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1. Introduction

A Riemannian manifold (Mn, g), n ≥ 2, is said to be an Einstein manifold if
its Ricci tensor S satisfies the condition S = r

ng, where r denotes the scalar
curvature of M. M. C. Chaki and R. K. Maity introduced the notion of quasi-
Einstein manifold in [2]. A non-flat Riemannian manifold (M , g), n ≥ 2, is
said to be a quasi-Einstein manifold if the condition

S(X,Y ) = αg(X,Y ) + βη(X)η(Y ),

is fulfilled on M , where α and β are scalars of which β 6= 0 and η is a non-zero
1-form such that g(X,U) = η(X), for all vector field X and U , a unit vector
field.

Let (B, gB) and (F, gF ) be two Riemannian manifolds and f > 0 be a
differential function on B. Consider the product manifold B × F with its
projections π : B × F → B and σ : B × F → F . The warped prod-
uct B ×f F is the manifold B × F with the Riemannian structure such that
||X||2 = ||π∗(X)||2 +f2(π(p))||σ∗(X)||2, for any vector field X on M . Thus we
have that gM = gB + f2gF holds on M . Here B is called the base of M and F
is called the fiber. The function f is called the warping function of the warped
product [7]. The concept of warped product was first introduced by Bishop
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and O’Neill [1] to construct examples of Riemannian manifolds with negative
curvature.

Now, we can generalize warped products to multiply warped products. A
multiply warped product is the product manifold M = B×b1F1×b2F2...×bmFm
with the metric g = gB ⊕ b21gF1 ⊕ b22gF2 ⊕ b23gF3 .... ⊕ b2mgFm , where for each
i ∈ {1, 2, ...m}, bi : B → (0,∞) is smooth and (Fi, gFi) is a pseudo-Riemannian
manifold. In particular, when B = (c, d), the metric gB = −dt2 is negative
and (Fi, gFi) is a Riemannian manifold. We call M the multiply generalized
Robertson-Walker spacetime.

A multiply twisted product (M, g) is a product manifold of the form M =
B ×b1 F1 ×b2 F2...×bm Fm with the metric g = gB ⊕ b21gF1

⊕ b22gF2
⊕ b23gF3

....⊕
b2mgFm , where for each i ∈ {1, 2, ...m}, bi : B × Fi → (0,∞) is smooth.

In 1924, Friedmann and Schouten introduced the notion of a semi-sym-
metric linear connection on a differentiable manifold [3]. The definition of
metric connection with torsion on a Riemannian manifold, was given by Hay-
den (1932) in [5]. In 1970, K. Yano [10] considered a semi-symmetric metric
connection and studied some of its properties. Then in 1975, Golab [4] intro-
duced the definition of a quarter-symmetric linear connection on a differentiable
manifold, which is a generalization of semi-symmetric connection. Later in [8],
Q. Qu and Y. Wang generalized the results to warped product and multiply
warped product with a quarter-symmetric connection.

In this paper we consider multiply warped products as quasi-Einstein man-
ifolds endowed with a quarter-symmetric connection. In section 2 and 3, we
discuss some preliminary concepts and results which are useful for proving
our main results in the next sections 4 and 5. In Theorem 4.1, we obtain a
necessary and sufficient condition for the warped product manifold to be a
quasi-Einstein manifold with respect to a quarter-symmetric connection. Then
in Theorem 4.2, under some assumptions on base and fiber we study quasi-
Einstein manifold with respect to a quarter-symmetric connection. Next in
Theorem 4.3, we establish that if (M, g) admits a metric for Robertson-Walker
spacetime then it is a quasi-Einstein manifold with respect to the above men-
tioned connection under certain conditions. Then in Theorem 4.5, we charac-
terize the warping function for a warped product space (M, g) with a quarter-
symmetric connection. Later in Theorem 4.5, we show that for quasi-Einstein
warped product with respect to a quarter-symmetric connection the complete
connected (n̄−1)-dimensional base is isometric to a (n̄−1)-dimensional sphere.
In the last section, we study special multiply warped product manifold with
respect to a quarter-symmetric connection.
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2. Preliminaries

Let (Mn, g) be a Riemannian manifold with the Levi-Civita connection ∇. A
linear connection ∇̆ on (Mn, g) is said to be a quarter-symmetric connection if
its torsion tensor T with respect to the connection ∇̆ defined by

T (X,Y ) = ∇̆XY − ∇̆YX − [X,Y ],

satisfies
T (X,Y ) = ω(Y )φX − ω(X)φY,

where ω is a 1-form on Mn with the associated vector field P defined by
ω(X) = g(X,P ), for all vector field X, and φ is a (1, 1) tensor field.

