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1. Introduction
For a first order ordinary differential system

= f(t,x),

with f : [a,b] x R" — R™ continuous, a natural generalization of the homoge-
neous two—point boundary conditions (BC)

Arz(a) = Agx(b),

where Ay, Ay are (n X n)—matrices, is the m—point BC
m
> Aja(t;) =0,
j=1

where a = t; <ty <...<t, =>band A;,..., A, are (n X n)-matrices. Such
a multi-point boundary condition is itself a special case of the nonlocal or

1Based on lectures given by Jean Mawhin at the Dipartimento di Matematica e Geoscienze
of the University of Trieste in April 2019.
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integral BC

/ dA(s)als) =

where A : [a,b] — L(R™,R™) has bounded variation and the integral is of
Riemann—Stieltjes type.

Nonlocal boundary conditions of the type
m 1
Z Ajx(ty) + / B(s)x(s)ds =0
j=1 0

for some (n x n)-matrix—valued function B : [0,1] — L(R"™,R"), were first
introduced for linear differential equations by Picone [91] in 1908, and already
applied to physics by von Mises [111] in 1912. Using Riesz representation
theorem, those conditions are themselves contained in the more general form

1
dA(s)z(s) =0,

0

where A : [0,1] — L(R™,R") is a (n x n)-matrix—valued functions with
bounded variation. They were first introduced for linear systems in 1931 by
Cioranescu [12] and by Smorgorshewsky [98] in 1940. A good survey of the
linear theory is given by Krall in [57].

Nonlocal boundary conditions can be considered also for second order dif-
ferential systems of the form

a" = f(t,SC,IE,), (1)

where f : [a,b] x R" x R" — R" is continuous.

Without searching the maximum of generality, the most useful homogeneous
two—point BC for system (1) are obtained by choosing two of the following
expressions

z(a) = Az(b) + B2'(b), 2'(a) = Cxz(b) + D' (b),
z(b) = Ez(a) + F2'(a), 2'(b) = Gz(a) + H2'(a),

where A, B,C, D, E, F, F, H are (nxn)-matrices. The corresponding nonlocal
BC are obtained by taking two of the following conditions

b b
2(a) = / dA(s)a(s) + / AB(s)(s), @)
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b b

x'(a):/ dC(s)x(s)—i—/ dD(s)x'(s), (3)
b b

x(b)z/ d&'(s)x(s)—i—/ dF(s)z'(s), (4)

b b
() = / dG(s)z(s) + / dH(s)'(5), (5)

where A,B,C,D,E,F,G,H : [a,b] — L(R™,R") are (n X n)-matrix valued
functions having bounded variation.

Choosing A, B,C, D constant, the conditions (2)—(3) reduce to the initial
type conditions, and choosing £, F,G,H constant, the conditions (4)—(5)
reduce to the terminal type conditions for (1). Choosing A,B,E, F con-
stant, the conditions (2)—(4) become the Dirichlet conditions, and choosing
C,D, G, H constant, the conditions (3)—(5) become the Neumann conditions.
Mixed conditions are obtained by choosing A, B, G, H constant in (2)—(5) or
C,D,&,F constant in (3)—(4). The periodic conditions can be obtained by

taking A such that f; dA(s)x(s) = x(b), B constant, C constant and D such
that ff dD(s)a'(s) = a’(b). It suffices, for example, to take A(s) = h(s)Il, with
h(a) =0 and h(s) =1 for s € (a, b].

The first paper dealing with nonlinear differential equations with integral
boundary conditions seems to be due to Birkhoff and Kellogg [7] in 1922, as an
application of their famous extension of Brouwer’s fixed point theorem to some
function spaces. Interesting surveys of the nonlinear theory have been given by
Whyburn [112], Conti [13], Krall [57], Ma [66] and Ntouyas [87]. They mostly
deal with scalar problems and cover the period 1908-2005.

In this survey, we concentrate on differential systems of first and second
order (excluding specific results for scalar equations and for higher-order equa-
tions), and on methods based upon convexity, topological degree and maxi-
mum principle-like techniques to obtain pointwise estimates for the possible
solutions. Because of the nonlocal character of the boundary conditions, those
methods are more delicate to use than for two—point boundary value problems.
We first deal with first order systems, and then with second order systems,
discuss the sharpness of the obtained existence conditions and compare them
with some well known classical ones for standard two-point boundary condi-
tions like the initial, terminal, periodic, Dirichlet, mixed and Neumann ones.
Let us mention also that the nonlocal boundary conditions presented are not
by far the most general ones to which the methods apply, but have been chosen
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in order to associate a minimum of technical complication with a maximum of
significancy.

Various other methods have been used to study nonlocal boundary value
problems and various other classes of conditions have been imposed to the
nonlinearities to obtain existence and multiplicity results. Let us mention iter-
ation methods for Lipschitizian nonlinearities with sufficiently small coefficients
[9, 15, 23, 76, 80, 81], topological methods for nonlinearities satisfying suitable
growth and/or sign conditions [2, 4, 5, 8, 11, 14, 43, 44, 50, 52, 53, 55, 56, 65, 68,
71,72, 77, 82, 83, 90, 95, 96, 97, 102, 105, 106, 107, 108, 109], maximal principle
type arguments for monotone nonlinearities [17, 18, 22, 23, 40], fixed point the-
orems and index on cones for positive solutions [3, 16, 20, 24, 25, 26, 35, 36, 37,
38, 39, 41, 42, 45, 46, 47, 48, 49, 51, 61, 62, 63, 64, 94, 99, 113, 114, 115, 117],
variational methods for potential nonlinearities [1, 21, 27, 28, 29, 33, 67, 84,
85, 86, 110, 116]. Those methods and results will not be considered here.

2. First order systems

2.1. Boundary conditions
Let us consider a first order system of ordinary differential equations
¥ = f(t,x) (6)

with f : [0,1] x R™ — R™ continuous. We choose [0,1] for the independent
variable without loss of generality.

The homogeneous two point BC have the form
Az(0) = Bz(1)

where A and B are (n X n)—-matrices.

Notice that for f =0 in (6) the BVP becomes
=0 sz(t)=ceR", (A-B)c=0.

Two cases are possible. If
det(A — B) #£0,

0 is the unique solution and we say that the BC is non—resonant. If
det(A — B) =0,

the problem has infinitely any solutions and the BC is called resonant.
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Standard examples of “two—point boundary conditions” for (6) are given
by the initial value condition on [0,1] 2(0) = 0 (A = I,, B = 0,, non—
resonant), the terminal value condition on [0,1] (1) =0 (A =0,, B = I,,
non-resonant), the anti—periodic BC z(0) + z(1) =0 (A = —B = I,,, non—
resonant), and the periodic BC z(0) = (1) (A = B = I,,, resonant).

Given 0 =t <ty <...<t, =1, one can consider also the m—point BC

ZAjJ?(?fj) = 0. (7)

j=1

For f =0 in (6), the solutions are x(t) = ¢ with ¢ such that (Z;"Zl Aj)e=0.
Again, if det(zgnzl A;) # 0, the BC (7) is called non-resonant, and if this
determinant is equal to zero, the BC is called resonant.

