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Abstract. We give an effective criterion for the identifiability of
additive decompositions of homogeneous forms of degree d in a fixed
number of variables. Asymptotically for large d it has the same order
of the Kruskal’s criterion adapted to symmetric tensors given by L.
Chiantini, G. Ottaviani and N. Vannieuwenhoven. We give a new case
of identifiability for d = 4.
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1. Introduction

Let C[z0, . . . , zn]d denote the complex vector space of all homogeneous degree d
polynomials in the variables z0, . . . , zn. An additive decomposition (or a Waring
decomposition) of a form f ∈ C[z0, . . . , zn]d \ {0} is a finite sum

f =
∑

`d
i (1)

with each `i ∈ C[z0, . . . , zn]1. The minimal number R(f) of summands in an
additive decomposition of f is called the rank of f . The form f is said to be
identifiable if it has a unique decomposition (1), up to a permutation of the
summands. Often it is called an additive decomposition of f a finite sum

f =
∑

ciµ
d
i (2)

with ci ∈ C and µi ∈ C[z0, . . . , zn]1. Taking bi ∈ C such that bd
i = ci and

setting `i := biµi we see that the two definitions coincide and that (1) and (2)
have the same number of non-zero summands. Degree d forms in the variables
z0, . . . , zn correspond to symmetric tensors of format (n + 1)× · · · × (n + 1) (d
times), i.e. to symmetric elements of (Cn+1)⊗d. An additive decomposition (2)
of f is said to be non redundant or irredundant if there are no index i such that
ci`

d
i is a linear combination of the other cj`

d
j ’s, j 6= i. See [23] for a long list

of possible applications and the language needed. Obviously it is interesting
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to know when a non redundant decomposition of f has only R(f) summands,
because just from knowing the non redundant decomposition we would know
that f has no shorter additive decompositions. More important (as stressed in
[17, 18]) is to know if f is identifiable.

In [18] L. Chiantini, G. Ottaviani and N. Vannieuwenhoven stressed the
importance (even for arbitrary tensors) of effective criteria for the identifiability
and gave a long list of practical applications (with explicit examples even in
Chemistry). We add to the list of potential applications the tensor networks
([13, 14, 25], at least for tensors without symmetries. For the case of bivariate
forms, see [11]; for bivariate forms the identifiability of a form only depends
on its rank and, for generic bivariate forms, on the parity of d by a theorem of
Sylvester ([21, Theorem 1.5.3 (ii)]).

L. Chiantini, G. Ottaviani and N. Vannieuwenhoven stressed the importance
of the true effectivity of the criterion to be tested as it happens in the case
of the famous Kruskal’s criterion for the tensor decomposition ([22]). They
reshaped the Kruskal’s criterion to the case of additive decompositions ([18,
Theorem 4.6 and Proposition 4.8]) and proved that it is effective (for d ≥
5) for ranks at most ∼ nb(d−1)/2c. The upper bound to which our criterion
applies has the same asymptotic order when d � 0, but we hope that it is easy
and efficient. Then in [3] E. Angelini, L. Chiantini and N. Vannieuwenhoven
considered the case d = 4 and added the analysis of one more rank. Among
the huge number of papers considering mostly “generic” identifiability we also
mention [1, 2, 4, 15, 16, 17, 19]. An effective criterion should be something
machine-testable in a reasonable time and that to be applied to the form f
only requires data from the additive decomposition (1). In our case we need
the forms `i’s in the right hand side of (1) (we only need them up to a scalar
multiple, but we need them exactly, not approximately) and the computation
of the rank of a matrix with ρ rows and

(
n+t
n

)
columns, where ρ is the number of

summands in (1) and t ≤ bd/2c (but t may be lower for lower ρ); see Remark 2.1
for more details.

To state our results we need the following geometric language for instance
fully explained in [18, 23].

