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On elliptic curves of bounded degree in
a polarized Abelian variety
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Abstract. For a polarized complex Abelian variety A we study the
function NA(t) counting the number of elliptic curves in A with degree
bounded by t. This extends our previous work in dimension two. We
describe the collection of elliptic curves in the product A = S × F
of an Abelian variety and an elliptic curve by means of an explicit
parametrization, and in terms of the parametrization we express the
degrees of elliptic curves relative to a split polarization. When this
is applied to the self product A = Ek of an elliptic curve, it turns
out that an asymptotic estimate of the counting function NA(t) can be
obtained from an asymptotic study of the degree form on the group of
endomorphisms of the elliptic curve.
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1. Introduction

Let A be a complex Abelian variety, of dimension n > 1, endowed with a
polarization. With the expression ‘elliptic curve in an Abelian variety’ we
mean a one-dimensional subtorus. Every algebraic curve in A has a degree
with respect to the polarization, and the following finiteness theorem holds: for
every integer t ≥ 1 the collection of elliptic curves E ⊂ A such that deg(E) ≤ t
is finite. In dimension n = 2 this was known to Bolza and Poincaré, and a
modern account is in the paper of Kani [7]. For Jacobian varieties of arbitrary
dimension the theorem was proved by Tamme and was brought to an effective
form in another paper of Kani [6]. For an arbitrary Abelian variety A the
theorem follows from a general result proved by Birkenhake and Lange in [1], to
the effect that the collection of all Abelian subvarieties with bounded exponent
in A is finite.

Denote by NA(t) the number of elliptic curves in A with degree bounded by
t. In a previous paper [4], we presented an approach to the counting function
NA(t) in dimension n = 2. In the most relevant situation, when the Abelian
surface is the product E × E′ of two elliptic curves, the approach was based
on explicit coordinates in the Néron Severi group and an explicit Diophantine
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equation for the collection of elliptic curves in the Abelian surface. We have
to correct an expression given in that paper for the quantity δ that is required
in the main theorem (as is explained in §3.2). This leaves the statement of the
theorem formally unaltered, and the same is for its proof and its consequences.

The main aim of the present paper is to study the function NA(t) in ar-
bitrary dimension. The problem of bounding this function is invariant under
isogenies, and the most relevant case is when the Abelian variety A is the self
product Ek of an elliptic curve, with a split polarization (the sum of pullback
polarizations from the factors). An approach to the 3-dimensional counting
function, still based on explicit Diophantine equations, was investigated in [3].
Here we present a different approach, which is based on parametrization rather
than equations in coordinates.

We study the collection of elliptic curves in the product S×F of an Abelian
variety and an elliptic curve. We show that the subcollection consisting of the
elliptic curves which are not contained in S×{0} and are different from {0}×F
is bijectively parametrized by a certain set of parameter data (Theorem 5.1)
and that, with respect to a split polarization, the degrees of the correspond-
ing elliptic curves in S × F can be expressed in terms of the parameter data
(Theorem 5.2). When these results on parametrization are applied to the self
product Ek of an elliptic curve, it turns out that, in this case, an estimate of
the counting function NA(t) can be obtained from an asymptotic study of the
degree form f 7−→ deg(f) on the group of endomorphisms of the elliptic curve
(that is provided in Proposition 4.1). The tool for this is the same result from
Number Theory, concerning the number of lattice points in a bounded region
in the real plane, that was used in the previous work on the 2-dimensional
counting function.

Here is the fundamental information that is needed in our asymptotic esti-
mate of the counting function. Define:

m the minimum of the degrees of the factors of Ek, the various
copies of E, with respect to the given polarization;

d the minimum degree of an isogeny E → E;

δ when the elliptic curve has complex multiplication, the (neg-
ative) discriminant of the degree form on the endomorphism
group End(E).

Assume moreover that k ≥ 2. In terms of these data, we prove (in §6) the
following main result:

Theorem 1.1. There is an asymptotic estimate

NEk(t) = C tr + O(ti),

where r = k if the curve admits no complex multiplication, and r = 2k − 1 if
the curve has complex multiplication, the constant C being given by
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2k/(k + 1)
(
√

d)k−1 mk
for r = k,

(2π)k−1/k

(
√
−δ)k−1 m2k−1

for r = 2k − 1,

the exponent i being

k − 1 for r = k, 2k − 3 + 2e for r = 2k − 1,

where e = 33/104 = 0.317 . . . .

Finally we show that the result above for the self product of an elliptic
curve implies some result holding for an arbitrary polarized Abelian variety
(Proposition 7.1).