2.2. Nonlocal initial or terminal type BC

For simplicity of exposition and of the statements, we restrict ourself to the
special but representative cases of the nonlocal initial type condition

1:(0):/0 x(s)dh(s) (8)

and of the nonlocal terminal type condition

1
o(1) = [ ats)di(s) (9
0
where
(h0) R :[0,1] — R is non—decreasing.
Recall that, for any continuous functions z : [0,1] — R", the corresponding

Riemann—Stieltjes integrals always exist. Without loss of generality, we can
assume that

h(0) = 0.

We first discuss the situation where

(h1) /01 dh(s) = h(1) < 1.
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This is a non—-resonant situation because each problem

1 1
' =0, z(0) :/0 x(s) dh(s), 2 =0, z(1) :/o x(s) dh(s)

has the solution z(t) = ¢ with ¢ verifying the equation

¢ =h(1)c,
which has only the trivial solution. This case contains of course the initial and
terminal null conditions.

Then, we consider the case where

1
(h2) / dh(s) = h(1) =1.
0
In this situation, which is clearly a resonant one, the second members of (8)
and (9) can be seen as some average of the values of z(s) on the interval [0, 1].

In order to prevent the right-hand member in (8) to be z(0), which would
reduce (8) to an identity, we must prevent in (8) h to have the form

0 if 2=0
h(x){1 it ze(0,1] (10)

which corresponds to assume that
(h3) there exists T € (0,1) such that h(r) < 1.

Similarly, in order to prevent (9) to become an identity, we exclude in (9) h of
the form

w={8 8 sl o

which corresponds to assume that

(h4) there exists 7 € (0,1) such that h(r) > 0.

EXAMPLE 2.1: For h given by (11), we have fol x(s)dh(s) = z(1), and (8)
reduces to the periodic BC z(0) = z(1).

For h given by (10), we have fol x(s) dh(s) = x(0), and (9) reduces again to
the periodic BC.
EXAMPLE 2.2: For

0 if z€l0,a)
hz)=< ~ if z€]al)
1 if x =
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where a,y € (0, 1), we have

1
/0 £(s) dh(s) = () + (1 - 7)z(L),

and (8) reduces to the three—point BC z(0) = yz(a) + (1 — v)z(1).
ExXAMPLE 2.3: For

0 if z=0
hz)=4q v if x€(0,q]
1 if ze (o]

where a,y € (0,1), we have

/O £(s) dh(s) = 2(0) + (1 - 7)z(a),

and (8) reduces to the three—point BC z(1) = (1 — v)z(«) + yx(0).

2.3. Linear nonlocal initial or terminal type BVP

Let C° be the space C([0, 1], R™) of all continuous mappings from [0, 1] into R™
with the uniform norm ||z| = max {||z1]|ccs - - - » [|Zn|lco }-

The following results are useful to reduce our problems to a fixed point
form.

LEMMA 2.4. If conditions (h0), (h1) or (h0), (h2), (h3) hold, then, for each
z € CY, the linear nonlocal initial value problem

o+ = 2(t), 2(0) :/0 2(s) dh(s) (12)

has the unique solution

() = (1 - /01 e dh(s))

-1 1 u
/ / e Ut 2(s) ds dh(u)
o Jo
t
+ / e~ =9 2(s)ds.  (13)

0

Proof. By the variation of constants formula, the initial value problem
¥ +x=2(t), 2(0)=c

has the unique solution
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It satisfies the boundary condition (8) if and only if ¢ satisfies the linear alge-
braic system

c:c/ ~tdh(t) // ~(=9)2(s) ds dh(t),

which has the unique solution

c=(1—/01 e *dh(s ) // ~(9)2(s) ds dh(u)

if fol e *dh(s) # 1. This is trivially the case if conditions (h0), (hl) hold. If
conditions (h0), (h2), (h3) hold, we have

/01 e~ dh(s) /01 dle”*h(s)] + /OT e *h(s)ds + /Tl e"*h(s) ds

1
< e l4+nrn) [ e Sds—i—/ e *ds
0 T
= 6*1+h(7)(1—€ T)+(677—671)
= (I—-eh(r)+e " <1
and the result follows. O

Let us denote by K; : C° — C° the linear operator mapping z into x given
by (13). Notice that each Kz is of class C.

COROLLARY 2.5. There exists C; > 0 such that, for each z € C°, one has

[ Kzl < Cullzll, (Kvz)'[l < (Co+ D2,

and K is a compact operator.

Proof. Follows easily from (12) and (13) and Arzela-Ascoli’s theorem. O

LEMMA 2.6. If conditions (h0), (h1) or (h0), (h2), (h4) hold, then, for each
z € CY, the linear nonlocal terminal value problem

o — 2= (1), 2(1) :/O 2(s) dh(s) (14)

has the unique solution

2(t) = (1— /0 165‘1dh(s)>_1 /O 1 /1 " =15 (5 ds dh(u)

+/1t e'~*z(s)ds. (15)
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Proof. Let z € C°. By the variation of constants formula, the terminal value
problem

¥ —x=2z0), z(1)=c

has the unique solution

z(t) =€~ 10—1—/1 “z(s)ds (c e R").

It satisfies the boundary condition (9) if ¢ verifies the linear algebraic system

c—(/o e!~1dn(t >c—// s)ds dh(t).

which has the unique solution

(o feme) [ [ oo

if 1 # fol e*~tdh(s). This is trivially the case if conditions (h0), (h1) hold. In
the second case, we have

Alesldh(s) - ld[e“h(s)]_/Tes1h(s)ds—/leslh(5)d5

0 0 T
1
< 1- h(T)/ etds=1-h(r)(1—-e"Y) <1
and the result follows. O

Let us denote by Ky : C° — C° the linear operator mapping z into x given
by (15). Notice that each Ksz is of class C*.

COROLLARY 2.7. There exists Cy > 0 such that, for each z € C°, one has
122 < Collzll, [[(K22)[| < (C2 + 1|2,
and Ky is a compact operator.

Proof. Follows easily from (14) and (15) and Arzela-Ascoli’s theorem. O

2.4. Fixed point formulation of nonlinear nonlocal initial
or terminal type BVP

Let now f : [0,1] x R* — R™ be continuous and define the mapping N; : C° —
C° by

Niz = f(-,z(-)) —z(-), Yz eC®
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and the mapping Ny : C° — C° by
Noz = f(-,z(-)) +z(-), Yz e C°.

It is easy to show that N; and N, are continuous on C° and take bounded sets
of CY into bounded sets of C°. Under the conditions of Lemma 2.4,

G1 = K1N1 : CO — CO

is compact on bounded subsets of C?, and the nonlinear nonlocal initial
type problem

o = f(t.x), 2(0) = /0 2(s) dh(s) (16)

is equivalent to the fixed point problem in C°
z = Ghx. (17)
Similarly, under the conditions of Lemma 2.6,
Gs := K5Ny : C° — C°

is compact on bounded subsets of C°, and the nonlinear nonlocal terminal
type problem

1
o= fta). 2 = [ a(ns) (18)

is equivalent to the fixed point problem in C°
x = Gar. (19)

We apply to the equations (17) and (19) the following existence result,
which follows easily from Leray-Schauder continuation theorem [60, 69].