Set Pn := PC[z0, . . . , zn]1. Thus points of the n-dimensional complex space
p correspond to non-zero linear forms, up to a non-zero multiplicative constant.
Set r :=

(
n+d

n

)
− 1. Thus Pr := PC[z0, . . . , zn]d is an r-dimensional projective

space. Let νd : Pn → Pr denote the order d Veronese embedding, i.e. the map
defined by the formula [`] 7→ [`d]. An additive decomposition (1) or (2) with
k non-proportional non-zero terms corresponds to a subset S ⊂ Pn such that
|S| = k and [f ] ∈ 〈νd(S)〉, where 〈 〉 denote the linear span. This decomposition
is called non redundant and we say that the set νd(S) irredundantly spans [f ]
if [f ] ∈ 〈νd(S)〉 and [f ] /∈ 〈νd(S′)〉 for each S′ ( S. For any integer t ≥ 0
each p ∈ Pn gives a linear condition to the vector space C[z0, . . . , zn]t by taking
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p1 = (a0, . . . , an) ∈ Cn+1 with [p1] = p and evaluating each f ∈ C[z0, . . . , zn]t
at p1. When we perform this evaluation for all points of a finite set S ⊂ Pn

we get |S| linear equations and the rank of the corresponding matrix does not
depend on the choice of the representatives of the points of S.

We prove the following result.

Theorem 1.1. Fix q ∈ Pr and take a finite set S ⊂ Pn such that νd(S) irre-
dundantly spans q.

(a) If |S| ≤
(
n+bd/2c

n

)
and S gives |S| independent conditions to the com-

plex vector space C[z0, . . . , zn]bd/2c, then q has rank |S|.
(b) If |S| ≤

(
n+bd/2c−1

n

)
and S gives |S| independent conditions to the

complex vector space C[z0, . . . , zn]bd/2c−1, then S is the unique set evincing the
rank of q.

In Remark 2.1 we explain why Theorem 1.1 effectively determines the rank
of q (and in the set-up of (b) the identifability of f , i.e. the uniqueness state-
ment often called “uniqueness of additive decomposition ” for homogeneous
polynomials or for symmetric tensors). Indeed, to check that S satisfies the
assumptions of part (a) (resp. part (b)) of Theorem 1.1 it is sufficient to check
that a certain matrix with |S| rows and

(
n+bd/2c

n

)
(resp

(
n+bd/2c−1

n

)
) columns

has rank |S|. This matrix has rank |S| if S is sufficiently general, but the test
is effective for a specific set S.

See [7] and [8] for results similar to Theorem 1.1 for tensors; roughly speak-
ing [8, Corollary 3.10, Remark 3.11 and their proof] is equivalent to part (a) of
Theorem 1.1. Part (a) of Theorem 1.1 is good, but one could hope to get part
(b) when |S| <

(
n+bd/2c

n

)
, adding some other easily testable assumptions on S.

We prove the following strong result (an essential step for the proof of part (b)
of Theorem 1.1). To state it we recall the following notation: for any finite set
E ⊂ Pn and any t ∈ N let H0(IE(t)) denote the set of all f ∈ C[z0, . . . , zn]t
such that f(p) = 0 for all p ∈ E. The set H0(IE(t)) is a vector space of
dimension at least

(
n+t
n

)
− |E|. Set |IE(t)| := PH0(IE(t)).

Theorem 1.2. Fix q ∈ Pr and take a finite set S ⊂ Pn such that νd(S) irredun-
dantly spans q. Assume |S| <

(
n+bd/2c

n

)
and that S gives |S| gives independent

conditions to C[z0, . . . , zn]bd/2c. Take any A ⊂ Pn such that |A| = |S| and A in-
duces an additive decomposition of f . Then H0(IA(bd/2c)) = H0(IS(bd/2c)).

Theorem 1.2 does not assure that S is the only set evincing the rank of
q, i.e. the uniqueness of the summands in an additive decomposition of f
with R(f) terms, but it shows where the other sets A giving potential additive
decomposition with R(f) summands may be located: they are contained in
the base locus of |IS(bd/2c)|. The results in [3] (in particular [3, Theorem 6.2
and 6.3, Proposition 6.4]) for d = 4 show that non-uniqueness occurs if and
only if the base locus of |IS(2)| allows the existence of A.
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In the last section we take d = 4. E. Angelini, L. Chiantini and N. Van-
nieuwenhoven consider the case d = 4 and |S| = 2n + 1 with an additional
geometric property (linear general position or LGP for short; section 3 for its
definition). For d = 4 and |S| = 2n + 1 they classified the set S in LGP for
which identifiability holds (see Theorem 3.1 for a summary of [3, Theorems 6.2
and 6.3]). In section 3 using Theorem 1.2 we classify another family of sets S
with |S| = 2n + 1 and for which identifiability holds (Theorem 3.2).