2. Some preliminary material

2.1. Elliptic curves as homology classes

Let A be an Abelian variety, of dimension n > 1. Every curve C ⊂ A determines
a homology class [C] in H2(A, Z). For elliptic curves (subgroups), the induced
correspondence {

elliptic curves in A
}
−→ H2(A, Z)

is injective and the homology classes γ = [C] in H2(A, Z) corresponding to
elliptic curves in A satisfy the following basic properties:

− γ is primitive (indivisible),

− γ ·H > 0 for some (every) ample divisor H.

These results are certainly well known (the last property is obvious), however
a proof can be found in [3], §2.

In dimension n = 2, the homology classes of elliptic curves in the Abelian
surface A belong to the Néron Severi group NS(A) ↪→ H2(A, Z), and are
characterized in that group by means of the two properties above together
with the numerical condition (cf. [7], Theorem 1.1):

− γ · γ = 0.

2.2. Degree with respect to a polarization

Let L in NS(A) be an ample divisor class, representing a polarization of A.
For every curve C ⊂ A the degree with respect to the polarization is

deg(C) := C · L.

Let A be a polarized Abelian variety (we usually omit an explicit reference
to the polarization). The following is a classical result: for every integer t ≥ 1
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the collection of elliptic curves E ⊂ A such that deg(E) ≤ t is finite. It is a
consequence of a general result proved by Birkenhake and Lange in [1], to the
effect that the collection of all Abelian subvarieties with bounded exponent in
A is finite.

Let us recall some definitions. The polarization defines a natural isogeny φ :
A→ Â to the dual variety. The order of ker(φ) is the degree of the polarization
and the exponent of ker(φ) is called the exponent of the polarization on A.
Clearly the exponent is a divisor of the degree. For an Abelian subvariety E
of A one has the exponent and the degree of the induced polarization. If E
is an elliptic curve in A we know that the degree of the curve is equal to the
degree of the induced polarization. So elliptic curves with bounded degree have
bounded exponent, and the theorem follows.

We define the function
NA(t)

counting the number of elliptic curves in A with degree bounded by t.

2.3. Product Abelian surfaces

Consider an Abelian surface of the form E×E′ where E,E′ are elliptic curves.
There is a natural isomorphism

Z2 ⊕Hom(E,E′) ∼−→ NS(E × E′)

(a, b; f) 7−→ (b− 1)[Eh] + (a− deg(f))[E′
v] + [Γ−f ],

where Eh := E×{0} and E′
v := {0}×E′ are the ‘horizontal’ and the ‘vertical’

factor, and Γ−f is the graph of the homomorphism −f . The intersection form
on NS(E × E′) is expressed as

D ·D′ = ab′ + ba′ −
(
deg(f + f ′)− deg(f)− deg(f ′)

)
if the divisors D and D′ arise as above from the data (a, b; f) and (a′, b′; f ′).

This is a special case of the description of correspondences between two
curves in terms of homomorphisms between the associated Jacobian varieties
(cf. e.g. [2], Theorem 11.5.1) and also is a special case of a result of Kani ([8],
Proposition 61) for the Néron Severi group of a product Abelian variety.

2.4. Elliptic curves in a product Abelian surface

Using the description of NS(E ×E′) in §2.3 above and the characterization of
elliptic curves in an Abelian surface in §2.1, we can now describe the collection
of elements (a, b; f) in the group Z2⊕Hom(E,E′) such that the corresponding
divisor class [D] is the class of an elliptic curve in E × E′.
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Besides the condition of primitivity of the element (a, b; f), the numerical
condition D ·D = 0 becomes

ab = deg(f)

and the positivity condition D ·H > 0 is equivalent to

a + b > 0

(using the ample divisor H := Eh + E′
v).

If on E×E′ we choose a split polarization L = mEh +nE′
v, where m,n are

positive integers, then the degree of divisors with respect to the polarization is
given by the linear function

deg(D) = am + bn

if D corresponds to (a, b; f).
When E and E′ are not isogenous then clearly Eh and E′

v are the only
elliptic curves in E × E′. When E and E′ are isogenous, the graphs of homo-
morphisms E → E′ form an infinite collection of elliptic curves in E × E′.

2.5. Reducibility

We will make use of the Poincaré reducibility theorem with respect to a polar-
ization, in the following form.

If A is a polarized Abelian variety and B is an Abelian subvariety of A,
there is a unique Abelian subvariety B′ of A such that the sum homomorphism
B×B′ → A is an isogeny and the pullback polarization on B×B′ is the sum of
the pullback polarizations from B and B′ (cf. [2], Theorem 5.3.5 and Corollary
5.3.6).