A quarter-symmetric connection ∇̆ is called a quarter-symmetric metric
connection if ∇̆g = 0. ∇̆ is called a quarter-symmetric non-metric connection
if ∇̆g 6= 0.

The relation between a quarter-symmetric connection ∇̆ and the Levi-Civita
connection ∇ of Mn is given by [9]

∇̆XY = ∇XY + λ1ω(Y )X − λ2g(X,Y )P, (1)

where g(X,P ) = ω(X) and λ1 6= 0, λ2 6= 0 are scalar functions.
We can easily see that:

when λ1 = λ2 = 1, ∇̆ is a semi-symmetric metric connection,

when λ1 = λ2 6= 1, ∇̆ is a quarter-symmetric metric connection,

when λ1 6= λ2, ∇̆ is a quarter-symmetric non-metric connection.

Further, a relation between the curvature tensors R and R̆ of type (1,3) of the
connections ∇ and ∇̆ respectively is given by [9],

R̆(X,Y )Z = R(X,Y )Z + λ1g(Z,∇XP )Y − λ2g(Z,∇Y P )X,

+ λ2

[
g(X,Z)∇Y P − g(Y, Z)∇XP

]
+ λ1λ2ω(P )

[
g(X,Z)Y − g(Y, Z)X

]
+ λ2

2

[
g(Y, Z)ω(X)− g(X,Z)ω(Y )

]
P + λ2

1ω(Z)
[
ω(Y )X − ω(X)Y

]
, (2)

for vector fields X,Y, Z on M.

3. Warped Product Manifolds with Quarter-Symmetric
Connection

In this section we consider the following propositions from Propositions 3.5,
3.6, 3.7 and 3.8 of [8], which will be helpful to prove our main results of next
section.
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Proposition 3.1. Let M = B ×f F be a warped product. Let S and S̆ denote
the Ricci tensors of M with respect to the Levi-Civita connection and a quarter-
symmetric connection respectively. Let dimB = n1, dimF = n2, dimM = n̄ =
n1 + n2. If X,Y ∈ χ(B), V,W ∈ χ(F ) and P ∈ χ(B), then

(i) S̆(X,Y ) = S̆B(X,Y )+n2

[
HfB(X,Y )

f +λ2
Pf
f g(X,Y )+λ1λ2ω(P )g(X,Y )+

λ1g(Y,∇XP )− λ2
1ω(X)ω(Y )

]
,

(ii) S̆(X,V ) = S̆(V,X) = 0,

(iii) S̆(V,W ) = SF (V,W ) +
{
λ2divBP + (n2 − 1)

|gradBf |2B
f2 +

[
(n̄− 1)λ1λ2 −

λ2
2

]
ω(P ) +

[
(n̄− 1)λ1 + (n2 − 1)λ2

]
Pf
f + ∆Bf

f

}
g(V,W ), where divBP =

n1∑
k=1

εk〈∇EkP,Ek〉 and Ek, 1 ≤ k ≤ n1, is an orthonormal basis of B with

εk = g(Ek, Ek).