Remark 1.3: The results used to prove Theorem 1.1 (and summarized in
Lemma 2.3 and Remark 2.4) work verbatim for a zero-dimensional scheme
A ⊂ Pn. The key is that in Lemma 2.3 and Remark 2.4 or in [6, Lemma 5.1]
(or equivalently [9, Lemmas 2.4 and 2.5]) we may allow that one of the two
schemes is not reduced. Under the assumption of part (a) of Theorem 1.1 the
cactus rank of q (see [10, 12, 26] for its definition and its uses) is |S|. Under
the assumptions of part (b) of Theorem 1.1 S is the only zero-dimensional
subscheme of Pn evincing the cactus rank of q. However for our proofs it is
important that S (i.e. the scheme to be tested) is a finite set, not a zero-
dimensional scheme. Now assume that W is a zero-dimensional scheme and
take q ∈ 〈νd(W )〉 such that q /∈ 〈νd(W ′)〉 for any W ′ ( W . Assume that W is
not reduced, that deg(W ) ≤

(
n+bd/2−1c

n

)
and that W gives deg(W ) indepen-

dent conditions to C[z0, . . . , zn]bd/2−1c. Quoting either [6, Lemma 5.1] or [9,
Lemmas 2.4 and 2.5] we get that q has rank > deg(W ).

Remark 1.4: The interested reader may check that the proof works with no
modification if instead of C we take any algebraically closed field containing
Q. Since it uses only linear systems, it works over any field K ⊇ Q if as an
additive decomposition of f ∈ K[z0, . . . , zn]d we take an expression (2) with
ci ∈ K and `i ∈ K[z0, . . . , zn]1. Thus for the real field R when d is odd we may
take the usual definition (1) of additive decomposition, while if d is even we
allow ci ∈ {−1, 1}. Theorem 1.1 applied to C says that |S| is the complex rank
of q, too, and in set-up of part (b) uniqueness holds even if we allow complex
decompositions.

Remark 1.5: In the proofs of our results we use nothing about the form f or
the point q = [f ] ∈ Pr. All our assumptions are on the set S and they apply
to all q ∈ 〈νd(S)〉 irredundantly spanned by νd(S). In all our results the set
νd(S) is linearly independent (i.e. its elements are linearly independent) and
hence the set of all q ∈ Pr irredundantly spanned by νd(S) is the complement
in the (|S| − 1)-dimensional linear space 〈νd(S)〉 of |S| codimension 1 linear
subspaces. To test that νd(S) irredundantly spans q it is sufficient to check
the rank of a matrix with |S| rows and

(
n+d

n

)
columns. To the best of our

knowledge this check (or a very similar one) must be done for all criteria of
effectivity for forms ([3]).
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2. The proofs of Theorems 1.1 and 1.2

Fix q ∈ Pr = PC[z0, . . . , zn]d. The rank rX(q) of q is the minimal cardinality
of a finite set S ⊂ Pn such that q ∈ 〈νd(S)〉. By the definition of Veronese
embedding we have rX(q) = R(f) for any f ∈ C[z0, . . . , zn]d such that [f ] = q.
Let S(X, q) denote the set of all S ⊂ Pn such that q ∈ 〈νd(S)〉 and |S| = rX(q).
We say that q is identifiable with respect to X or that q is X-identifiable if
|S(X, q)| = 1. By the construction of the order d Veronese embedding of
X, |S(X, q)| = 1 if and only if any form f ∈ C[z0, . . . , zn]d with [f ] = q
is identifiable. Recall that a finite subset E ⊂ νd(Pn) irredundantly spans
q if q ∈ 〈E〉 and q /∈ 〈E′〉 for any E′ ( E. Note that if E irredundantly
spans a point of Pr, then it is linearly independent, i.e. dim〈E〉 = |E| − 1.
If E = νd(A) for some A ⊂ Pn, E is linearly independent if and only if A
induces |A| independent conditions to C[z0, . . . , zn]d. For each S ∈ S(X, q)
the set νd(S) irredundantly spans q. For any Z ⊂ Pn and any t ∈ Z set
h0(IZ(t)) := dim H0(IZ(t)).