2.6. A result from Number Theory

The following is a classical problem in Number Theory, originating from Gauss’
circle problem. Given a compact convex subset K in R2, estimate the number
N := card (Z2∩K) of integer vectors (or lattice points) belonging to the convex
set. This number is naturally approximated by the area A of the subset, and
then the question is to estimate the (error or) discrepancy N−A. The following
estimate is due to Nosarzewska [9]. If K is a compact convex region in R2 of
area A whose boundary is a Jordan curve of length L then

N ≤ A +
1
2
L + 1.
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We will apply this result through the following consequence. For every scale
factor t ∈ R≥0 denote by N(t) the number of lattice points in the deformed
region

√
t K. Then

N(t) ≤ A t +
L

2
t1/2 + 1.

The inequality above is valid for arbitrary t. But in an asymptotic estimate

N(t) = A t + O(te)

(an implicit inequality holding for t� 0) the exponent e may be lowered, and
precisely one can take

e = 33/104 = 0.317 . . .

This follows from a result of Huxley [5].

3. Summary of previous results, with correction

3.1. The homomorphism group and the degree form

For the basic theory of elliptic curves we refer to [10]. Let E,E′ be elliptic
curves. The homomorphism group Hom(E,E′) is a free abelian group of rank
at most 2, and the degree map

Hom(E,E′) −→ Z

such that f 7−→ deg(f) is a quadratic form.
Assume now that the elliptic curves E,E′ are isogenous, i.e. that the group

Hom(E,E′) has rank > 0. Denote by

d the minimum nonzero value of the degree form

and let ϕ : E −→ E′ be an isogeny of minimum degree d.
If the group Hom(E,E′) has rank 1, one has the isomorphism Z ∼−→

Hom(E,E′) given by x 7−→ xϕ. For every x ∈ Z one has deg(xϕ) = x2d
and this describes the degree form.

Assume now that Hom(E,E′) has rank 2. This happens if and only if E
has complex multiplication, and the same is for E′. In this case there is an
isomorphism Z2 ∼−→ Hom(E,E′) and the degree form is expressed as a binary
quadratic form. So, when the elliptic curves have complex multiplication, we
denote by

δ the discriminant of the degree form.

Explicit descriptions of the homomorphism group and the degree form, in pres-
ence of complex multiplication, are given in §3.3.

Remark that both d and δ only depend on the unordered pair E,E′. This
is because the isomorphism Hom(E,E′) ←→ Hom(E′, E), sending a homo-
morhism f to the dual homomorphism f̂ , preserves the degree forms.
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3.2. Estimate for the counting function

Consider a product Abelian surface E ×E′ endowed with a split polarization.
Assume that E,E′ are isogenous elliptic curves. Together with the invariants
d and δ introduced in §3.1 above, we also define

m the minimum of deg(E) and deg(E′), the degrees with respect
to the polarization.

Theorem 3.1. If E,E′ are isogenous, there is an asymptotic estimate

NE×E′(t) = C tr−1 + O(ti),

with r = 3 when E,E′ admit no complex multiplication and r = 4 when E,E′

have complex multiplication, the constant C being given by
π

4
√

d m2
for r = 3,

π

3
√
−δ m3

for r = 4,

the exponent i being

0 for r = 3, 85
52 = 1.634 . . . for r = 4.

The proof given in [4], §5.2, actually works without modification with the
new definition of the quantity δ and independently of the order chosen for the
factor curves. While the expression for δ given in [ibid.], §3.2, needs to be
corrected, as is explained in the following section.
Remark 3.2: In the statement of Theorem 3.1 the exponent which gives the
order of growth of the asymptotic estimate has been written as r − 1 in order
to remind the interpretation of r as the rank of the group NS(E × E′). In
higher dimensions such a purpose seems not to be meaningful any more. It
must be noticed moreover that the estimate in Theorem 3.1 is slightly sharper
than the estimate which is obtained from Theorem 1.1 in the special case k = 2
(in the earlier estimate the numerical part of the constant C is smaller and the
exponent i is smaller in the case with no complex multiplication).

3.3. Computing the degree form

We use the representation of an elliptic curve E as the quotient C/Λ where
Λ = 〈1, τ〉 is the lattice in C associated to a modulus τ for E, a complex
number with positive imaginary part, that is determined up to the natural
action of SL(2, Z).