PROPOSITION 2.8. Let X be a real normed space, @ C X be an open bounded
neighborhood of 0, and T' : Q — X be a compact operator. If x # ATz for every
(z,A) € 002 x (0,1), then T has at least a fized point in ).

2.5. Some classical results for periodic BC

Let (-|-) denote the classical inner product in R™, |- | the corresponding Eu-
clidian norm, and Br C R™ the closed ball of center 0 and radius R > 0.

A classical existence theorem for the periodic BVP associated to (6) is the
following one.
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THEOREM 2.9. If there exists R > 0 such that either

(u|f(t,u)) >0, ¥ (t,u) € [0,1] x OBg, (20)
(ulf(t,u)) <0, V(t,u) € [0,1] x OBg, (21)

then the problem
¥ = f(t,x), x(0)==z(1) (22)

has at least one solution taking values in Bg.

Notice that the two statements in Theorem 2.9 are equivalent : each one
implies the other one through the change of variables 7 = 1 —¢. The full
statement can be seen as a nonlinear version of the following linear elementary
result

PROPOSITION 2.10. For each A € R\ {0} and each e € C°, the problem
' = Az +e(t), 2(0) = z(1)
has a solution.

Quite strangely, it is difficult to locate the first appearance of Theorem
2.9 in the literature. It is a special case (not directly mentioned !) of The-
orem 3.2 in Krasnosel’skii’s monograph [58] of 1966. On the other hand, it
is explicitely mentioned by Gustafson and Schmitt in 1974 [30] (with strict
inequalities in (20) or (21)) as a special case of the following theorem.

Let C be an open convex neighborhood of 0 in R™. It is well known that
Vue dC, Jv(u) € R"\{0}: (v(u)|u) >0and C C {v e R": (v(u)|lv—u) < 0}.
The mapping v : 9C — R™ \ {0} is called an outer normal field on 9C.

THEOREM 2.11. If there exists a bounded convex open neighborhood C of 0 in
R™, and an outer normal field v on OC such that either

(v()|f(t,u)) >0, ¥(t,u) € 0,1] x 9C
or
w(u)|f(t,u)) <0, V(tu) €0,1] x 9C,
then the problem (22) has at least one solution taking values in C.
Notice that Krasnosel’skii’s monograph is not quoted by Gustafson and
Schmitt. In [69], the connexion between Krasnosel’skii’s results and Gustafson-
Schmitt’s ones is made explicit, the Gustafson-Schmitt’s theorem is extended

to the case of weak inequalities and Krasnosel’skii’s theorem is shown to be a
special case of this extension of Gustafson-Schmitt’s theorem.
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2.6. Nonlocal initial type BVP

The following theorem essentially comes from [73]. The special case of a global
initial value problem can be found in [70].

THEOREM 2.12. If h : [0,1] — R satisfies conditions (h0), h(1) or conditions
(h0), h(2), (h3), and if there exists an open, bounded, convex neighborhood C
of 0 in R™ and an outer normal field v on OC such that

(w(w)|f(t,u)) <0, ¥ (t,u) € [0,1] x IC, (23)

then the problem (16) has at least one solution taking values in C for all t €
[0,1].

Proof. Let us consider the equation (17) and define the open bounded neigh-
borhood 2 of 0 in C° by

Q={zxecC’ z(t)cC, Vtec|01]}. (24)
Notice that

Q = {zeC’:z(0,1]) cC},
00 = {xeQ:3tye0,1]:z(ty) € OC}. (25)
By the discussion above (i1 is compact on Q. According to Proposition 2.8, a
solution of (17) in €2, i.e. a solution of (16) such that xz(¢) € C for all ¢ € [0,1]

will exist, if we can show that, for each A € (0, 1), no possible solution of the
problem

o +x = Nf(t2) + ], 2(0) :/0 2(s) dh(s), (26)

belongs to d€2. Let A € (0,1) and x(t) € 99 be a possible solution to (26). Then
x(t) € C for all t € [0,1] and there is some ¢y € [0, 1] such that z(¢y) € 9C.
Therefore, for all ¢ € [0, 1],

&1 (1) == (v (2(to))[x(t)) < (v(2(to), z(to)) = &1, (o), V1 € [0, 1,

which means that the real function &, : [0, 1] — R reaches its maximum at tg.
If tg € (0, 1],

0
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a contradiction. If ¢y = 0 and conditions (h0), (h1) hold, then

1
%(0) = <V(ﬂf(0)),w(0)>:/ (v(2(0)), z(s) dh(s))

<
< max(v(z(0) / dh(s) < max{v(a(0),2(s))
= Srél[g>§]£o()

a contradiction. If ¢g = 0 and conditions (h0), (h2), (h3) hold, it remains only
to consider the case where 0 is the only value of ¢ at which z(t) € 9C, i.e. the
case where £ reaches its maximum only at 0. Then

§o(s) < &0(0), Vs € (0,1],

and hence, using the boundary condition and assumptions (h2) and (h3),

a0 = (a0 ] / in(s)) = /1<u<<>>|m<s>dh<s>>
- / (w(2(0)) / o(s) dh(s
- / ols) dh(s / o(s) dh(s
< &(0)h(T )‘i‘(f[naf](fo)[l—h( 7)] < &0(0),

T,

a contradiction. Consequently the assumptions of Proposition 2.8 are satisfied
for G1 on 2, and the conclusion follows. O

COROLLARY 2.13. If h : [0,1] — R satisfies conditions (h0), h(1) or conditions
(h0), (h2), (h3), and if there exists R > 0 such that

(u]f(t,u)) <0, V(t,u) €[0,1] x OBRg, (27)
then the problem (16) has at least one solution taking values in Bg.
Proof. Take C = Bpg and, for each u € 0Bg, v(u) = u. O

COROLLARY 2.14. If h : [0,1] — R satisfies conditions (h0), h(1) or conditions
(h0), (h2), (h8), and if there exists R; > 0 (1 < j <n) such that

uifi(t7u) <0, V(t7u) c [0, 1] X ﬁ[—Rj7Rj] : |u2| =R; (1 <1< TL), (28)

j=1

then the problem (16) has at least one solution taking values in II7_; [~ R;, R;].
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v(W|f(t,w) >0 (w)|f(t,u) <0

Figure 1: The case when C' is a hexagon.

(ulf(t,u)) >0 (ul f(t,u)) <0

Figure 2: The case when C' is a ball.

Proof. Take C' = [[j_,(—Rj, R;) and, for each u € [[j_,[~Rj, R;] and |u;| =
R;, v(u) = use’, where ¢! = (0,...,0,1,0,...,0) is the i*" element of the
canonical basis of R” (1 =1,...,n). O

2.7. Nonlocal terminal type BVP
The following theorem essentially comes from [73].

THEOREM 2.15. If h : [0,1] — R satisfies conditions (h0), h(1), or conditions
(h0), (h2),(h4), and if there exists an open, bounded, convex neighborhood C
of 0 in R™ and an outer normal field v on OC such that

(v(uw)|f(t,u)) >0, V(t,u) € [0,1] x 9C, (29)
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A A A A A

N/ —
- C: \> DT /)(,/47L ......... >

(v(u)|ft,u) >0 wu)|f(t,u) <0

Figure 3: The case when C' is a rectangle.

then the problem (18) has at least one solution taking values in C.