Remark 2.1: Fix an integer t ≥ 0 and a finite subset A of Pn. We write
h1(IA(t)) for the difference between |A| and the number of independent con-
ditions that A imposes to the

(
n+t
n

)
-dimensional vector space C[z0, . . . , zn]t.

For any multiindex α = (a0, . . . , an) ∈ Nn+1 set zα := za0
0 · · · zan

n and ‖α‖ =
a0 + · · · + an. The integer ‖α‖ is the degree of the monomial zα. The vector
space C[z0, . . . , zn]t of all degree t homogeneous polynomials in z0, . . . , zn has
the monomials zα with ‖α‖ = t as a basis. We explain why to compute the
non-negative integer h1(IA(t)) we only need to compute the rank of the matrix
with |A| rows and

(
n+t
n

)
columns. Since h1(IA(t)) = |A|−

(
n+t
n

)
+h0(IA(t)), it

is sufficient to compute the integer h0(IA(t)). Set a := |A| and b :=
(
n+t
n

)
. We

order the points p1, . . . , pa of A and the monomials zα with ‖α‖ = t. We call
w1, . . . , wb these monomials with the chosen ordering. The integer a−h1(IA(t))
is the rank of the a × b matrix M = (aij) with as entry aij the value of wj

at pi.

Remark 2.2: Fix q ∈ Pr = PC[z0, . . . , zn]d \ νd(Pn) and take A ⊂ Pn such
that νd(A) irredundanly spans q. The condition “ q /∈ νd(Pn) ” is equivalent
to “rX(q) > 1 ”. Since νd(A) spans irredundantly at least one point of Pr,
it is linearly independent, i.e. h1(Pr, Iνd(A)(1)) = 0. Since q ∈ 〈νd(A)〉 and
q /∈ νd(A), we have h1(Pr, Iνd(A)∪{q}(1)) > 0. Since h1(Pr, Iνd(A)(1)) = 0 and
|νd(A) ∪ {q}| = |νd(A)|+ 1, we have h1(Pr, Iνd(A)∪{q}(1)) = 1.

Fix f ∈ C[z0, . . . , zn]d \ {0} and let q = [f ] ∈ Pr = PC[z0, . . . , zn]d,
r =

(
n+d

n

)
− 1, be the point associated to f . Take S ⊂ Pn such that νd(S)

irredundantly spans q. Fix any A ⊂ Pn evincing the rank of f . We have
|A| ≤ |S|. Set Z := A ∪ B. Z is a finite subset of Pn and |Z| ≤ |A| + |S|. To
prove part (a) of Theorem 1.1 we need to prove that |A| = |S|. To prove part



6 EDOARDO BALLICO

(b) we need to prove that A = S. In the proof of part (a) we have A 6= S,
because |A| < |S|. To prove part (b) of the theorem it is sufficient to get a
contradiction from the assumption A 6= S.

We recall (with the same proof) [5, Lemma 1].

Lemma 2.3. Fix q ∈ Pr = PC[z0, . . . , zn]d and assume the existence of A,B ⊂
Pn such that νd(A) and νd(B) irredundantly span q and A 6= B.

Then A∪B does not impose |A∪B| independent conditions to C[z0, . . . , zn]d,
i.e. h1(IA∪B(d)) 6= 0.

