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1. Introduction

In 1958 the authors of [8] studied the spectrum of the initial value problem{
−u′′(x) = λσ(x)u(x), x ∈ (0,∞),

u(0) = 0, u′(0) = 1.
(1)

Their result can be stressed as follows:
(i) The spectrum of (1) is bounded from below provided there exist a con-

stant c > 0 such that for all x ∈ (0,∞),

x

∫ ∞
x

σ(τ) dτ ≤ c.

Moreover, the spectrum is bounded from below by 1
4c .

(ii) The spectrum of (1) is discrete if and only if

lim
x→+∞

x

∫ ∞
x

σ(τ) dτ = 0. (2)

On the other hand, the equation of order 2k, k ∈ N,

(−1)k(ρ(x)u(k)(x))(k) = λu(x), x ∈ (0,+∞), (3)
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was investigated in [7, 9, 11]. More precisely, it was shown that the spectrum
of the minimal selfadjoint extension of the formal differential operator on the
left-hand side in (3) is bounded from below and discrete if and only if

lim
x→+∞

x2k−1
∫ ∞
x

1

ρ(τ)
dτ = 0 (4)

(see [7] for sufficiency of (4) and [9, 11] for necessity of (4)).
Both expressions in (2) and (4) are closely related to the Muckenhoupt

function which plays a key role in the theory of the Hardy inequality (see
e.g. [13]). In particular, certain properties of the Muckenhoupt function provide
necessary and sufficient conditions for the Hardy inequality as well as for the
compact embedding of certain weighted Sobolev and Lebesgue spaces to hold.
Making use of these properties of the Muckenhoupt function combined with
some results from the oscillation theory of ODEs we formulate necessary and
sufficient conditions for the boundedness from below and the discreteness of
the spectrum of equations which generalize both (1) and (3). We also show
that these conditions are equivalent with the compactness of the embedding of
a weighted Sobolev space into a weighted Lebesgue space with weights which
appear as nonconstant coefficients in the equation.

In Section 2 we consider quasilinear problems on both bounded and/or
unbounded interval. Section 3 deals with the higher order quasilinear equations.
We give some examples in Section 4 with the emphasis on the consequences
of our general estimates to the decay of radial solutions of certain quasilinear
PDEs.

2. Second order equations

Let us consider the Sturm-Liouville boundary value problem
−(ρ(x)u′)′ + q(x)u = λσ(x)u, a < x < b,

αu(a) + βu′(a) = 0,

γu(b) + δu′(b) = 0,

(5)

where α2 + β2 > 0, γ2 + δ2 > 0, ρ, ρ′, q and σ are continuous real functions
on [a, b], and ρ(x) > 0, σ(x) > 0 for a ≤ x ≤ b. Any value of the parameter
λ ∈ R for which a nontrivial solution of (5) exists is called an eigenvalue.
The corresponding nontrivial solution is called an eigenfunction related to the
eigenvalue λ.

The following Sturm-Liouville property of (5) (SL-property for short) is well
known:

“The eigenvalues of the problem (5) form an increasing sequence

λ1 < λ2 < λ3 < · · · < λn < · · · → +∞.
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To each eigenvalue λn there corresponds a unique (up to a nonzero multiple)
eigenfunction un(x), which has exactly n−1 zeros in (a, b). Moreover, between
two consecutive zeros of un there is exactly one zero of un+1.”

In particular, the spectrum of (5) is bounded from below and discrete. For
this reason, in the literature, such eigenvalue problems are said to have the
BD-property (see e.g. [7, 9, 11]).

The purpose of this paper is to show that both BD-property and SL-
property hold true also for more general equations

(−ρ(x)|u′|p−2u′)′ = λσ(x)|u|q−2u (6)

on (a, b) with −∞ ≤ a < b ≤ +∞ and with ρ and σ positive measurable
functions in (a, b). Here, 1 < p ≤ q, and equation (6) is complemented by the
boundary conditions

lim
x→a+

ρ(x)|u′(x)|p−2u′(x) = lim
x→b−

u(x) = 0. (7)