Let E and E′ be elliptic curves, that we identify with C/Λ and C/Λ′ with
Λ = 〈1, τ〉 and Λ′ = 〈1, τ ′〉 for suitable moduli τ and τ ′. There is the natural
identification

Hom(E,E′)←→ {α ∈ C s.t. αΛ ⊆ Λ′} =: H.
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Assume that there is an isogeny E → E′. In this case, according to [4],
Lemma 3.1, we can choose moduli τ and τ ′ such that

τ ′ = `τ and ` =
p

q

with p, q coprime positive integers. If the homomorphism group Hom(E,E′)
has rank 1 the situation is clear (see §3.1).

Assume now that Hom(E,E′) has rank 2. Then E has complex multipli-
cation, and the same is for E′. Therefore the modulus τ is algebraic of degree
2 over Q. So, assume that τ satisfies the equation

τ2 +
u

w
τ +

v

w
= 0

with u, v, w in Z such that w > 0 and (u, v, w) = (1) and moreover

u2 − 4vw < 0

as τ is an imaginary complex number.
Remark 3.3: In the previous paper [4] in Lemma 3.4 we made a wrong as-
sertion (the error in the proof is the claim that certain three coefficients are
always coprime). Although some (slightly different) statement of the same kind
is nevertheless true, it turns out to be however unnecessary for the purposes
of the paper. This is because the subsequent statements, Proposition 3.5 and
Proposition 3.6, and their proofs, can be slightly modified so to provide general
expressions for the degree form and its discriminant. The new statements are
given just below.

From the pairs w, p and v, q, dividing in each pair by the greatest common
divisor, we obtain coprime pairs

w̄, p̄ and v̄, q̄.

Moreover, since p, q are coprime, we can write

u = pp′ + qq′

for suitable integers p′, q′.

Proposition 3.4. An explicit isomorphism Z2 ∼−→ H is given by

(x, y) 7−→ (xp + yp̄q̄q′) + (yw̄q̄)(`τ).

Proof. The part of the proof which has to be adjusted is the analysis of the
conditions for a complex number α = a + b(`τ) to be an element of H, namely
the conditions that the rational numbers b(p/q)(v/w) and a(q/p)− b(u/w) be
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integers. In particular, this requires that bp(v/w) and bp(u/w) are integers.
Since u, v, w are coprime, it follows that w | bp and hence that w̄ | b.

The full condition (bp/w)(v/q) ∈ Z means that q | (bp/w)v, that is q̄ |
(bp/w) = (b/w̄)p̄, and hence that q̄ | (b/w̄) and w̄q̄ | b. So the first condition
above is satisfied if and only if one has b = w̄q̄y with y ∈ Z.

Then the second condition above requires that aq− (bp/w)u belongs to pZ,
that is aq − (p̄q̄)yu ∈ pZ, that is (p̄q̄)yu = aq + a′p for some integer a′. Since
p, q are coprime, the solutions are of the form (a′, a) = p̄q̄y(p′, q′) + x(−q, p)
with x ∈ Z. Thus a = xp + yp̄q̄q′, as in the statement.

Proposition 3.5. The degree of the homomorphism f : E → E′ corresponding
to (x, y) ∈ Z2 is given by

deg(f) = x2(pq) + xy(p̄q̄)(qq′ − pp′) + y2(p̄q̄)(−p̄q̄p′q′ + v̄w̄).

The discriminant of the quadratic form f 7→ deg(f) on Hom(E,E′) is
equal to

δ = (p̄q̄)2
(
u2 − 4vw

)
.

Proof. What is only to be adjusted is the computation of deg(f) as∣∣∣∣a −b`(v/w)
b (a/`)− b(u/w)

∣∣∣∣ =
∣∣∣∣xp + yp̄q̄q′ −yp̄v̄

yw̄q̄ xq − yp̄q̄p′

∣∣∣∣ ,
where we used the expressions for a, b given in the previous proposition: it
leads to the expression given in the statement. It is also easy to calculate the
discriminant δ of this quadratic form in x, y.

When the elliptic curves are isomorphic, the preceding formulas are simpli-
fied. In this case we have p = q = 1 and we can choose p′ = 0, q′ = u. Thus,
in this particular case, the expressions given in the previous paper are indeed
correct.

4. Homomorphisms with bounded degree

We present a result on the asymptotic behavior of the degree form

Hom(E,E′) −→ Z

that will be needed in the following. Define

Φ(t)

to be the number of homomorphisms f having deg(f) ≤ t.