Proof. For all linear subspaces U,W ⊆ Pr the Grassmann’s formula says that

dim(U ∩W ) + dim(U + W ) = dim U + dim W

with the convention dim ∅ = −1. Since νd(A) (resp. νd(B)) irredundantly
spans q, we have dim〈νd(A)〉 = |A| − 1 (resp. dim〈νd(B)〉 = |B| − 1). Since
A 6= B, we have A ∩ B ( A and A ∩ B ( B. Since q ∈ 〈νd(A)〉 ∩ 〈νd(B)〉
and q /∈ 〈νd(A ∩ B)〉, we have 〈νd(A) ∩ 〈νd(B)〉 ) 〈νd(A ∩ B)〉. Since νd(A)
and νd(B) are linearly independent and 〈νd(A)〉 ∩ 〈νd(B)〉 ) 〈νd(A ∩ B)〉, the
Grassmann’s formula gives that νd(A∪B) is not linearly independent, i.e. A∪B
does not impose |A ∪B| independent conditions to C[z0, . . . , zn]d.

Remark 2.4: We explain the particular case of [6, Lemma 5.1] or [9, Lemmas
2.4 and 2.5] we need. Fix q ∈ Pr = PC[z0, . . . , zn]d and take finite sets A,B ⊂
Pn such that νd(A) and νd(B) irredundantly span q. In particular both A
and B are linearly independent. Set Z := A ∪ B. We fix G ∈ C[z0, . . . , zn]t,
1 ≤ t ≤ d. We assume that Z \Z ∩G gives |Z \Z ∩G| independent conditions
to C[z0, . . . , zn]d−t, i.e. we assume h1(Pn, IZ\Z∩G(d − t)) = 0. By either [6,
Lemma 5.1] or [9, Lemmas 2.4 and 2.5] we have A \ A ∩ G = B \ B ∩ G. In
particular if A ⊂ G, then B ⊂ G.

Proof of part (a) of Theorem 1.1: Recall that we have dim C[z0, . . . , zn]bd/2c =(
n+bd/2c

n

)
. Since |A| < |S| ≤

(
n+bd/2c

n

)
, there is g ∈ C[z0, . . . , zn]bd/2c such that

g(p) = 0 for all p ∈ A. Let G ⊂ Pn be the degree bd/2c hypersurface {g = 0}
of Pn. Since A ⊂ G, we have Z \ Z ∩ G = S \ S ∩ G. Thus Z \ Z ∩ G gives
independent conditions to forms of degree bd/2c. Thus it gives independent
conditions to forms of degree dd/2e = d − bd/2c. Since A ⊂ G, Remark 2.4
gives S ⊂ G. Since this is true for all g ∈ C[z0, . . . , zn]bd/2c such that g(p) = 0
for all p ∈ A, we get that if g|A = 0 and g has degree bd/2c, then g|S = 0.
Since S gives |S| independent linear conditions to C[z0, . . . , zn]bd/2c, A gives at
least |S| linear independent conditions to C[z0, . . . , zn]bd/2c, contradicting the
inequality |A| < |S|.
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Proof of Theorem 1.2. To prove Theorem 1.2 we may assume A 6= S. Since
|A| = |S| <

(
n+bd/2c

n

)
, there is g ∈ C[z0, . . . , zn]bd/2c such that g|A ≡ 0.

The proof of part (a) of Theorem 1.1 gives g|S ≡ 0. Thus H0(IA(bd/2c)) ⊆
H0(IS(bd/2c)). Since H0(IS(bd/2c)) has codimension |A| in C[z0, . . . , zn]bd/2c,
we get H0(IA(bd/2c)) = H0(IS(bd/2c)).

Proof of part (b) of Theorem 1.1: We have H0(IA(bd/2c)) = H0(IS(bd/2c))
by Theorem 1.2. To get A = S it is sufficient to prove that for each p ∈ Pn \A
there is g ∈ H0(IS(bd/2c)) such that g(p) 6= 0. Thus it is sufficient to prove
that the sheaf IS(bd/2c) is generated by its global sections. The assumption
that S gives |S| independent conditions to C[z0, . . . , zn]bd/2c−1 is translated
in cohomological terms as h1(Pn, IS(bd/2c − 1)) = 0. The sheaf IS(bd/2c) is
generated by its global sections (and in particular for each p ∈ Pn \ S there is
f ∈ H0(IS(bd/2c)) such that f(p) 6= 0) by the Castelnuovo-Mumford’s lemma
([20, Corollary 4.18], [24, Theorem 1.8.3]).