The boundedness from below of the set of all eigenvalues of (6), (7) follows
from Hardy’s inequality. Indeed, let u be a nonzero solution of (6), (7). Multi-
plying (6) by u, integrating formally by parts and taking into account (7), we
get ∫ b

a

ρ(x)|u′|p dx = λ

∫ b

a

σ(x)|u|q dx. (8)

Since Hardy’s inequality is of the form(∫ b

a

σ(x)|u|q dx

) 1
q

≤ C
(∫ b

a

ρ(x)|u′|p dx

) 1
p

(9)

with a suitable constant C > 0, after normalization, we obtain from (8) and
(9) that

λ ≥ 1

Cq

holds for any eigenvalue of (6), (7).
To be more specific, let W 1,p

b (ρ) be the weighted Sobolev space of all func-
tions u which are absolutely continuous on every compact subinterval of (a, b),
such that lim

x→b−
u(x) = 0 and

‖u‖1,p;ρ :=

(∫ b

a

ρ(x)|u′(x)|p dx

)1/p

< +∞.

Let Lq(σ) be the weighted Lebesgue space of all measurable functions u defined
on (a, b), for which

‖u‖q;σ :=

(∫ b

a

σ(x)|u(x)|q dx

)1/q

< +∞.
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Inequality (9) actually means that the embedding of W 1,p
b (ρ) into Lq(σ) is

continuous (W 1,p
b (ρ) ↪→ Lq(σ) for short).

Next we assume that for any x ∈ (a, b) we have σ ∈ L1(a, x) and ρ1−p
′ ∈

Lq(x, b), where 1
p + 1

p′ = 1.
The expression

AM (x) :=

(∫ x

a

σ(τ) dτ

)1/q(∫ b

x

ρ(τ)1−p
′
dτ

)1/p′

(10)

defines the so-called Muckenhoupt function. It is proved in [13] that (9) holds
for all u ∈W 1,p

b (ρ) (i.e. W 1,p
b (ρ) ↪→ Lq(σ)) if and only if

sup
x∈(a,b)

AM (x) < +∞. (11)

Moreover, it is proved in [13] that the embedding of W 1,p
b (ρ) into Lq(σ) is

compact (W 1,p
b (ρ) ↪→↪→ Lq(σ) for short) if and only if

lim
x→a+

AM (x) = lim
x→b−

AM (x) = 0. (12)

Expressions of type (10) appear in the literature in connection with the BD-
property and oscillation properties of differential operator of the second order
(see e.g. [1, 2, 3, 4, 5]).

With the compactness of the above embedding in hands, we can prove the
following assertion.

Theorem 2.1. Assume that (12) holds true. Then there exists minimal value
of λ := λ1 > 0 such that (6), (7) has a nontrivial solution u1 ∈ W 1,p

b (ρ)
normalized by ‖u1‖q;σ = 1.

The proof of this assertion follows from minimization of the Rayleigh type
quotient

R(u) =

∫ b
a
ρ(x)|u′|p dx∫ b

a
σ(x)|u|q dx

on W 1,p
b (ρ) subject to the constraint

∫ b
a
σ(x)|u|q dx = 1. The compact em-

bedding W 1,p
b (ρ) ↪→↪→ Lq(σ) implies that λ1 = minR(u) is achieved at u1 ∈

W 1,p
b (ρ) satisfying

∫ b
a
σ(x)|u1|q dx = 1. Application of the Lagrange multiplier

method then yields that∫ b

a

ρ(x)|u′1|p−2u′1v′ dx = λ1

∫ b

a

σ(x)|u1|q−2u1v dx

holds for any v ∈ W 1,p
b (ρ). In other words, u1 is a weak solution of (6), (7).

Standard regularity argument for the second order ODEs then implies that
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u1 ∈ C1(a, b) ρ|u′|p−2u′ ∈ C1(a, b), the equation (6) holds at every point in
(a, b), boundary conditions (7) hold true and ‖u1‖1,p;ρ < +∞. Hence, u1 is a
classical solution to (6), (7), as well.

Remark 2.2. Note that the weaker condition (11) is sufficient for the bound-
edness from below of any possible eigenvalue of (6), (7). However, without
compactness of the embedding W 1,p

b (ρ) ↪→↪→ Lq(σ) (which is equivalent to
(12)) it is not clear whether (6), (7) has any eigenvalues and eigenfunctions
at all.

