dynamics on m symbols on the set R.

See [13, 16, 17, 18] for the general theory.

Remark 5.2: A byproduct of Lemma 5.1 implies the existence of at least m
fixed points for ψ in R. More precisely, each of the pairwise disjoint compact
sets K1 . . . ,Km, involved in the definition of ψ : R̂ m−→m R̂, contains at least
one fixed point of ψ.

The hypothesis of injectivity for the map ψ is not mandatory and the the-
ory can be developed for arbitrary continuous maps. However, assuming ψ
one-to-one is useful in order to have a semiconjugation with the Bernoulli shift
on two-sided sequences (see [13] for a general discussion on this aspect). Since
we apply this technique to the Poincaré map associated with a locally Lips-
chitz continuous differential system, the hypothesis of injectivity will be always
satisfied. �

Now we are going to describe the crossing relationships involving the sets
^
a±,

^

b±,
^
c ± and the dual ones

_
a±,

_

b±,
_
c ± by the maps Φi .

Lemma 5.3. Given any positive integer `1, it holds that

Φ1 :
^
a+ m−→`1

_
a−,

provided that T1 > `1τ
(1)
l .

Proof. Let γ : [0, 1] → a+ be a (continuous) map such that γ(0) ∈ Γ
(1)
l and

γ(1) ∈ O(1)
l . Equivalently, H(1)(γ(0)) = c(1) and H(1)(γ(1)) = c

(1)
s . We exam-

ine the evolution of the set γ̄ := γ([0, 1]) along the Poincaré map Φ1. Observe
that Φ1 is associated with the system

ẋ = y, ẏ = −g1(x) (16)

on the time-interval [0, T1].
Along the proof, we denote by ζ(t, z0) = (x(t, z0), y(t, z0)) the solution of (16)
satisfying the initial condition ζ(0) = z0. By definition, Φ1(z0) = ζ(T1, z0), for
any z0 ∈ R+

0 × R.
The point γ(1) belongs to the homoclinic trajectory and therefore it remains

on O(1)
l for all the forward time, moving in the upper phase-plane from left to
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right but never meeting the saddle point x
(1)
s . As a consequence, x(t, γ(1)) <

x
(1)
s and y(t, γ(1)) > 0 for all t ∈ [0, T1]. On the other hand, the point γ(0)

belongs to the periodic orbit Γ
(1)
l of period τ

(1)
l and therefore, if T1 > τ

(1)
l ,

it makes at least `1 complete turns (in the clockwise sense) around the center
(a(1), 0) in the interval [0, T1].

If we introduce a polar coordinate system (θ, ρ), starting from the half-line
{(x, 0) : x < a(1)} and counting positive rotations in the clockwise sense, we
have that 0 < θ(γ(s)) < π for all s ∈ [0, 1] and then we define the sets

Kj := {z ∈ a+ : (2j − 1)π < θ(Φ(1)(z)) < 2jπ}, for j = 1, . . . , `1.

By the previous observation about the movement of the points γ(1) and γ(0) un-
der the influence of the dynamical system of (16), we know that θ(Φ1(γ(1))) <
π, while θ(Φ1(γ(0))) > 2j`1π.

A simple continuity argument on the map [0, 1] 3 s 7→ θ(Φ1(γ(s))), implies
the existence of `1 pairwise disjoint intervals [αj , βj ] ⊂ [0, 1] such that (2j −
1)π ≤ θ(Φ1(γ(s))) ≤ 2jπ for all s ∈ [αj , βj ] with θ(Φ1(γ(αj)) = 2jπ and
θ(Φ1(γ(βj)) = (2j − 1)π.
By definition, the path Φ1 ◦ γ restricted to the interval [αj , βj ] is contained in
the half-annulus

A1 ∩ {(x, y) : 0 < x < x(1)
s , y ≤ 0}

and therefore, it crosses the rectangle a− intersecting both components of a−−.
Using again an elementary continuity argument of the map s 7→ Φ1(γ(s)), for
each j = 1, . . . , `1, we determine a sub-interval [α′j , β

′
j ] ⊂ [αj , βj ] such that,

Φ1(γ(s)) ∈ a− for all s ∈ [α′j , β
′
j ]. Moreover, Φ1(γ(α′j)) and Φ1(γ(β′j)) belong

to different components of a−. Note also that, by construction, γ(s) ∈ Kj for

all s ∈ [α′j , β
′
j ]. We have thus verified the SAP property for (

^
a+,

_
a−,Φ1) with

crossing number `1, provided that T1 > `1τ
(1)
l and the proof is complete. �

At this point, we can repeat the same argument of the proof of Lemma 5.3
and consider all the possible combinations between the oriented rectangles and
the maps Φi . We can summarize these conclusions by the following lemmas
where the times τ∗i can be easily determined from the periods of the closed

orbits Γ
(i)
l and Γ

(i)
s .