114 LUCIO GUERRA

Proposition 4.1. Let E,E′ be isogenous elliptic curves. The function Φ(t)
admits the following asymptotic estimates:

(i) if E,E′ are without complex multiplication then

Φ(t) =
2√
d
t1/2 + O(1)

where d is the minimum nonzero value of the degree form;

(ii) if E,E′ have complex multiplication then

Φ(t) =
2π√
−δ

t + O(te)

where δ is the discriminant of the degree form and e is the exponent
appearing in §2.6.

Proof. We have seen in §3.1 how the degree form f 7−→ deg(f) can be expressed
in terms of coordinates. (i) In this case there is one coordinate x and the
degree form is expressed as x 7−→ x2d; the inequality x2d ≤ t admits precisely

2
⌊

1√
d
t1/2

⌋
+ 1 solutions. (ii) In this case, in terms of two coordinates, the

degree form is expressed as a positive definite quadratic form Q(x, y) with
discriminant δ < 0. Because of the result from Number Theory quoted in §2.6,
the number of integer solutions of the inequality Q(x, y) ≤ t admits an estimate
of the form At + O(te) where A is the area of the ellipse Q(x, y) ≤ 1 in R2,
that is given by 2π/

√
−δ.

5. Elliptic curves in a product Abelian variety

Let S be an Abelian variety, let F be an elliptic curve, and consider the product
Abelian variety A = S × F . We denote, for an arbitrary Abelian variety, with
the symbol

EC(A)

the collection of homology classes γ = [C] in H2(A, Z) corresponding to elliptic
curves C in A. We now describe the collection EC(A) for a product Abelian
variety A = S × F . Denote by Sh := S × {0} and by Fv := {0} × F the
horizontal and the vertical factors in A.

If C is an elliptic curve in A, different from Fv, then D = pr1(C) is an elliptic
curve in S, corresponding to an element γ = [C] in the Néron Severi group
NS(D × F ). This group is described (see §2.3) by means of an isomorphism

Z2 ⊕Hom(D,F ) ∼−→ NS(D × F ).
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There is moreover the composite isomorphism

Z2 ⊕Hom(F,D) ∼−→ NS(F ×D) ∼−→ NS(D × F )

where the right hand arrow is induced by the obvious isomorphism j : F×D −→
D × F , and this composite isomorphism turns out to be

(u, v; g) 7−→ (u− deg(g))[Dh] + (v − 1)[Fv] + [j∗Γ−g].

In order to take into account at one time all possible elliptic curves D in
S, we introduce the product Z2 × Hom′(F, S), where the superscript means
nonzero homomorphisms, and the correspondence

C : Z2 ×Hom′(F, S) −→ H2(S × F, Z)

C(u, v; g) := (u− deg(g))[D(g)h] + (v − 1)[Fv] + [j∗Γ−g]

where by definition D(g) = g(F ) and deg(g) denotes the degree of the induced
isogeny F → g(F ). Here j denotes the obvious isomorphism j : F×S −→ S×F .

So we define the set of “parameter data”

D(S × F )

consisting of all elements (u, v; g) in Z2 ×Hom′(F, S) such that

(u, v; g) is primitive, uv = deg(g) and u + v > 0.

Here the word primitive clearly refers to the module Z2 ⊕Hom(F, S).

Theorem 5.1. There is a bijective correspondence

D(S × F )←→ EC(S × F ) \
(
EC(Sh) ∪

{
[Fv]

})
induced by the correspondence C defined above.

Proof. Let C be an elliptic curve in S×F different from Fv. The projection of
C into S is an elliptic curve D and the class of C in NS(D×F ) is represented
by a divisor of the form (u − deg(f))Dh + (v − 1)Fv + j∗Γ−f where f is a
homomorphism F → D and the conditions (u, v; f) primitive and uv = deg(f)
are satisfied. Note that f = 0 if and only if C = Dh is contained in Sh

(since C 6= Fv). Because the condition uv = deg(f) = 0 admits two primitive
solutions, (1, 0; 0) and (0, 1; 0), corresponding to the classes of Dh and Fv,
respectively. If g denotes the composite homomorphism F → D ↪→ S and
if f 6= 0 then D(g) = D and the class of C arises from the element (u, v; g)
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belonging to D(S × F ). This shows that the correspondence in the statement
is surjective.