Actually, with compactness of W 1,p
b (ρ) ↪→↪→ Lp(σ) in hands we can get

more precise information about the spectrum of (6), (7) in case of homogeneous
equation when p = q. In particular, we can generalize the Sturm-Liouville
theory for the half-linear problem{

(ρ(x)|u′|p−2u′)′ + λσ(x)|u|p−2u = 0 in (a, b),

lim
x→a+

ρ(x)|u′(x)|p−2u′(x) = lim
x→b−

u(x) = 0.
(13)

Theorem 2.3 (see [5] and cf. [2, 3]). The SL-property for (13) is satisfied if
and only if the following two conditions hold:

lim
x→a+

(∫ x

a

σ(τ) dτ

)1/p(∫ b

x

ρ1−p
′
(τ) dτ

)1/p′

= 0, (14)

lim
x→b−

(∫ x

a

σ(τ) dτ

)1/ρ(∫ b

x

ρ1−p
′
(τ) dτ

)1/p′

= 0. (15)

Remark 2.4. Note that (14), (15) are equivalent to (12) where q = p. Note
also that (14), (15) are equivalent with the compact embedding

W 1,p
b (ρ) ↪→↪→ Lp(σ). (16)

This fact implies the following “round about” assertion.

Theorem 2.5 (see [3, 5]). The following statements are equivalent:

(i) The SL-property for (13) is satisfied.

(ii) Conditions (14), (15) hold.

(iii) The compact embedding (16) holds.

If we know the asymptotics of the limit in (15), we get an asymptotic
estimate for the behavior of eigenfunctions of (13) as x→ b−. Namely, assume
that there exist ε ∈ (0, p− 1) and C > 0 such that for all x ∈ (a, b) we have(∫ x

a

σ(τ) dτ

)1/p(∫ b

x

ρ1−p
′
(τ) dτ

)1/p′

≤ C
(∫ b

x

ρ1−p
′
(τ) dτ

)ε/p
. (17)
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Theorem 2.6 (see [4]). Let (14) and (17) hold. Then for any eigenfunction u
of (13) there exist b̄ ∈ (a, b) and 0 < C1 < C2 such that for all x ∈ (b̄, b) we
have

C1

∫ b

x

ρ1−p
′
(τ) dτ ≤ |u(x)| ≤ C2

∫ b

x

ρ1−p
′
(τ) dτ.

Remark 2.7. We would like to mention also the pioneering work [12] where a
different approach than that of ours was used to prove the discreteness of the
spectrum of the second order quasilinear Sturm-Liouville problem. The method
of [12] had been extended to the fourth order problem in [10] and became a
motivation for our research mentioned in the next section.

3. Higher order equations

Let us consider the eigenvalue problem:
(ρ(x)|u′′(x)|p−2u′′(x))′′ − λσ(x)|u(x)|p−2u(x) = 0, x > 0,

u′(0) = lim
x→0+

(ρ(x)|u′′(x)|p−2u′′(x))′ = 0,

lim
x→+∞

u(x) = lim
x→+∞

u′(x) = 0.

(18)

We assume that ρ and σ are continuous and positive in [0,+∞), and the func-
tion xp

′
ρ1−p

′
(x) belongs to L1(0,+∞). By a solution of (18) we understand

a function u ∈ C2(0,+∞) such that ρ|u′′|p−2u′′ ∈ C2(0,+∞), the equation in
(18) holds at every point in (0,+∞), the boundary conditions are satisfied and
the Dirichlet integral

∫∞
0
ρ(x)|u′′(x)|p dx is finite.

We say that the D-property for (18) is satisfied if the set of all eigenvalues
of (18) forms on increasing sequence {λn}∞n=1 such that λ1 > 0 and lim

n→∞
λn =

∞. Moreover, the set of all normalized eigenfunctions associated with a given
eigenvalue is finite and every eigenfunction has a finite number of nodes.

Theorem 3.1 (see [6]). The D-property for (18) is satisfied if and only if the
following two conditions hold

lim
x→+∞

( ∫ x
0
σ(τ) dτ

)1/p( ∫∞
x

(τ − x)p
′
ρ1−p

′
(τ) dτ

)1/p′
= 0,

lim
x→+∞

( ∫ x
0

(x− τ)pσ(τ) dτ
)1/p( ∫∞

x
ρ1−p

′
(τ) dτ

)1/p′
= 0.