Lemma 5.4. There exist times τ∗1 and τ∗2 , such that, for any positive integers
`1, `2 it holds that:

Φ1 :
^
a± m−→`1

_
a± ,

^

b± m−→`1
_

b± ,
_
c ± ,

^
c ± m−→`1

_

b± ,
_
c ± ,

provided that T1 > `1τ
∗
1 .

Φ2 :
_
a± m−→`2

^
a± ,

^

b± ,
_

b± m−→`2
^
a± ,

^

b± ,
_
c ± m−→`2

^
c ± ,

provided that T2 > `2τ
∗
2 .
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In the above lemma, when we write a condition such as
^
a± m−→` _a± , we mean

that all the four possibilities in the choice of ± for the domain and codomain
are possible.

The content of Lemma 5.4 is explained by means of Figure 6 and Figure 7.

Figure 6: This graph represents all the possible connections by the partial Poincaré
map Φ1. The arrows correspond to the m−→ symbol. The integer `1 is not indicated
but it can be arbitrarily chosen provided that T1 > `1τ

∗
1 .

Now, we are in position to conclude with the proof of our main result.

Proof of Theorem 4.1. Using Lemma 5.4 along with Lemma 5.1 we can guar-
antee that the Poincaré map Φ = Φ2 ◦ Φ1, as well as Φ = Φ1 ◦ Φ2 induces
chaotic dynamics on any finite number of symbols, provided that T1 and T2

are large enough.
From the proof of Lemma 5.3 it is clear that the result is stable by small per-

turbations and the same holds for all the connections considered in Lemma 5.4.
In our case we have several possibilities of producing chaotic dynamics on

m ≥ 2 symbols on a rectangular region R chosen among the sets a± , b± and
c± . In order to explain better how these possibilities arise, we fix out attention
only on the Poincaré map Φ = Φ2 ◦ Φ1 (the other case is treated in a similar
manner).

A first and more natural case is to take max{`1, `2} ≥ 2, so that

m = `1 × `2 ≥ 2
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Figure 7: This graph represents all the possible connections by the partial Poincaré
map Φ2. The arrows correspond to the m−→ symbol. The integer `2 is not indicated
but it can be arbitrarily chosen provided that T2 > `2τ

∗
2 .

and, considering the connections described in Lemma 5.4, we immediately see

that Lemma 5.1 can be applied for R̂ any of the sets
^
a± ,

^

b± ,
^
c ±. However,

a more careful analysis of the connection diagrams shows that in these sets the
SAP property with crossing number greater or equal than two can be obtained
also in the case when `1 = `2 = 1 (this may be more interesting from the point
of view of the applications because we need a lesser restriction on the period).
In fact, the following connections are available

^
a+ m−→

_
a+ m−→

^
a+ ,

^
a+ m−→

_
a− m−→

^
a+

^
a− m−→

_
a− m−→

^
a− ,

^
a− m−→

_
a+ m−→

^
a−

^

b+ m−→
_

b+ m−→
^

b+ ,
^

b+ m−→
_

b− m−→
^
a+

^

b− m−→
_

b− m−→
^

b− ,
^

b− m−→
_

b+ m−→
^

b−
^
c + m−→

_
c + m−→

^
c + ,

^
c + m−→

_
c − m−→

^
a+

^
c − m−→

_
c − m−→

^
c − ,

^
c − m−→

_
c + m−→

^
c −

and therefore, we find that

Φ :
^
a± m−→2 ^

a± ,
^

b± m−→2
^

b± ,
^
c ± m−→2 ^

c ± .
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In the last formula we use the convention that []± m−→ []± means that only the
two possibilities []+ m−→ []+ and []− m−→ []− are available.

The situation becomes more complicated and interesting if we consider the

iterates of the map Φ. For instance, for the map Φ2, and taking R̂ =
^
a+ as a

starting set, new connections are available, such as

^
a+ m−→2

^

b± m−→2 ^
a+ and

^
a+ m−→2 ^

a± m−→2 ^
a+ .

Hence, counting all the possible connections for Φ2, we obtain that

Φ2 :
^
a+ m−→16 ^

a+.