Proposition 3.2. Let M = B×f F be a warped product, dimB = n1, dimF =
n2, dimM = n̄ = n1 + n2. If X,Y ∈ χ(B), V,W ∈ χ(F ) and P ∈ χ(F ), then

(i) S̆(X,Y ) = SB(X,Y ) +
[
(n̄ − 1)λ1λ2 − λ2

2

]
ω(P )g(X,Y ) + n2

HfB(X,Y )

f +

λ2g(X,Y )divFP,

(ii) S̆(X,V ) =
[
(n̄− 1)λ1 − λ2

]
ω(V )Xff ,

(iii) S̆(V,X) =
[
λ2 − (n̄− 1)λ1

]
ω(V )Xff ,

(iv) S̆(V,W ) = SF (V,W )+g(V,W )
{

(n2−1)
|gradBf |2B

f2 + ∆Bf
f +

[
(n̄−1)λ1λ2−

λ2
2

]
ω(P ) + λ2divFP

}
+
[
(n̄ − 1)λ1 − λ2

]
g(W,∇V P ) +

[
λ2

2 + (1 −
n̄)λ2

1

]
ω(V )ω(W ).

By Proposition 3.1 and Proposition 3.2 and by the definition of the scalar
curvature, we have the following propositions.

Proposition 3.3. Let M = B×f F be a warped product, dimB = n1, dimF =
n2, dimM = n̄ = n1 + n2. If P ∈ χ(B), then

r̆M = r̆B +
rF

f2
+ n2(n2 − 1)

|gradBf |2B
f2

+ n2(n̄− 1)(λ1 + λ2)
Pf

f
+ 2n2

∆Bf

f

+
[
n2(n̄+ n1 − 1)λ1λ2 − n2(λ2

1 + λ2
2)
]
ω(P ) + n2(λ1 + λ2)divBP.
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Proposition 3.4. Let M = B×f F be a warped product, dimB = n1, dimF =
n2, dimM = n̄ = n1 + n2. If P ∈ χ(F ), then

r̆M = rB+
rF

f2
+(n̄−1)(λ1+λ2)divFP+[n̄(n̄−1)λ1λ2+(1−n̄)(λ2

1+λ2
2)]ω(P )

+ n2(n2 − 1)
|gradBf |2B

f2
+ 2n2

∆Bf

f
.

4. Generalized Robertson-Walker Spacetime with a
Quarter-Symmetric Connection

In this section we consider a quasi-Einstein warped product manifold with
respect to a quarter-symmetric connection. We prove the following theorem.

Theorem 4.1. Let (M, g) be a warped product I×fF where I is an open interval
in R, dimI = 1 and dimF = n̄ − 1, n̄ ≥ 3. Then (M, g) is a quasi-Einstein
manifold with respect to a quarter-symmetric connection if and only if F is a
quasi-Einstein manifold for P = ∂

∂t with respect to the Levi-Civita connection
or the warping function f is a constant on I for P ∈ χ(F ), λ2 6= (n̄− 1)λ1.

Proof. Assume that P ∈ χ(B) and let gI be the metric on I. Taking f = e
q
2

and using the Proposition 3.1, we get

S̆

(
∂

∂t
,
∂

∂t
) = (1− n̄

)[
1

2
q′′ +

1

4
q′

2

− 1

2
λ2q
′ + λ1λ2 − λ2

1

]
gI

(
∂

∂t
,
∂

∂t

)
, (3)

S̆

(
∂

∂t
, V

)
= 0, (4)

S̆(V,W ) = SF (V,W ) + eq
[
n̄− 1

4
(q′)2 +

1

2
[(n̄− 1)λ1 + (n̄− 2)λ2]q′

+λ2
2 +

1

2
q′′ + (1− n̄)λ1λ2

]
gF (V,W ), (5)

for vector fields V,W on F.
Since M is a quasi-Einstein manifold with respect to a quarter-symmetric

connection, we have

S̆

(
∂

∂t
,
∂

∂t

)
= αg

(
∂

∂t
,
∂

∂t

)
+ βη

(
∂

∂t

)
η

(
∂

∂t

)
,

and
S̆(V,W ) = αg(V,W ) + βη(V )η(W ).
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Then the last two equations reduce to

S̆

(
∂

∂t
,
∂

∂t

)
= αgI

(
∂

∂t
,
∂

∂t

)
+ βη

(
∂

∂t

)
η

(
∂

∂t

)
, (6)

and
S̆(V,W ) = αeqgF (V,W ) + βη(V )η(W ). (7)