3. The case d = 4

Set X := νd(Pn) ⊂ Pr.
A finite set S ⊂ Pn is said to be in linearly general position (or in LGP, for

short) if dim〈A〉 = min{n, |A| − 1} for each A ⊆ S. If |S| ≥ n + 1 the set S is
in LGP if and only if each A ⊆ S with |A| = n + 1 spans Pn.

In this section we take d = 4 and hence r =
(
n+4

n

)
− 1.

We recall a summary of [3, Theorems 6.2 and 6.3].

Theorem 3.1. ([3, Theorems 6.2 and 6.3]). Fix a finite set S ⊂ Pn in LGP
such that |S| = 2n + 1 and take q ∈ Pr, r =

(
n+4

n

)
− 1, such that ν4(S)

irredundantly spans q.

1. q has rank 2n + 1.

2. Assume the existence of B ⊂ Pn such that |B| = 2n+1 and B 6= S. Then
B ∪ S is contained in a rational normal curve of Pn.

We prove the following result.

Theorem 3.2. Fix a finite set S ⊂ Pn such that |S| = 2n + 1 and take q ∈ Pr,
r =

(
n+4

n

)
− 1, such that ν4(S) irredundantly spans q. Assume that S is not in

LGP, but there is S′ ⊂ S such that |S′| = 2n and S′ is in LGP. The point q
has rank 2n + 1. Let e be the dimension of a minimal subspace N ⊂ Pn such
that |N ∩ S| ≥ e + 2. The point q ∈ Pr is identifiable if and only if e ≥ 2. If
e = 1, then dimS(X, q) = 1.

To prove Theorem 3.2 we need some elementary observations.
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Remark 3.3: Take A ⊂ Pm, m ≥ 1, such that |A| = m+2 and A is in LGP. It is
classically known that any two such sets are projectively equivalent; we provide
a linear algebra proof of this fact. We order the points p0, . . . , pm+1 of |A|. Since
p0, . . . , pm are m+1 linearly independent points, up to a change of homogeneous
coordinates we may assume that p0, . . . , pm are the m + 1 coordinate points
(1 : 0 : · · · : 0), . . . , (0 : · · · : 0 : 1). Write pm+1 = (w0 : · · · : wm) for some
wi ∈ C. The assumption that A is in LGP is equivalent to wi 6= 0 for all i. We
make the invertible projective transformation zi 7→ wi

−1zi, which leave fixed
each pi, 0 ≤ i ≤ m, and maps pm+1 to the point (1 : 1 : · · · : 1). Thus each
B ⊂ Pm in LGP such that |B| = m + 2 is projectively equivalent to the set
consisting of the coordinate points, plus the point (a0 : · · · : am) with ai = 1
for all i. In particular A is projectively equivalent to a general subset of Pm

with cardinality m + 2. Thus h1(IA(2)) = 0.
Claim 1: The set A is the set-theoretic base locus of |IA(2)| if and only