In order to prove that the correspondence is injective, consider the homo-
morphism H2(S × F, Z) −→ H2(S, Z) induced by the first projection map. It
maps [C(u, v; g)] 7−→ u[D(g)]. If (u, v; g) and (u′, v′; g′) define the same class
in H2(S × F, Z) then u[D(g)] = u′[D(g′)]. Since g, g′ 6= 0 then u, u′ 6= 0
and therefore [D(g)] = [D(g′)] and u = u′, as the class of an elliptic curve
is primitive. And then D(g) = D(g′) since the homology class uniquely de-
termines the elliptic curve. Furthermore, working with the homomorphism
H2(S×F, Z) −→ H2(F, Z) induced by the second projection map, we also find
that v = v′.

Let D be the elliptic curve D(g) = D(g′). The inclusion D ↪→ S induces
injective homomorphisms Hi(D, Z) −→ Hi(S, Z) for i = 1, 2. Therefore the
homomorphism H2(D×F, Z) −→ H2(S×F, Z) is injective too. Hence (u, v; g)
and (u′, v′; g′) define the same class in H2(D× F, Z) and it follows that g = g′

also holds.

Assume now that on A = S × F we are given a split polarization

L = ΘS + nΘF

where ΘS and ΘF denote the pullbacks to A of a polarization on S and the
principal polarization on F , respectively, and where n is a positive integer. If
the polarization on S is represented by Θ then ΘS is represented by Θ × F ;
similarly, ΘF is represented by S × {0}.

We also consider the particular case when S = E1 × · · · × Ek is a product
of elliptic curves, endowed with a split polarization

ΘS = m1Θ1 + · · ·+ mkΘk,

where Θi denotes the pullback to A of the principal polarization on the ith
factor and the coefficients mi are positive integers. Note that in this case a ho-
momorphism g : F −→ S is given by a sequence h1, . . . , hk of homomorphisms
hi : F −→ Ei.

Theorem 5.2. The degree function D(S × F ) −→ Z is given by

deg C(u, v; g) = u D(g) ·Θ + n v.

In the particular case S = E1 × · · · × Ek, one has the expression

deg C(u, v; g) =
m1 deg(h1) + · · ·+ mk deg(hk)

v
+ n v.
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Proof. We need the following intersection numbers:

D(g)h · L = D(g) ·Θ,

Fv · L = n,

j∗Γ−g · L = deg g∗(Θ) + n = deg(g) D(g) ·Θ + n .

Therefore for the intersection number C(u, v; g) · L we find the expression

(u− deg(g)) D(g) ·Θ + (v − 1)n + deg(g) D(g) ·Θ + n = u D(g) ·Θ + n v.

In the particular case, we need the following intersection number:

D(g) ·Θ = m1#g h−1
1 (0) + · · ·+ mk#g hk

−1(0)

= m1
deg(h1)
deg(g)

+ · · ·+ mk
deg(hk)
deg(g)

.

Hence, because of the condition uv = deg(g) 6= 0, we have for deg C(u, v; g)
the expression

u
m1 deg(h1) + · · ·+ mk deg(hk)

deg(g)
+ n v

=
m1 deg(h1) + · · ·+ mk deg(hk)

v
+ n v.

6. On the number of elliptic curves

Let A = Ek, with k ≥ 2, be the kth self product of an elliptic curve E, endowed
with a split polarization L = m1Θ1+· · ·+mkΘk, where Θi denotes the pullback
to A of the principal polarization on the ith factor and the coefficients mi are
positive integers.

We keep the notation of §5, writing A = Ek−1×E, and defining (Ek−1)h :=
Ek−1×{0} and Ev := {(0, . . . , 0)}×E. Let moreover m be the minimum among
the coefficients m1, . . . ,mk.

The set EC(Ek) is the disjoint union of EC((Ek−1)h) ∪
{
[Ev]

}
and the

complementary subset which, according to Proposition 5.1, is bijective to the
set of parameter data D(Ek). It follows that the number NEk(t) is, for t� 0,
the sum of

NEk−1(t) + 1

and the number of elements of the set{
(u, v; g) in D(Ek) s.t. deg C(u, v; g) ≤ t

}
.
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There is the following chain of injective maps{
(u, v; g) prim. s.t. u + v > 0, uv = deg(g) 6= 0 and deg C(u, v; g) ≤ t

}
↓{

(v;h1, . . . , hk−1) s.t. 1 ≤ mkv ≤ t,

1 ≤ m1 deg(h1) + · · ·+ mk−1 deg(hk−1)
v

≤ t
}

↓{
(v;h1, . . . , hk−1) s.t. 1 ≤ v ≤ t

m
, deg(hi) ≤ v

t

m

}
so the number of elements of the set of parameter data in the top of the chain
is bounded above by ∑

1≤v≤ t
m

Φ
(

vt

m

)k−1

where Φ(t) is the function which counts endomorphisms of E having degree
bounded by t. Let us denote the bounding function above with the symbol

ΦEk(t).