Decomposing the vector field U uniquely into its components UI and UF on
I and F , respectively, we have U = UI + UF . Since dimI = 1, we can take
UI = υ ∂

∂t which gives U = υ ∂
∂t + UF , where υ is a function on M. Thus, we

can write

η

(
∂

∂t

)
= g

(
U,

∂

∂t

)
= υ. (8)

Using equations (3) and (5), equations (6), (7) reduce to

S̆

(
∂

∂t
,
∂

∂t

)
= α+ βυ2, (9)

and
S̆(V,W ) = αeqgF (V,W ) + βη(V )η(W ). (10)

Comparing the right hand sides of (3) and (9), we get

α+ βυ2 = (1− n̄)

[
1

2
q′′ +

1

4
q′

2

− λ2q
′

2
+ λ1λ2 − λ2

1

]
. (11)

Similarly, comparing the right hand sides of (5) and (10), we obtain

SF (V,W ) = eq
[
α+

1− n̄
4

(q′)2 − 1

2
[(n̄− 1)λ1 + (n̄− 2)λ2]q′

−λ2
2 −

1

2
q′′ + (n̄− 1)λ1λ2

]
gF (V,W ) + βη(V )η(W ), (12)

which gives that F is a quasi-Einstein manifold with respect to the Levi-Civita
connection for P ∈ χ(B).

Taking P ∈ χ(F ) and by the use of Proposition 3.2, we get

S̆

(
∂

∂t
, V

)
=
q′

2

[
(n̄− 1)λ1 − λ2

]
ω(V ) (13)

and

S̆

(
V,

∂

∂t

)
=
q′

2

[
λ2 − (n̄− 1)λ1

]
ω(V ), (14)

for any vector field V ∈ χ(F ).
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Since M is a quasi-Einstein manifold, we have

S̆

(
∂

∂t
, V

)
= S̃

(
V,

∂

∂t

)
= αg

(
V,

∂

∂t

)
+ βη(V )η

(
∂

∂t

)
. (15)

Now g(V, ∂∂t ) = 0 as ∂
∂t ∈ χ(B) and V ∈ χ(F ).

Hence, from the last equation, we get

S̆

(
∂

∂t
, V

)
= S̆

(
V,

∂

∂t

)
= βη(V )η

(
∂

∂t

)
. (16)

Therefore, we have

βη(V )η

(
∂

∂t

)
=
q′

2

[
(n̄− 1)λ1 − λ2

]
ω(V ), (17)

βη(V )η

(
∂

∂t

)
=
q′

2

[
λ2 − (n̄− 1)λ1

]
ω(V ). (18)

From equations (17) and (18), we get

q′ = 0,

when λ2−(n̄−1)λ1 6= 0. It follows that q is a constant on I. Then f is constant
on I. This completes the proof.

Now, we consider the warped product M = B ×f I with dimB = n̄ − 1,
dimI = 1, n̄ ≥ 3. Under this assumption, we obtain the following theorem.

Theorem 4.2. Let (M, g) be a warped product B ×f I, where dimI = 1 and
dimB = n̄− 1, n̄ ≥ 3, then

i) if (M, g) is a quasi-Einstein manifold with respect to a quarter-symmetric
connection, P ∈ χ(B) is parallel on B with respect to the Levi-Civita
connection on B and f is a constant on B, then,

α = [(n̄− 1)λ1λ2 − λ2
2)]ω(P ).

ii) If (M, g) is a quasi-Einstein manifold with respect to a quarter-symmetric
connection for P ∈ χ(I), and λ2 6= (n̄− 1)λ1 then f is a constant on B.

iii) If f is a constant on B and B is a quasi-Einstein manifold with respect
to the Levi-Civita connection for P ∈ χ(I), then M is a quasi-Einstein
manifold with respect to a quarter-symmetric connection.
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Proof. Assume that (M, g) is a quasi-Einstein manifold with respect to a quar-
ter-symmetric connection. Then we write

S̆(X,Y ) = αg(X,Y ) + βη(X)η(Y ). (19)

Decomposing the vector field U uniquely into its components UB and UI on B
and I, respectively, we have

U = UB + UI . (20)