(19)

Remark 3.2. The conditions (19) are equivalent to the compact embedding

W 2,p
∞ (ρ) ↪→↪→ Lp(σ), (20)

where W 2,p
∞ (ρ) is the weighted Sobolev space of all functions u ∈ C1[0,+∞),

u′ is absolutely continuous on every compact subinterval of (0,+∞), u′(0) =
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lim
x→+∞

u(x) = lim
x→+∞

u′(x) = 0, and

‖u‖2,p;ρ :=

(∫ ∞
0

ρ(x)|u′′(x)|p dx

)1/p

< +∞,

see [6] for details.

Hence, the following analogue of Theorem 2.5 holds also for the fourth order
problem.

Theorem 3.3. The following statements are equivalent:

(i) The D-property for (18) is satisfied.

(ii) Conditions (19) hold.

(iii) The compact embedding (20) holds.

Remark 3.4. The reader is invited to compare SL-property for the second
order problem and D-property for the fourth order problem. The former one
is stronger than the latter one. One of the reasons consists in the fact that
in the fourth order case it is substantially more difficult to establish that all
eigenfunctions have finitely many nodes in (0,+∞).

Let k ∈ N. Consider the quasilinear equation of order 2k,

(−1)k(ρ(x)|u(k)(x)|p−2u(k)(x))(k) = λσ(x)|u(x)|q−2u(x), x ∈ (0,∞), (21)

together with boundary conditions

u′(0) = · · · = u(k−1)(0) = lim
x→0+

(ρ(x)u(k)(x))′ = 0, (22)

lim
x→+∞

u(x) = lim
x→+∞

u′(x) = · · · = lim
x→+∞

u(k−1)(x) = 0. (23)

This problem was considered in [1].
Let W k,p

∞ (ρ) be the weighted Sobolev space of functions u ∈ Ck−1[0,+∞),
u(k−1) be absolutely continuous on every compact subinterval of (0,+∞), u
satisfy (23) and

‖u‖k,p;ρ =

(∫ ∞
0

ρ(x)|u(k)(x)|p dx

)1/p

< +∞.

Let us introduce functions

B1(x) :=

(∫ x

0

(x− τ)q(k−1)σ(τ) dτ

) 1
q
(∫ ∞

x

ρ1−p
′
(τ) dτ

) 1
p′

,

B2(x) :=

(∫ x

0

σ(τ) dτ

)1/q(∫ ∞
x

(τ − x)p
′(k−1)ρ1−p

′
(τ) dτ

) 1
p′

.

The following assertions can be found in [13].
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Lemma 3.5. The embedding W k,p
∞ (ρ) ↪→ Lq(σ) is continuous if and only if

B1(x) and B2(x) are bounded on (0,+∞).

Lemma 3.6. The embedding W k,p
∞ (ρ) ↪→↪→ Lq(σ) is compact if and only if

lim
x→0+

Bi(x) = lim
x→+∞

Bi(x) = 0, i = 1, 2. (24)

Using the compactness argument and Lemma 3.6, as in the proof of Theo-
rem 2.1, we can prove the following assertion.

Theorem 3.7. Assume that (24) holds true. Then there exists the minimal
value λ := λ1 > 0 such that (21)–(23) has a nontrivial solution u1 ∈ W k,p

∞ (ρ)
normalized by ‖u1‖q;σ = 1.

Remark 3.8. The fact that all possible eigenvalues of (21)–(23) are bounded
from below follows just from the boundedness of B1 and B2 combined with
Lemma 3.5. On the other hand, Theorem 3.7 guarantees that there exists the
least eigenvalue and the corresponding eigenfunction of (21)–(23). However,
the discreteness of the entire spectrum remains an open question:

Conjecture 3.9. Assume that (24) holds true. Then (21)–(23) has the BD-
property.

4. Applications

In this section we present applications of our general estimates to some concrete
boundary value problems. In particular, the asymptotic properties of radial
solutions to quasilinear eigenvalue problems for PDEs with degenerated and/or
singular coefficients are new results.