Proof. Let us consider the equation (19) and let © the open bounded neigh-
borhood of 0 in C° defined by (24). By the discussion above G5 is compact
on Q. According to Proposition 2.8, a solution of (19) in €, i.e. a solution of
(16) such that z(t) € C for all t € [0, 1] will exist if we can show that for each
A € (0,1), no possible solution of the problem

¥ -z = \f(t2) - a], 2(1) = /0 2(s) dh(s), (30)

belongs to 0€2. Let A € (0,1) and z(t) € 99 be a possible solution to (26). Then
x(t) € C for all ¢ € [0,1] and there is some ¢y € [0,1] such that z(tg) € 9C.
Therefore, for all ¢ € [0, 1],

§to (1) := (v(@(to))|2(t)) < (w(2(to)|z(to)) = &1 (to), Vit € [0, 1],

which means that the real function &, : [0, 1] — R reaches its maximum at ¢o.
If tg € [07 1),

0 > &,(to) = (v(z(to))l2'(to))
= (=X w(x(to))z(to)) + A (x(to))|f (to, z(t0)) > 0,
a contradiction. If tg = 1, and conditions (h0), (h1) holds, then, because of the

boundary condition,

61 = (a)) = / (w(z(1)la(s) dh(s))

1
< %531?(1/(36(1))@(8»/0 dh(s) < I{éiﬁ((l/(z(l)lx(S»
= max &(s),
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a contradiction. If ¢y = 1, and conditions (h0), (h2), (h4) hold, it remains only
to consider the case where 1 is the only value of ¢ at which z(t) € 9C, i.e. the
case where &; reaches its maximum only at 1. Then

61(8) < 51(1)7 Vs € [0, 1),

and hence, using the boundary condition and Assumptions (h3), (h4),

< ’/ > /1<V( (1))|z(s) dh(s))
[ ez /51 s
/51 )dh(s /51 ) dh(s

< (max&)h(r) + & (D[ = A(7)] < &(1),

0,7]

&i(1)

a contradiction. Consequently the assumptions of Proposition 2.8 are satisfied
for G and 2, and the conclusion follows. O

COROLLARY 2.16. If h : [0,1] — R satisfies conditions (h0), h(1) or conditions
(h0), h(2), h(4), and if there exists R > 0 such that

<u|f(t,u)> >0, V(t,u) € [Oa 1] X aBR) (31)
then the problem (18) has at least one solution taking values in Bg.

Proof. Take C = Bpg and, for each u € 0Bg, v(u) = u. O

COROLLARY 2.17. If h: [0,1] — R satisfies conditions (h0), h(1) or conditions
(h0), (h2), (h4), and if there exists R; > 0 (1 < j < n) such that

uifi(t,u) >0, V(t,u) S [O, 1] X ﬁ[—Rj,Rj] : \ui| = R; (1 <1< n), (32)

j=1
then the problem (18) has at least one solution taking values in II7_; [~ R;, R;].

Proof. Take C' = [[;_,(—R;, R;) and, for each u € [[}_,[~Rj, R;] and |u;| =
R;, v(u) = uze’, where ! = (0,...,0,1,0,...,0) is the i*" element of the
canonical basis of R” (i =1,...,n). O
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2.8. Lower and upper solutions for nonlocal initial or
terminal BVP

Corollaries 2.14 and 2.17 can be generalized by extending the classical concepts
of lower and upper solutions to our nonlocal boundary value problems.

DEFINITION 2.18. We say that o € C([0,1],R") is a lower solution and
B € C1([0,1],R") an upper solution for problem (16), if

a;(t) < Bi(t) (1<i<n)
and, for each i € {1,...,n},
Oé;(t) § f(t, Upy ooy Uj—1, ai(t), uiJrl(t), . ,un(t)),
ﬂzl(t) 2 f(t7 ULyeoo,Uj—1, ﬂl(t)v ui-‘rl(t)? e ,'I,Ln(t)), (33)
whenever a;(t) <wuj < B;(t), t €[0,1], j € {1,...,n}\ {i},
1 1
0i(0) < [ aus) dh(s). 5:0) = [ Bi(s) an(s)
0 0
DEFINITION 2.19. We say that o € C'([0,1],R") is a lower solution and
B € C([0,1],R™) an upper solution for problem (18), if
a;(t) < Bi(t) (1 <i<n)
and, for each i € {1,...,n},
ab(t) > flt,ur, w1, i (t), wip (), - un(t)),
Bi(t) < ft,ur, ..y uim, Bi(t), uira (1), . . ., un(t)), (34)
whenever a;(t) <u; < B;(t), t €[0,1], j € {1,...,n}\ {i},

1 1
i) > [ o) dh(s). 50 < [ 5its)dns)

For the initial value problem and a scalar equation, the concept and the
corresponding theorem was introduced by Peano [88] in 1895, rediscovered by
Perron [89] in 1912, and extended to systems by Miiller in 1927 [79]. The case
of periodic solutions was first considered by Moretto [78] in the scalar case,
by Knobloch [54] in 1962 for locally Lipschitzian systems, and generalized to
continuous systems in 1974 [69].

THEOREM 2.20. If conditions (h0), (h1) or conditions (h0), (h2), (h3) hold,
and if a couple of lower and upper solutions o, exists for (16), then the
problem (16) has a solution x such that o;(t) < z;(t) < B;(t) for all t € [0,1]
and all i € {1,...,n}.
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Proof. For each i € {1,...,n}, define the continuous and bounded function
v :[0,T] x R = R by

a;(t) if u; < ay(t)
~i(t, u;) = Uu; it a;(t) <u < Bit) (35)
Bi(t) if u; > B5(t)

and consider the modified problem
33; = _[‘ri_’}/’i(taxi)] + fi(ta’yl(taxl)a"'ar)/n(t7xn)) = gz(t,ﬂf) (1 SZ S?’l)
1
2(0) = / 2(s) dh(s). (36)
0

As each v; and f;(-,v1(-,),...,Yn(+,-)) are bounded, for each i € {1,...,n},
there exists ; > 0 such that g;(t,u) > 0 for all u € [[;_,[~R;, R;] verifying
uj = —R; and such that g;(t,u) < 0 for all u € [[}_,[-R;, R;] verifying
u; = R;. Using Corollary 2.14, we have a solution x to (36) such that z(t) €
[Ij=in[—R;, Ry for all ¢ € [0,1]. We now show that a;(t) < z;(t) < B4(¢) for
all ¢ € [0,1] and all 4 € {1,...,n}, so that z is a solution to (16). Fix some
i € {1,...,n} and assume that there is some 7 € [0, 1] such that z;(7) < a;(7).
Then z; — a; reaches a negative minimum at some ty € [0,1]. If t5 € (0, 1],
then 24(7) — (1) < 0, and hence

ap(r) = () = —[wi(r) -
+ filr, (T, xl(T)) ai(T), s (7, 20 (7))
> film,m(r, (7)), ( )i n(T 20 (7))),

)
a contradiction with the definition (33) of lower solution for (16). If ¢ty = 0,
then, using the previous contradiction, we can assume that

1‘1(0) — 042(0) < xi(t) — ai(t) Vit e (O, 1]

and hence, integrating over [0,1] and using the boundary conditions for x;
and «;,

1 1
[2:(0) — a;(0)]h(1) < /0 x;(t) dh(t) — /0 a;(t) dh(t) < 2;(0) — a;(0)
so that
[1 = Rh(1)][z:(0) — a:(0)] = 0,
and, using (h1),

i(0) — «;(0) = 0,
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a contradiction. We leave to the reader the proof in the case where conditions
(h0), (h2), (h3) hold. The reasoning is similar to show that z;(¢t) < 8;(t) for all
t€[0,1] and all ¢ € {1,...,n}. Hence, the solution z to (36) is also a solution
to problem (16). O

A similar proof provides the corresponding result for the nonlocal terminal
type BVP.