if m ≥ 2.
Proof of Claim 1: First assume m = 1. In this case we haveOP1(2)(−A)∼=

OP1(−1) and hence h0(OP1(2)(−A)) = 0. Now assume m = 2. In this case
Claim 1 is equivalent to say that 4 points of a plane, no 3 of them collinear, are
the complete intersection of 2 conics; not only this is easy, but (since we proved
that we may assume that A is general in P2), it is true because 2 general plane
conics intersects transversally. Now assume m > 2. Fix o ∈ Pm\A. Let A′ ⊂ A
be a subset of A such that o ∈ 〈A′〉 and with |A′| minimal (it exists, because
A spans Pm). Since o /∈ A, we have m + 1 ≥ |A′| > 1. Take a ∈ A′. Since A is
in LGP, there is a hyperplane H ⊂ Pm such that |A∩H| = m (and hence H is
spanned by A ∩H), A′ \ {a} ⊂ H and a /∈ H. Set {a, b} := A \ A ∩H. Since
A′ ∩H = A′ \ {a} and the set A′ is linearly independent, we have H ∩ 〈A′〉 =
〈A′ \ {a}〉. Thus o /∈ H. Assume for the moment o /∈ 〈{a, b}〉. Thus o /∈ M for
a general hyperplane M ⊇ 〈{a, b}〉. The hyperquadric H ∪M contains A, but
o /∈ H ∩M . Hence o /∈ B. Now assume o ∈ 〈{a, b}〉. Since |A′| is minimal and
|A′| > 1, we have |A′| = 2. Write A′ = {a, c}. Since o ∈ 〈{a, c}〉 ∩ 〈{a, b}〉 and
o 6= a, the 3 points a, b, c are collinear, a contradiction.
Remark 3.4: Take A ⊂ Pm, m ≥ 1, such that |A| = m + 1 and A spans Pm.
Up to a projective transformation we may assume that A is the union of the
coordinates points of Pn. As in Remark 3.3 by induction on m we see that
h1(IA(2)) = 0 and that A is the base locus of the linear system |IA(2)|.
Remark 3.5: Take A ∈ S(X, q) and any A′ ( A, A′ 6= ∅. Set A′′ := A \ A′.
In particular |A| ≥ 2 and hence q /∈ X. Since A evinces the X-rank of q, it is
linearly independent and h1(Pr, IA∪{q}(1)) = 1 (Remark 2.2). Since A′′ ( A,
we have q /∈ 〈A′′〉. Thus 〈A′〉∩〈A′′∪{q}〉 is a single point, q′, and q′ is the only
element of 〈A′〉 such that q ∈ 〈{q′}∪A′′〉. In the same way we see the existence
of a single point q′′ ∈ 〈A′′〉 such that q ∈ 〈A′ ∪ {q′′}〉. We have q ∈ 〈{q′, q′′}〉.
Since A ∈ S(X, q), we have A′ ∈ S(X, q′) and A′′ ∈ S(X, q′′). If we only assume
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that A irredundantly spans q the same proof gives the existence and uniqueness
of q′ and q′′ such that A′ irredundantly spans q′ and A′′ irredundantly spans q′′.

Lemma 3.6. Let H ⊂ Pm, m ≥ 2, be a hyperplane. Take a finite set S ⊂ Pm

such that |S \S∩H| = 1. Take homogeneous coordinates z0, . . . , zm of Pm such
that H = {zm = 0}.

(i) If S ∩H imposes independent conditions to C[z0, . . . , zm−1]2, then S
imposes independent conditions to C[z0, . . . , zm]2.

(ii) If S ∩ H is the base locus of |IS∩H(2)|, then S is the base locus of
|IS(2)|.

Proof. Set {p} := S \ S ∩H and call B the base locus of |IS(2)|. We have the
residual exact sequence of H:

0 → Ip(1) → IS(2) → IS∩H,H(2) → 0 (3)

Since {p} imposes independent conditions to C[z0, . . . , zm]1, we get part (i)
and that the restriction map ρ : H0(IS(2)) → H0(H, IS∩H,H(2)) is surjective.
Assume that S ∩ H is the base locus of |IS∩H(2)|. Since ρ is surjective, we
get B ∩ H = S ∩ H. Fix o ∈ Pn \ H such that o 6= p. Take a hyperplane
M ⊂ Pm such that p ∈ M and o /∈ M . The reducible quadric H ∪ M shows
that o /∈ B.

Proof of Theorem 3.2: Let H ⊂ Pn be a hyperplane containing N and spanned
by points of S′. Since S′ is in LGP and |S| = |S′|+1, we have |S ∩H| = n+1,
|S′ ∩ H| = n, S \ S ∩ H = S′ \ S′ ∩ H, and |S′ \ S′ ∩ H| = n. Since S′

is in LGP, S′ \ S′ ∩ H spans a hyperplane, M , and S′ ∩ H ∩ M = ∅. Set
A := S′∩H and B := S′∩M . Note that S ⊂ H ∪M , n ≤ |M ∩S| ≤ n+1 and
|S ∩M | = n + 1 if and only if S \ S′ ⊂ H ∩M , i.e. if and only if N ⊆ H ∩M .
Set B := {p ∈ Pn | h0(IS∪{p}(2)) = h0(IS(2))}. Since S ⊂ H ∪M and H ∪M
is a quadric hypersurface, we have S ⊆ B ⊆ H ∪ M . Consider the residual
exact sequences of H and M :