Example 4.1 (cf. [5]). Let us consider the radial eigenvalue problem for the
p-Laplacian ∆p on RN :−∆pu = λ

1+|x|γ |u|
p−2u in RN ,

lim
|x|→+∞

u(x) = 0.
(25)

This problem reduces to the one-dimensional equation

−(rN−1|u′(r)|p−2u′(r))′ = λ
rN−1

1 + rγ
|u(r)|p−2u(r), r ∈ (0,+∞), (26)

where r = |x|. For 1 < p < N and γ > p the weights

ρ(r) = rN−1 and σ(r) =
rN−1

1 + rγ
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satisfy (14) and (15). Moreover, the solution of (26) is also forced to satisfy
the so-called Neumann-Dirichlet boundary conditions

lim
r→0+

rN−1|u′(r)|p−2u′(r) = lim
r→+∞

u(r) = 0. (27)

Hence, Theorem 2.3 applies to (26), (27).

In particular, we have the following assertion for the original problem (25):

Theorem 4.2. Let 1 < p < N and γ > p. Then the eigenvalues of the radial
eigenvalue problem (25) exhaust the sequence {λn}∞n=1, 0 < λ1 < λ2 < · · · →
+∞ with all λn being simple. A normalized eigenfunction uλn associated with
λn, n ≥ 1, has precisely n nodal domains in RN . The nodal “lines” of uλn are
concentric spheres in RN centered at the origin. The nodal “lines” of uλn−1

separate those of uλu .

Example 4.3 (cf. [4]). Let us consider the radial eigenvalue problem for the
weighted p-Laplacian

−div
( 1

(1 + |x|)α
|∇u(x)|p−2∇u(x)

)
= λ

1

(1 + |x|)β
|u(x)|p−2u(x), x ∈ RN ,

lim
|x|→+∞

u(x) = 0.

(28)

This problem reduces to the equation

−
( rN−1

(1 + r)α
|u′(r)|p−2u′(r)

)′
= λ

rN−1

(1 + r)β
|u(r)|p−2u(r), r ∈ (0,∞) (29)

with boundary conditions (27). Let α + p < N , α + p < β and ε =
(p− 1)(α+ p−β)/(α+ p−N). Then (14) and (17) hold. Hence, Theorems 2.3
and 2.6 apply to (29).

In particular, we have the following assertion:

Theorem 4.4. Let α + p < min{N, β}. Then the conclusions of Theorem 4.2
hold also for the boundary value problem (28). Moreover, there exist r0 > 0
and 0 < C1 < C2 such that

C1

|x|
N−(α+p)
p−1

≤ |u(x)| ≤ C2

|x|
N−(α+p)
p−1

for any x ∈ RN satisfying |x| ≥ r0.
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Example 4.5. Let us consider the radial eigenvalue problem for the
p-Laplacian on the ball:{

−div
(
(R− |x|)α|∇u|p−2∇u

)
= λ(R− |x|)β |u|p−2u in BR(0),

7u = 0 on ∂BR(0).
(30)

Here 1 < p < N and BR(0) is a ball centered at the origin with radius R > 0.
The weight functions x 7→ (R − |x|)α, x 7→ (R − |x|)β are just power of the
distance from the boundary. Obviously, this problem reduces to

−(rN−1(R− r)α|u′(r)|p−2u′(r))′

= λrN−1(R− r)β |u(r)|p−2u(r), r ∈ (0, R),

lim
r→0+

rN−1|u′(r)|p−2u′(r) = lim
r→R−

u(r) = 0.

(31)

For
β < −1 and α− β < p or β ≥ −1 and α < p− 1 (32)

the weights

ρ(r) = rN−1(R− r)α and σ(r) = rN−1(R− r)β

satisfy (14) and (17). Hence Theorems 2.3 and 2.6 apply to (31).