THEOREM 2.21. If conditions (h0), (h1) or conditions (h0), (h2), (h4) hold,
and if a couple of lower and upper solutions «, (3 exists for (18), then the
problem (18) has a solution x such that a;(t) < z;(t) < Bi(t) for all t € [0,1]
and all i € {1,...,n}.

Extensions of Knobloch’s theorem to some multipoint boundary value prob-
lems have been given by Ponomarev [92, 93].

2.9. Periodic vs resonant nonlocal initial or terminal type

BC

The special case of Theorem 2.12 with h given by (11) (which satisfies as-
sumptions (h0), (h2), (h3)), together with the special case of Theorem 2.15
with h given by (10) (which satisfies assumptions (h0), (h2), (h4)) provide a
proof of the generalized version of Theorem 2.11 with non—strict inequalities in
the assumptions, and of its consequence Theorem 2.9, for periodic boundary
conditions.

Comparing the statement of Theorem 2.9 for the periodic problem, with
the statements of the corresponding Corollaries 2.13 and 2.16 we see that the
sense of the inequality in conditions (27) and (31) depends upon the nonlocal
boundary condition.

On the other hand, as it is easily verified by direct computation, the system
¥ =z + e(t),

with each of the three—point boundary conditions

1

[2(1/2) + x(V)], x(1) = S[x(1/2) + 2(0)],

2’ (0) = 3

|~

has a solution for each e € C and each A\ € R\ {0}. This is a consequence of
the fact that the only real eigenvalue of % with each boundary condition is 0.

Hence a natural question is to know whether the conclusion of the above
corollaries still holds when the sense of the corresponding inequality upon f is
reversed.
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We show by some counterexamples that the answer is negative in general,
which of course implies that the same negative answer holds for Theorems
2.12 and 2.15. In this sense, the existence conditions given in Theorems 2.12
and 2.15 are sharp.

The construction of our counterexamples depends upon the study of some
associated complex eigenvalue problem and of the corresponding Fredholm al-
ternative for some special three—point boundary conditions. The results are
taken from [74].

2.10. Nonlocal initial or terminal type eigenvalue
problems

We first consider the three—point eigenvalue problem

2() = A=(8), 2(0) = %[z(l/?) + (1), (37)

where A\ € C, z : [0,1] — C. The boundary condition is a special case of the
one in Corollary 2.13 with

0 if se[0,3)
h(s)=14 3 if se[3,1)
1 if s=1.

PROPOSITION 2.22. The problem (37) has the eigenvalues
Arca ke = 2k(2m0), Mook = logd + (2k+1)(27mi) (k € Z).
They are located in the right part of the complex plane.

Proof. The eigenvalue problem (37) has a nontrivial solution if and only if
A € C is such that

1 1
1= 5e*/? + 5&. (38)

Setting p := e*/?, the equation (38) becomes the equation in s
1, 1
SpE 4+ Sp—1=0
ot Tk

with solutions pt7c;1 = 1 and prc2 = —2. The equation eM? = frc,1 is satisfied
for 3 = 2kmi (k € Z), which gives the eigenvalues A;c,1x (k € Z). The equation
eM? = pjoo = —2 is satisfied for § = log2+ (2k + 1)(ni) (k € Z), which gives
the eigenvalues A\jc 2k (k € Z). O
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Similarly, we consider the three—point eigenvalue problem

1
2(t) = Az(1), 2(1) = 5[=(0) + 2(1/2)}, (39)
where A € C, z : [0,1] — C. The boundary condition is a special case of the
one in Corollary 2.16 with

0 if s=0
h(s)=14 3 if s€(0,3]
1 if se(3,1].

PROPOSITION 2.23. The problem (39) has the eigenvalues
)\TC,I,k = 2](1(27Ti), )\TC,QJC = —log4 + (Qk‘ + 1)(27Ti) (k‘ S Z).
They are located in the left part of the complex plane.

Proof. The eigenvalue problem (39) has a nontrivial solution if and only if
A € C is such that

1 1
At Lo
e 2+26 . (40)

Setting p := e*/2, the equation (40) becomes the equation in p

with solutions prci1 = 1, prce = —%. The equation e/? = e = 1is

satisfied for % = 2kmi (k € Z), which gives the eigenvalues Apc 1k (B € Z).
The equation e*/? = wrce2 = —% is satisfied for % = —log2+(2k+1)mi (k € Z),
which gives the eigenvalues Arc 2 (k € Z). O

REMARK 2.24: The eigenvalues of the periodic boundary conditions
2 =Xz, 2(0) = 2(1)

are, as easily seen, Apy = k(2mi) (k € Z). In the case of the problem (39), half
of the eigenvalues of the periodic problem move to the line ®z = —log4, and,
in the case of the problem (37), the same half moves to the line ®z = log4. In
each case, the symmetry of the spectrum with respect to the imaginary axis is
lost (see Fig. 3).
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4 i
—log4 + 27 + 271 + log4 + 271

Figure 4: Eigenvalues.

2.11. Fredholm alternative for some linear nonlocal initial
or terminal type BVP

To construct our counterexamples, we use of the Fredholm alternative for the
corresponding forced eigenvalue problems.

PROPOSITION 2.25. A is an eigenvalue of (87) (resp. (39)) if and only if there
exists e € C(]0,1],C) such that the nonhomogeneous problem (41) (resp. (42))
has no solution.

Proof. Tt is shown in Lemmas 2.4 and 2.6 (or by direct verification) that the
non-homogeneous problems

2+ z=e(t), 2(0) = %z(l/?) + %z(l)

and
, 1 1
2 —z=ce€(t), 2(1) = 52(1/2) + 52(0)
have a unique solution z = Kje and z = Kse for every e € C([0, 1], C), with K3
and K3 compact in C([0,1],C). Consequently, each problem
1

2 =Xz =e(t), 2(0) = 52(1/2) + %z(l), (41)
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and
, 1 1
Z = Az =e(t), 2(1) = 52(1/2) + 52(0), (42)
can be written equivalently
z=AN+1)Kiz+ Kie, z=(A— 1)Koz + Kae,

and the Fredholm alternative follows from Riesz theory of linear compact op-
erators. O

2.12. Counterexamples to Corollaries 2.13 and 2.16 under
opposite vector fields sign conditions

We finalize the construction of our counterexamples.