0 → IS\S∩H(1) → IS(2) → IS∩H,H(2) → 0 (4)

0 → IS\S∩M (1) → IS(2) → IS∩M,M (2) → 0 (5)

Note that B contains the base locus B1 of IS∩H,H(2) and the base locus B2

of IS∩M,M (2).
By Remark 3.4 we have h1(H, IS∩H,H(2)) = h1(M, IS∩M (2)) = 0. By

the long cohomology exact sequence of (4) we get h1(IS(2)) = 0. Theorem
1.1 gives that q has rank 2n + 1. By the long cohomology exact sequences
of (4) and (5) the restriction maps ρ : H0(IS(2)) → H0(H, IS∩H,H(2)) and
ρ′ : H0(IS(2)) → H0(M, IS∩M,M (2)) are surjective. Thus B = B1 ∪ B2. Since
S ∩ M is linearly independent, we have B2 = S ∩ M . Take F ∈ S(X, q) such
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that F 6= S (if any). In the case e ≥ 2 we need to find a contradiction. In
the case e = 1 we need a description of all F ’s sufficiently explicit to prove
that dimS(X, q) = 1. More precisely, in the case e = 1 we will prove the
existence of a subset F2 ⊂ F such that all E ∈ S(X, q) are of the form F2 ∪E1

with E1 depending on E, F2 the same for all E ∈ S(X, q) (and in particular
F2 ⊂ S) and E1 coming from a bivariate form q′ associated to q. Since q has
rank ≤ 2n + 1, we have |F | ≤ 2n + 1 <

(
n+2

2

)
. Thus there is G ∈ |IF (2)|. Set

Z := S ∪ F . Fix any G ∈ |IF (2)|. Since Z \ Z ∩G ⊆ S and h1(IS(2)) = 0, we
have h1(IZ\Z∩G(2)) = 0. Since F ⊂ G, Lemma 2.3 and Remark 2.4 give S ⊂ G.
Since this is true for all G ∈ |IF (2)|, we get |IS(2)| ⊇ |IF (2)|. Since |S| ≥ |F |
and h1(IS(2)) = 0, we get again |F | = |S| and also that |IS(2)| = |IF (2)|.
Since F is contained in the base locus of |IF (2)|, we get F ⊆ B.

(a1) Assume e ≥ 2. By Remark 3.3 S ∩N is the base locus of IS∩N (2).
Applying (if e < n− 1) n− 1− e times Lemma 3.6 we get B1 = S ∩H. Thus
B = S. Hence F ⊆ S, a contradiction.

(a2) Assume e = 1. In this case B contains the line N . The proof of
Lemma 3.6 gives B1 = N∪(S∩H). By Theorem 1.2 we have F ⊂ N∩(S\S∩N).
Thus F = A1 ∪A2 with A1 ⊂ N , A2 ⊆ S \ S ∩N and A1 ∩A2 = ∅. We apply
Remark 3.5 with A = F and A′ = N ∩ S and get q′ ∈ 〈νd(S ∩ N)〉 and
q′′ ∈ 〈ν4(S \ S ∩ N)〉 such that q ∈ 〈{q′, q′′}〉. Since |S ∩ N | = 3, Sylvester’s
theorem q′ has rank 3 with respect to degree 4 rational normal curve ν4(N).
We get |F ∩ N | ≤ 3. Since |F | = |S|, we get that each element of S(X, q) is
the union of S \ S ∩ N and an element of S(X, q′). By Sylvester’s theorem
([21, §1.5]) we have dimS(ν4(N), q′) = 1. A word about this case. We worked
taking F 6= S. In principle if S(X, q) is a singleton we got a contradiction,
not the proof that dimS(X, q) = 1. However, we may add S \ S ∩ N to any
E1 ∈ S(X, q′) to get an element of S(X, q), and so it is never a singleton.
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