In fact, from
^
a+ we come back again to

^
a+ by Φ2 passing through the four

sets
^
a± and

^

b± and, each time we apply Φ we have two itineraries available.
Similar combinations occur for the other oriented rectangles. �

6. Final remarks

The existence of chaos in differential systems which are obtained as periodic
perturbations of planar autonomous systems exhibiting homoclinic or hetero-
clinic trajectories is a well established fact (see [15, 8]). The methods of proof
applied in those situations, such as the Melnikov method, usually permit to en-
ter in the framework of Smale’s horseshoe (cf. [19] and [14]) which guarantees
the existence of a compact invariant set for the Poincaré map Φ, where Φ is
topologically conjugate to the Bernoulli shift on a certain set of symbols. Our
result provides a weaker form of chaos since only the semiconjugation is proved.
On the other hand, in the concrete applications, some explicit knowledge of the
homoclinic (or heteroclinic) solution, in terms of its analytic expression is of-
ten needed. A typical example is given by the classical periodically perturbed
Duffing equation

ẍ− x+ x3 = εp(ωt), (17)

where the Melnikov function can be explicitly defined (see [8]) thanks to the
knowledge of the analytic expression of the homoclinic solutions of

ẋ = y, ẏ = x− x3.

In the model studied in the present paper, two difficulties arise: first, we do not
know an explicit form of the homoclinic solutions of system (9) and, secondly,
the periodic perturbation leading to (12) from (8), which corresponds to a
variation of the form B0 7→ B0(t) in (10), appears to be more complicated than
the perturbation considered in equation (17). Our approach, even if applied to
the simplified situation of a stepwise functionB0(t), allows to prove the presence
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of chaotic dynamics using only few geometric information on the geometry of
the level curves of the associated energy functions. As already shown in [12]
and in [11, Section 8], the choice of a stepwise coefficient has the advantage
not only to simplify some technical estimates, but also to put in evidence the
presence of interesting bifurcation phenomena for the solutions of the nonlinear
equations which are involved.
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[12] J. López-Gómez, A. Tellini, and F. Zanolin, High multiplicity and com-
plexity of the bifurcation diagrams of large solutions for a class of superlinear
indefinite problems, Commun. Pure Appl. Anal. 13 (2014), 1–73.

[13] A. Medio, M. Pireddu, and F. Zanolin, Chaotic dynamics for maps in one
and two dimensions: a geometrical method and applications to economics, Inter-
nat. J. Bifur. Chaos Appl. Sci. Engrg. 19 (2009), no. 10, 3283–3309.

[14] J. Moser, Stable and random motions in dynamical systems, Princeton Uni-
versity Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1973, With
special emphasis on celestial mechanics, Hermann Weyl Lectures, the Institute
for Advanced Study, Princeton, N. J, Annals of Mathematics Studies, No. 77.

[15] K. J. Palmer, Transversal heteroclinic points and Cherry’s example of a nonin-
tegrable Hamiltonian system, J. Differential Equations 65 (1986), no. 3, 321–360.

[16] D. Papini and F. Zanolin, Fixed points, periodic points, and coin-tossing
sequences for mappings defined on two-dimensional cells, Fixed Point Theory
Appl. (2004), no. 2, 113–134.

[17] D. Papini and F. Zanolin, On the periodic boundary value problem and chaotic-
like dynamics for nonlinear Hill’s equations, Adv. Nonlinear Stud. 4 (2004),
no. 1, 71–91.

[18] A. Pascoletti, M. Pireddu, and F. Zanolin, Multiple periodic solutions
and complex dynamics for second order ODEs via linked twist maps, The 8th
Colloquium on the Qualitative Theory of Differential Equations, Proc. Colloq.
Qual. Theory Differ. Equ., vol. 8, Electron. J. Qual. Theory Differ. Equ., Szeged,
2008, pp. No. 14, 32.

[19] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967),
no. 6, 747–817.

Authors’ addresses:

Oltiana Gjata
Department of Mathematics, Computer Science and Physics,
University of Udine
Via delle Scienze 206, 33100 Udine, Italy
E-mail: gjata.oltiana@spes.uniud.it

Fabio Zanolin
Department of Mathematics, Computer Science and Physics
University of Udine
Via delle Scienze 206, 33100 Udine, Italy
E-mail: fabio.zanolin@uniud.it

Received February 29, 2020
Revised March 29, 2020

Accepted March 29, 2020