In the case of a three—point boundary condition of initial type, we apply
Proposition 2.25 to the eigenvalue A\;c 20 = log4 + 27i of (37). Using Propo-
sition 2.25, let e € C([0,1],C) be such that the problem

2 (t) = (log4 + 2mi)z(t) + e(t), z(0) = %z(l/?) + %z(l)

has no solution. Setting z(t) = z1(t) + ix2(t), e(t) = e1(t) + iea(t), the equiv-
alent planar real problem

o' = f(t,2), #(0) = ga(1/2) + ga() (43)
with
F(t,u) = ((log Ay — 2mu + 1 (£), 27y + (log A)uz + e (£))
is such that

(ulf(t,u) = (log4)(ui + u3) +urer(t) + uzea(t)
> (log4)[uf® —[e(t)[Jul >0

when |u| > R for some sufficiently large R, and has no solution.

Applying Proposition 2.25 to the case of the eigenvalue Ar¢ 2,0 = —log4 +
2mi of (39), let e € C([0,1],C) be such that the problem

2 (t) = (—log4 + 2mi)z(t) + e(t), z(1) = %z(O) + 32(1/2)
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has no solution. Setting z(t) = z1(t) + ix2(t), e(t) = e1(t) + tea(t), the equiv-
alent planar real problem

o = f(t,2), #(1) = 3a(0) + 5w(1/2) (44)
with
F(t,u) = (~(log A)ur — 2muz + €1 (1), 271 — (log A)us + ea(t))
is such that

(ulf(t,u)) = —(logd)(uf +u3) +urer(t) + uze(t) (45)
< —(log4)|uf® + le(t)||u] <0,

when |u| > R for some sufficiently large R, and has no solution.

REMARK 2.26: The symmetry—breaking for the spectra of the three—point BVP
of terminal or initial type, explains the difference in the existence conditions
for the nonlinear problems with the three—point boundary conditions and with
the periodic conditions. The presence of the complex spectrum in the left or
the right half plane influences like a ghost the existence of solutions of the real
nonlinear systems. Of course, extra conditions upon f could provide existence
results with the sign conditions of the counterexamples.

REMARK 2.27: Our counterexamples do not cover the case of n odd. For n = 3,
if one adds the equations

2y = (log4)ws + #(ml + x9), 23(0) = %[5@,(1/2) + z3(1)],

or

rh = —(log4)xs + 10%4(1‘1 + x2), z3(1) = %[3?3(0) + 23(1/2)]

to (43) or to (44) respectively, the corresponding boundary value problems
have no solutions and the nonlinear parts verify the opposite sign conditions
to Corollaries 2.13 and 2.16 respectively. The counterexamples for n = 2 and
n = 3 easily provide counterexamples in any dimension n > 2.

REMARK 2.28: As easily seen, the periodic problem
2 =2miz + ¥ 2(0) = 2(1). (46)
has no solution. Letting z = x; 4 tx2, the equivalent real planar problem
2 = f(t,x), 2(0) = (1)
with

fi(t, x1, x0) = —2mwxg + cos(2nt), folt, x1,x2) = 2wy + sin(27t),
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has no solution, and is such that
(z|f(t,x)) = cos(2mt)xy + sin(27t)xs
For = RJcos(2n0),sin(270)] € OB (0 € [0,1]), we have
(x| f(t,2))

RJcos(2nt) cos(2m0) + sin(27t) sin(270))
Rcos[2n(t — 0)] (¢,0 €[0,1]),

which implies that, for each ¢t € [0, 1], (x|f(t,x)) takes both positive and neg-
ative values on 0Bpr. Hence, the assumptions of the existence theorems for
periodic problems given above are sharp.

2.13. An easy extension of Theorems 2.12 and 2.15

Let g : [0,1] x R™ x R™ — R™ be continuous. By replacing f by g in the equiv-
alent formulation as a fixed point problem and in the proofs, it is immediate
to prove the following extensions of Theorems 2.12 and 2.15.

THEOREM 2.29. If h : [0,1] — R satisfies conditions (h0),(h1), or conditions
h(0), h(2), h(3), and if there exists an open, bounded, convex neighborhood C
of 0 in R™ and an outer normal field v on OC such that

(v(u)|g(t,v,u)) <0, V(t,v,u) €[0,1] x C x 9C, (47)

then the problem

2(t)=g (L/Ot:r(s) ds,x(t)) (t €[0,1]), z(0) = /01 dh(s)x(s) (48)

has at least one solution taking values in C.

Proof. The main difference in the proof is that the nonlinear mapping Ny :
C° — CY occuring in the fixed point formulation is now defined by

Niz(t) =g (t, /Ot:r,, :c(t)) —z(t) (te€][0,1)),

and its value at ¢ € [0, 1] depends not only on z(¢) but on all values of z(s) for
s € [0,1]. Tt is easily checked that it does not modify the compactness properties
of the operator K1 N;. All the other arguments of the proof remain valid mutatis
mutandis because of the uniformity of assumption (47) with respect to v. O

THEOREM 2.30. If h : [0,1] — R satisfies conditions (h0), (h1), or conditions
h(0), h(2), h(4), and if there exists an open, bounded, conver neighborhood C
of 0 in R™ and an outer normal field v on OC such that

(v(u)|g(t,v,u)) >0, V(t,v,u) € [0,1] x C x dC,



150 J. MAWHIN AND K. SZYMANSKA—DEBOWSKA

then the problem

(1) =g<t, /Otx(s)ds,m(t)> (t € [0,1]), =(1) :/le(s) dh(s)  (49)

has at least one solution taking values in C.

Proof. Similar to Theorem 2.15 using the remarks in the proof of Theorem 2.29.
O

Of course, the following extensions, where the value of z’(t) depends this
time upon the values of z(s) for s € [t, 1], are obtained in a similar way.

THEOREM 2.31. If h : [0,1] — R satisfies conditions (h0),(h1), or conditions
h(0), h(2), h(3), and if there exists an open, bounded, conver neighborhood C
of 0 in R™ and an outer normal field v on OC such that

(v(u)lg(t,v,u)) <0, ¥ (t,v,u) €[0,1] x C x 9C,

then the problem

#(t)=g (t, / a(s) ds,xu)) (t<0.0), 2(0) = | " dn(s)a(s)

has at least one solution taking values in C.

THEOREM 2.32. If h : [0,1] — R satisfies conditions (h0), (h1), or conditions
h(0), h(2), h(4), and if there exists an open, bounded, convex neighborhood C
of 0 in R™ and an outer normal field v on OC such that

(v(u)|g(t,v,u)) >0, ¥ (t,v,u) € [0,1] x C x dC,

then the problem

t 1
d(t)=g <t/ x(s) ds,m(ﬂ) (t€[0,1]), z(1) = / (s) dh(s)
1 0
has at least one solution taking values in C.

3. Second order systems

3.1. Boundary conditions

We now consider the case of second order (1) where f : [0,1] x R" x R" — R"
is continuous. Again there is no loss of generality in taking the independent
variable in [0, 1].
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We consider in what follows the following particular nonlocal conditions:
the Dirichlet type nonlocal conditions

2(0) =0, x(l):/o 2(s) dh(s), (50)

2(0) =0, x(1)=/0 2(s) dh(s), (51)

the mixed type nonlocal conditions
1
z(0) =0, 2'(1) = / 2'(s) dh(s),
0
and the nonlocal conditions of terminal type
1
z(1) =0, 2'(1) = / z'(s) dh(s).
0

Neumann type nonlocal conditions are considered in [73, 102, 108] using
other continuation theorems.