Lemma 6.1. There is an asymptotic estimate

ΦEk(t) = C tr + O(ti)

with the same constant C and the same exponents r and i which are defined in
the statement of Theorem 1.1.

Proof. This is obtained applying Proposition 4.1 for the function Φ which ap-
pears in the definition of ΦEk .

If the elliptic curve E admits no complex multiplication, for the bounding
function we have the expression

∑
1≤v≤ t

m

{
2√
d

(
vt

m

)1/2

+ O(1)

}k−1

where the integer d is the minimum degree of an isogeny E → E. The expres-
sion above can be written as(

2√
dm

)k−1
(

t(k−1)/2
∑

1≤v≤ t
m

v(k−1)/2

)
+

∑
1≤v≤ t

m

O
(
(vt)(k−2)/2

)
.
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Now, applying the estimate for a sum of powers of integers given in Remark 6.2
below, we substitute∑

1≤v≤ t
m

v(k−1)/2 =
2

k + 1

( t

m

)(k+1)/2

+ O
(
t(k−1)/2

)

and, writing
∑

1≤v≤ t
m

v(k−2)/2 = O
(
tk/2

)
, we substitute

∑
1≤v≤ t

m

O
(
(vt)(k−2)/2

)
= O

(
t(k−2)/2

∑
1≤v≤ t

m

v(k−2)/2

)
= O

(
tk−1

)
and we end with the asymptotic estimate

2k/(k + 1)
(
√

d)k−1 mk
tk + O(tk−1).

If the elliptic curve E has complex multiplication, the bounding function
can be written as ∑

1≤v≤ t
m

{
2π√
−δ

(
vt

m

)
+ O ((vt)e)

}k−1

where the integer δ is the (negative) discriminant of the degree form on End(E).
The expression above can be written as

=
∑

1≤v≤ t
m

{
(2π)k−1(√
−δ m

)k−1
(vt)k−1 + O

(
(vt)e+k−2

)}

=
(2π)k−1(√
−δ m

)k−1

(
tk−1

∑
1≤v≤ t

m

vk−1

)
+

∑
1≤v≤ t

m

O
(
(vt)k−2+e

)
.

Here, using Remark 6.2 again, we substitute∑
1≤v≤ t

m

vk−1 =
1
k

( t

m

)k

+ O
(
tk−1

)
and, writing

∑
1≤v≤ t

m

vk−2+e = O
(
tk−1+e

)
, we substitute

∑
1≤v≤ t

m

O((vt)k−2+e) = O

(
tk−2+e

∑
1≤v≤ t

m

vk−2+e

)
= O

(
t2k−3+2e

)
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and we end with the estimate

(2π)k−1/k

(
√
−δ)k−1 m2k−1

t2k−1 + O
(
t2k−3+2e

)
.

Remark 6.2: (Communicated by the referee.) About partial sums of in-
creasing functions. Let f : [0,+∞) → [0,+∞) be an increasing function.
To estimate

∑t
n=1 f(n) observe that in each interval [n, n + 1] it satisfies

f(n) ≤ f(x) ≤ f(n + 1). It follows that for each positive integer t,∫ t

0

f(x)dx ≤
t∑

n=1

f(n) ≤
∫ t+1

1

f(x)dx.

In the case f(x) = xp (p arbitrary positive real) we get

tp+1

p + 1
≤

t∑
n=1

np ≤ (t + 1)p+1

p + 1
− 1

p + 1

from which it follows that
t∑

n=1

np =
tp+1

p + 1
+ O(tp).

If t is a positive real number, an analogous estimate holds, which in the pre-

ceding proof is written in the form
∑

1≤n≤t

np =
tp+1

p + 1
+O(tp), where n is meant

to be an integer ranging in the interval [1, t].
We are now in a position to prove the result in the introduction.

Proof of Theorem 1.1. Remind that the function NEk(t) is bounded above by

NEk−1(t) + 1 + ΦEk(t).

We argue by induction on k ≥ 2. The initial step k = 2 follows immediately
from the estimate of ΦE2(t) given in Lemma 6.1 above.

When k > 2, if the statement holds for Ek−1 then it holds for Ek too.
In both cases, either with complex multiplication or not, by the inductive
assumption we have

NEk−1(t) = O(tr
′
)

where, in both cases,

r′ < r and r′ ≤ i.

From Lemma 6.1 we know that

ΦEk(t) = Ctr + O(ti).