In particular, we have the following assertion:

Theorem 4.6. Let us assume (32). Then the eigenvalues of the radial eigen-
value problem (30) exhaust the sequence {λn}∞n=1, 0 < λ1 < λ2 < · · · → ∞
with all λn being simple. A normalized eigenfunction uλn associated with λn,
n ≥ 1, has precisely n nodal domains in BR(0). The nodal “lines” of uλn are
concentric spheres contained in BR(0) centered at the origin. The nodal “lines”
of uλn−1 , separate those of uλn . Moreover, there exist R ∈ (0, R), C1, C2 > 0
such that for all x ∈ BR(0) \BR(0) we have

C1(R− |x|)1−
α
p−1 ≤ |u(x)| ≤ C2(R− |x|)1−

α
p−1 . (33)

Remark 4.7. Let ∂u
∂ν (x) denote the derivative of an eigenfunction u with re-

spect to the external normal at the point x ∈ ∂BR(0). Let an eigenfunction u
be positive in the neighborhood of ∂BR(0). Then

(i) For α = 0 we have ∂u
∂ν (x) < 0, x ∈ ∂BR(0), due to well-known Hopf’s (for

p = 2, see [14]) and Vázquez’s (for p 6= 2, see [15]) maximum principle.

(ii) For α > 0 we have ∂u
∂ν (x) = −∞, x ∈ ∂BR(0) by (33).

(iii) For α < 0 we have ∂u
∂ν (x) = 0, x ∈ ∂BR(0) by (33).



HARDY INEQUALITY AND EIGENVALUE PROBLEMS 15

Example 4.8. Let 1 < p < N , q ≥ p. Consider the radial problem{
−∆pu = λ|u|q−2u in BR(0),

u = 0 on ∂BR(0).
(34)

This problem reduces to−(rN−1|u′(r)|p−2u′(r))′ = λrN−1|u(r)|q−2u(r), r ∈ (0, R),

lim
r→0+

rN−1|u′(r)|p−2u′(r) = lim
r→R−

u(r) = 0.
(35)

In particular, this corresponds to (6) with ρ(r) = σ(r) = rN−1 and

AM (x) =

(∫ x

0

τN−1 dτ

) 1
q
(∫ R

x

τ
1−N
p−1 dτ

) 1
p′

=
( p− 1

N − p

) 1
p′
(xN
N

) 1
q

(x
p−N
p−1 −R

p−N
p−1

) 1
p′
.

Consequently,
lim
x→0+

AM (x) = lim
x→R−

AM (x) = 0

if and only if 1 < q < p∗ := Np
N−p (critical Sobolev exponent). Applying Theo-

rem 2.1 to (35), we get the existence of a value λ > 0 and of the corresponding
normalized solution u ∈ W 1,p

0 (BR(0)) of (34). It is possible to show that this
solution is C1,α-regular and positive in BR(0), with some α ∈ (0, 1).

On the other hand, using the well-known Pohozaev identity, one can prove
that no such solution exists for q ≥ p∗.

Example 4.9. Let us consider the boundary value problem{
((x+ 1)2u′(x))′ + λu(x) = 0, x ∈ (0,+∞),

u′(0) = u(+∞) = 0.
(36)

Notice that (36) is a special case of (13) with a = 0, b = +∞, p = 2, ρ(x) =
(x+ 1)2, σ(x) ≡ 1, x ∈ (0,+∞). That is

AM (x) =

(∫ x

0

dτ

)1/2(∫ +∞

x

1

(τ + 1)2
dτ

)1/2

=
( x

1 + x

)1/2
, x ∈ (0,+∞),

satisfies (11) but violates (12).
Elementary calculation yields that the initial value problem{

((x+ 1)2u′(x))′ + λu(x) = 0, x ∈ (0,+∞),

u(0) = 1, u′(0) = 0

has the following unique solutions:
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(i) for λ = 1
4 , u(x) = 1√

x+1
(1 + ln

√
x+ 1);

(ii) for λ < 1
4 ,

u(x) = 1√
x+1

[(
1
2−

1
2
√
1−4λ

)
(x+1)

1
2

√
1−4λ+

(
1
2−

1
2
√
1−4λ

)
(x+1)−

1
2

√
1−4λ

]
;

(iii) for λ > 1
4 ,

u(x) = 1√
x+1

[
cos
(

1
2

√
4λ− 1ln(x+1)

)
− 1√

4λ−1 sin
(

1
2

√
4λ− 1ln(x+1)

)]
.

Thus (36) has no solution u ∈W 1,2
∞ (ρ) for any λ ∈ R.
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