3.2. Some nonlocal BVP for linear second order systems
We start with the Dirichlet type nonlocal BC.

LEMMA 3.1. If conditions (h0), (h1) or (h0), (h2), (h4) hold, then, for each
z € C°, the linear nonlocal Dirichlet type problem

2 — = 2(t), 2(0) = 0, 2(1) = /0 2(s) dh(s) (52)
has the unique solution
1 -1 1w
x(t) = (sinhl _/0 sinhsdh(s)) /0 /0 sinh(u — $)z(s) ds dh(u) sinht
+ /0 sinh(t — 5)2(s) ds. (53)
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Proof. By the variation of constants formula for each ¢ € R™, the initial value
problem

2" —x = z(t), z(0) =0, 2'(0) =,

has the unique solution
¢
z(t) = csinht + / sinh(t — s)z(s) ds.
0

It satisfies the boundary condition (50) if and only if ¢ satisfies the linear
algebraic system

1 1ot
csinh1 = c/ sinh ¢ dh(t) + / / sinh(t — s)z(s) ds dh(t),
0 o Jo

which has the unique solution

- (sinhl— /0 1 sinhsdh(s)>_l /O 1 /O " sinh(u — )2(s) ds dh(u).

if fol sinh s dh(s) # sinh 1. Following the reasoning of the corresponding Lemma
for first order systems, and noticing that sinh reaches its maximum on [0, 1] at
1, this is the case if conditions (h0), (hl) or conditions (h0), (h2), (h4) hold.
The result follows. O

Let C! be the Banach space of mappings x : [0,1] — R" of class C! with
the norm

2]l == max{[|z1llso; - - -, lTn lloos @1 ]lo0s - - - 127 lloo }-
Like in the first order case, formula (53) defines a compact linear mapping
K1:C0—>C’1, Z— .

In a similar way, one can prove the corresponding results for the mixed type
nonlocal BC.

LEMMA 3.2. If conditions (h0), (h1) or (h0), (h2), (h4) hold, then, for each
z € CY, the linear nonlocal mized type problem

1
' — = 2(t), 2(0) = 0, 2(1) = / 2(s) dh(s) (54)
0
has a unique solution x and the corresponding linear mapping
Ky:C'=CY 22

18 compact.
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3.3. Fixed point formulation of nonlinear nonlocal BVP
of the second order

Let now f : [0,1] x R™ x R®™ — R™ be continuous and define the mapping
N:C'— C% by

Nz = f(-,2(),2'(-)) — =().

It is easy to show that IV is continuous on C! and take bounded sets of C'* into
bounded sets of C°. Under the conditions of Lemma, 3.1,

Gy:=K,N:C'— !

is compact on bounded subsets of C!, and the nonlinear nonlocal Dirichlet
type problem

P = f(t a7, 2(0) =0, a(1) = /O 2(s) dh(s) (55)

is equivalent to the fixed point problem in C!
= Ghx. (56)
Similarly, under the conditions of Lemma 3.2,
Gy :=K)N:C' — C!

is compact on bounded subsets of C', and the nonlinear nonlocal mixed
type problem

1
2’ = f(t,xz,2"), 2/(0) =0, z(1) :/0 x(s) dh(s) (57)

is equivalent to the fixed point problem in C!
x = Gax. (58)

We want to apply to the equations (56) and (58) the Leray—Schauder exis-
tence result given in Proposition 2.8, where now X = C', so that the a priori
estimates are requested not only upon z but also upon z’.

3.4. Bernstein—Hartman lemma

In order to obtain the a priori estimates on z’ requested by Proposition 2.8
when an a priori estimate on x is known, we use the following lemma, a special
case of a more general result of Hartman [31, 32] for functions with values in
R™. For n = 1, the result, without condition (59), was proved by Bernstein in
1912 [6].
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LEMMA 3.3. Assume that x € C2([0,1],R") satisfies the following inequalities

[z(t)] < R,
and

2" (t)] <Al (O + K
for allt € 0,1] and some R >0, K >0 and v > 0 such that
YR < 1. (59)

Then, there exists M = M(R,~, K) such that for all t € [0, 1],

()] < M.

REMARK 3.4: For n > 2, the condition (59) is sharp, as shown by the example
of the sequence of functions, introduced by Heinz [34],

z, : [0,27] — R? t s (cosnt,sinnt) (n € N),
for which, with (-|-) the usual inner product and |-| the Euclidian norm in R,
[2n ()] =1, |2 (8)] = |27, (8)]* = n?,
so that that the conclusion of Lemma 3.3 does not hold for YR = 1 and T = 2,

as |z} (t)] = n can be arbitrary large.

3.5. Some nonlocal nonlinear BVP of Dirichlet or mixed
type

We first show that conditions with respect to w on the vector field f(t,u,v)
similar to those introduced for first order systems also lead to the existence of
solutions for second order systems.

THEOREM 3.5. Assume that conditions (h0),(h1) or conditions (h0),(h2),(h4)
hold, and that there exists an open, bounded, convex neighborhood C of 0 in R™,
and an outer normal vector field v on OC, such that

(v(w)|f(t,u,v)) >0, whenever u € OC and (v|v(u)) =0
and
[f(t,u,0)| <Al + K,

for some v > 0 such that YR < 1, K > 0, and R = max, g |u|. Then the
problem (55) has at least one solution such that z(t) € C for all t € [0,1].
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Proof. Let us consider the equation (56) and define first the open bounded
neighborhood ©; of 0 in C° by

O ={xecC’:z(t)eC, Vtelo1]}. (60)

As first step in applying Proposition 2.8, we show that for each A € (0,1), no
possible solution of the problem

2" —x = Nf(t,z,2") — ], (0) =0, z(1) = /0 x(s) dh(s), (61)

belongs to 9. Let A € (0,1) and z(t) € 9 be a possible solution to (61).
Then z(t) € C for all t € [0,1] and there is some ¢y € [0, 1] such that x(to) € OC.
Therefore, for all ¢ € [0, 1],

§io (1) 7= (v(z(to))[2(1)) < (v(z(to)](to)) = & (to), Y € [0,1],

which means that the real function &, : [0, 1] — R reaches its maximum at tg.
Because of the first boundary condition, we cannot have to = 0. If ¢y € (0,1),

0= &, (to) = (v(x(to))[2'(to))and

0 > & (to) = (v(z(to))lz" (o))
= (1= X {w(x(to))](to)) + Mr(z(to))| f (to, x(to), 2'(t0)) > 0,

a contradiction. Finally, if tc = 1, we use the second boundary condition
like in the nonlocal terminal like problem for first order systems to obtain the
contradiction.

Now, as z(t) € C for all ¢ € [0,1], we have, for all ¢ € [0, 1],

2" ()] = [(L=Xz(t) + Af(t,z(t),2'(t))|
< RAAZOP+K =2 )+ (R+K)

and Lemma 3.3 implies the existence of M > 0 depending only upon R,~y, K
such that |z/(t)| < M for all t € [0,1]. If we set

Qo:={zeCl:|2/(t)| < M +1, YVt [0,1]},

and Q = Q1 N Oy, all the assumptions of Proposition 2.8 are satisfied and the
conclusion follows. O

In a similar way, we can prove the following existence result for the prob-
lem (57).