Hence the theorem follows.
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7. Arbitrary polarized Abelian varieties

7.1. Behavior under isogenies

Let A,B be polarized Abelian varieties and let ϕ : B → A be an isogeny,
preserving the polarizations (the polarization on B is the pullback of the po-
larization on A), whose degree we call d. There is a one to one correspondence{

elliptic curves in A
} ∼−→

{
elliptic curves in B

}
.

Given E ⊂ A the corresponding E∗ in B is the connected component of 0 in
the pre-image ϕ−1(E). The restricted isogeny E∗ → E has degree dE ≤ d (in
fact a divisor of d), and the degree of E∗ is given by

deg(E∗) = dE deg(E)

(by the projection formula: E∗ · ϕ∗L = ϕ∗E
∗ · L = dE E · L). Therefore:

deg(E) ≤ deg(E∗) ≤ d deg(E).

It follows that the functions counting elliptic curves in A and in B are
related by the following inequalities:

NA(t) ≤ NB(dt) and NB(t) ≤ NA(t).

7.2. On the counting function

Let A be a polarized Abelian variety, of dimension n. Let us say that a sequence
E1, . . . , Ei of elliptic curves in A is independent if the Abelian subvariety E1 +
· · · + Ei has dimension i. If A contains i independent elliptic curves then,
because of the reducibility theorem (§2.5), replacing the given elliptic curves
without modifying the sequence of Abelian subvarieties E1 + · · · + Ej , with
j = 1, . . . , i, we can even obtain that, under the sum isogeny E1× · · · ×Ei −→
E1 + · · ·+ Ei ⊆ A, the pullback polarization from A is a split polarization on
E1 × · · · × Ei.

Let k be the maximum number of independent elliptic curves in A. There
is, as above, a special isogeny E1× · · · ×Ek −→ E1 + · · ·+ Ek ⊆ A. Moreover,
every elliptic curve in A is contained in E1 + · · ·+ Ek. Hence, without loss of
generality, we may assume that A = E1 + · · · + Ek and that, under the sum
isogeny

E1 × · · · × Ek −→ A,

the pullback polarization from A is a split polarization on E1 × · · · × Ek. Let
d be the degree of such an isogeny. From the discussion in §7.1 above, we have

NA(t) ≤ NE1×···×Ek
(dt).
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It follows that, in order to have a general estimate of the counting function
NA(t), we can reduce to the particular case in which A = E1 × · · · × Ek and
the polarization splits.

Proposition 7.1. The function NA(t) can be given an asymptotic estimate of
the form

NA(t) = Ctr + O(ti)

for some constant C and exponents r, i with i < r.

Proof. According to the preceding discussion, we only need to consider the
case in which A = E1 × · · · × Ek is a product of elliptic curves, with a split
polarization.

If the factor elliptic curves are all isogenous, we can choose one elliptic
curve E together with isogenies E → Ei and then construct a product isogeny
Ek → A, so that the pullback polarization on Ek is a split polarization again.
If d is the degree of such an isogeny then, from the discussion in §7.1, we have

NA(t) ≤ NEk(dt)

and the statement follows from Theorem 1.1.
More generally, separating the collection E1, . . . , Ek into (maximal) isogeny

classes, and rearranging, we have an isomorphism

E1 × · · · × Ek
∼= B1 × · · · ×Bh,

each factor Bi being a maximal product of isogenous elliptic curves from the
given collection. The split polarization on E1 × · · · ×Ek corresponds to a split
polarization on B1 × · · · × Bh. Define B := B1 × · · · × Bh and consider the
isogeny B −→ A. Let d be the degree of such an isogeny. From the discussion
in §7.1, we have

NA(t) ≤ NB(dt).

It is easy to see that NB(t) = NB1(t) + · · · + NBh
(t). This is because an

elliptic curve in B, projecting non-trivially to different factors Br and Bs,
would therefore project onto non-isogenous elliptic curves Ei and Ej , which
is impossible. From the discussion above, for a product of isogenous elliptic
curves, we have

NB`
(t) = C` tr` + O(ti`)

with i` < r`. It follows that NB(dt) = Ctr +O(ti), where r = max{r1, · · · , rh}
and i < r.

Remark 7.2: When A = J(C) is the Jacobian of a curve of genus g > 1, there
is an effective bound for the function NA(t) due to Kani (cf. [6], Theorem
4), which is asymptotically of order O(t2g2−2) (ibid., p. 187). The asymptotic
bound in the present paper (Theorem 1.1, Proposition 7.1) is instead of order
O(t2g−1).
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