THEOREM 3.6. Assume that conditions (h0),(h1) or conditions (h0),(h2),(h4)
hold, and that there exists an open, bounded, convex neighborhood C of 0 in R™,
and an outer normal vector field v on OC, such that

(v(u)|f(t,u,v)y >0, whenever u € OC, (vlv(u)) =0
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and
|f(t,u,0)| < Alof* + K,

for some v > 0 such that YR < 1, K > 0, and R = max, g |u|. Then the
problem (57) has at least one solution such that z(t) € C for all t € [0,1].

The choice of C = By provide the corresponding special cases.

COROLLARY 3.7. Assume that conditions (h0), (h1) or conditions (h0), (h2),
(h4) hold, and that there exists R > 0 such that

(u|f(t,u,v)) >0, whenever u € 0B and (v|u) =0
and
|t u,0)] < Aol + K,

for some v > 0 such that YR < 1, and K > 0. Then the problem (55) has at
least one solution such that x(t) € Bg for all t € [0,1].

Special cases of Corollary 3.7 can be found in [100].

COROLLARY 3.8. Assume that conditions (h0), (h1) or conditions (h0), (h2),
(h4) hold, and that there exists R > 0 such that

(u|f(t,u,v)) >0, whenever u € dBg and (v|u) =0
and
(8 u,0)| < Ao + K,

for some v > 0 such that YR < 1, and K > 0. Then the problem (57) has at
least one solution such that x(t) € Br for all t € [0,1].

The assumptions in Corollaries 3.7 and 3.8 can be slightly improved by
taking in account the curvature of the ball, in contrast with the general case of
convex sets which may have flat curvature almost everywhere (polyhedra). The
corresponding conditions were first obtained by Hartman [31, 32] for Dirichlet
boundary conditions, and extended by various authors to other classical two—
point BC like mixed, Neumann or periodic, and to some four-point boundary
conditions and component-wise Bernstein-Nagumo conditions by Caldbek [10].

THEOREM 3.9. Assume that conditions (h0),(h1) or conditions (h0),(h2),(h4)
hold, and that there exists R > 0 such that

[v|2 + (u| f(t,u,v)) >0, whenever u € dBr and (v|u) = 0
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and
|f(t,u,0)| < v)* + K,

for some v > 0 such that YR < 1, and K > 0. Then the problem (55) has at
least one solution such that x(t) € Br for allt € [0,1].

Proof. Following the lines of the proof of Theorem 3.5, we define first the open
bounded neighborhood €, of 0 in C° by

Q) ={xecC’:|2(t) < R, Vt €[0,1]}.

As first step in applying Proposition 2.8, we show that for each A € (0,1), no
possible solution of the problem

1
2" —x = Nf(t,z,2") — z], (0) =0, z(1) = /0 x(s) dh(s), (62)

belongs to 9. Let A € (0,1) and z(t) € 9, be a possible solution to (62).
Then |z(t)|*> < R? for all t € [0,1] and there is some to € [0, 1] such that
|z(to)|? = R%. Therefore the function £(¢) := |z(¢)|*/2 reaches its maximum
at ty. Because of the first boundary condition, we cannot have t5 = 0. If
to € (0,1), 0 =¢'(to) = (x(to)|2'(to))and
0 > & (to) = [2'(to)]* + (a(to)|2" (to))
> A (to)|” + (1 = N)|z(to)[* + Mz(to)| f (to, 2(t0), 2 (t0)) > 0,

a contradiction. Finally, if {5 = 1, we use the second boundary condition and
its consequence

2(1)] < / (2(s)| dh(s),

and the nonlocal terminal type problem for first order systems to obtain the
contradiction. The remaining part of the proof is exactly similar to that of
Theorem 3.5. O

In a similar way, we prove the corresponding result for the mixed case.

THEOREM 3.10. Assume that conditions (h0),(h1) or conditions (h0),(h2),(h4)
hold, and that there exists R > 0 such that

[v|2 + (u| f(t,u,v)) >0, whenever u € dBr and (v|u) =0
and
[t u,0)| < ylof® + K,

for some v > 0 such that YR < 1, and K > 0. Then the problem (57) has at
least one solution such that x(t) € Br for allt € [0,1].
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3.6. Other nonlocal nonlinear BVP of mixed type
Let us consider the nonlocal BVP of initial type

2 = f(t,z,2'), z(0)=0, 2/(0) :/0 2’ (s) dh(s). (63)

The following existence theorem is given in [75]. This time the vector field
condition similar to the one for first order systems is made on f(¢,u,v) with
respect to v.

THEOREM 3.11. Assume that h satisfies conditions (h0), (h1), or conditions
(h0), (h2), (h3) and that there exists an open, bounded, convex neighborhood C
of 0 in R™ and an outer normal field v to OC such that

)| f(t,u,v)) <0, ¥ (t,u,v) €[0,1] x C x dC. (64)

Then the problem (63) has at least one solution x such that x(t) € C and
2'(t) € C for allt € [0,1].

Proof. We set y = 2/, so that, using the first boundary condition z(0) = 0,

o) = [ () ds = / () ds,

and the problem (63) can be written, in terms of y,

t 1
v =1 (o [ o) dsa)). w0 = [ uts)ance), (63

0 0
The result follows then from Theorem 2.29 and the fact that, by the convexity
of C, fgy(s)dSGCfor all t € [0, 1]. O

A similar result, with a similar proof using Theorem 2.30, holds for the
following nonlinear BVP of mixed type.

THEOREM 3.12. Assume that h satisfies conditions (h0), (h1), or conditions
(h0), (h2), (h4) and that there exists an open, bounded, convex neighborhood C
of 0 in R™ and an outer normal field v to OC such that

()| f(t,u,v)) >0, V¥ (t,u,v) €[0,1] x C x dC. (66)
Then the problem

2 = f(t,z,2"), z(0)=0, 2'(1) :/0 2'(s) dh(s)

has at least one solution x such that x(t) € C and 2'(t) € C for all t € [0,1].
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Finally, using Theorems 2.31 and 2.32 and the fact that x(t) = ft

L2 (s)ds =

flt y(s) ds, we obtain in a similar way the following results.

THEOREM 3.13. Assume that h satisfies conditions (h0), (h1), or conditions
(h0), (h2), (h3) and that there exists an open, bounded, convex neighborhood C
of 0 in R™ and an outer normal field v to OC such that condition (64) holds.
Then the problem

2 = f(t 2, a), x’(O):/O 2/(s) dh(s), 2(1) =0

has at least one solution x such that z(t) € C and 2'(t) € C for all t € [0,1].

THEOREM 3.14. Assume that h satisfies conditions (h0), (h1), or conditions
(h0), (h2), (h4) and that there exists an open, bounded, convex meighborhood
C of 0 in R™ and an outer normal field v to OC such that the condition (66)
holds. Then the problem

1
2 = f(t,z,2'), (1) =0, 2'(1) :/0 2’ (s) dh(s)

has at least one solution x such that x(t) € C and 2'(t) € C for all t € [0,1].

Special cases of those results when C' = Bpg as well as results for other
similar nonlocal boundary conditions can be found in [59, 101, 103, 104].
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