Since dimI = 1, we can take UI = υ ∂
∂t which gives U = UB + υ ∂

∂t , where υ is
a function on M. From (19), (20) and Proposition 3.1, we have

S̆B(X,Y ) = αgB(X,Y ) + βgB(X,UB)gB(Y, UB)−
[
Hf (X,Y )

f

+λ2
Pf

f
g(X,Y ) + λ1λ2ω(P )g(X,Y ) + λ1g(Y,∇XP )− λ2

1ω(X)ω(Y )

]
. (21)

By contraction over X and Y, we get

r̆B = α(n̄− 1) + βgB(UB , UB)−
[

∆Bf

f
+ λ2(n̄− 1)

Pf

f

+
[
(n̄− 1)λ1λ2 − λ2

1

]
ω(P ) + λ1

n̄−1∑
i=1

g(ei,∇eiP )

]
. (22)

Also from (19), we have

r̆M = αn̄+ βgB(UB , UB). (23)

Now, putting the value of (23) in (22), we get

r̆B = r̆M − α− ∆Bf

f
− λ2(n̄− 1)

Pf

f

−
[
(n̄− 1)λ1λ2 − λ2

1

]
ω(P )− λ1

n̄−1∑
i=1

g(ei,∇eiP ). (24)

On the other hand, from Proposition 3.3, we get

r̆M = r̆B + (n̄− 1)(λ1 + λ2)
Pf

f
+ 2

∆Bf

f

+
[
2(n̄− 1)λ1λ2 − (λ2

1 + λ2
2)
]
ω(P ) + (λ1 + λ2)

n̄−1∑
i=1

g(∇eiP, ei).
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Then from the above two relations, we get

α+
∆Bf

f
+ λ2(n̄− 1)

Pf

f
+
[
(n̄− 1)λ1λ2 − λ2

1

]
ω(P ) + λ1

n̄−1∑
i=1

g(ei,∇eiP )

= (n̄− 1)(λ1 + λ2)
Pf

f
+ 2

∆f

f
+
[
2(n̄− 1)λ1λ2 − (λ2

1 + λ2
2)
]
ω(P )

+ (λ1 + λ2)

n̄−1∑
i=1

g(∇eiP, ei).

Since P ∈ χ(B) is parallel and f is a constant on B, then we get

α =
[
(n̄− 1)λ1λ2 − λ2

2

]
ω(P ).

ii) Let P ∈ χ(I). By the use of Proposition 3.2, we get

S̆(X,P ) =
[
(n̄− 1)λ1 − λ2

]
ω(P )

Xf

f
, (25)

and

S̆(P,X) =
[
λ2 − (n̄− 1)λ1

]
ω(P )

Xf

f
. (26)

Since M is a quasi-Einstein manifold, we have

S̆(X,P ) = S̆(P,X) = αg(P,X) + βη(P )η(X).

Again, we have g(P,X) = 0 for X ∈ χ(B) and P ∈ χ(I).
Hence, we have

Xf = 0,

where λ2 6= (n̄− 1)λ1. This implies that f is a constant on B.
iii) Assume that B is a quasi-Einstein manifold with respect to the Levi-

Civita connection. Then we have

SB(X,Y ) = αg(X,Y ) + βη(X)η(Y ), (27)

for vector fields X,Y tangent to B.
From Proposition 3.2, we get

S̆M (X,Y ) = SB(X,Y ) +
[
(n̄− 1)λ1λ2 − λ2

2

]
ω(P )g(X,Y ) +

Hf (X,Y )

f
,

for any vector field P ∈ χ(I). Since f is a constant, Hf (X,Y ) = 0 for all
X,Y ∈ χ(B).
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The above equation reduces to

S̆M (X,Y ) = SB(X,Y ) +
[
(n̄− 1)λ1λ2 − λ2

2

]
ω(P )g(X,Y ). (28)

Using the value of (27) in (28), we get

S̆M (X,Y ) =
{
α+

[
(n̄− 1)λ1λ2 − λ2

2

]
ω(P )

}
g(X,Y ) + βη(X)η(Y ), (29)

which shows that M is a quasi-Einstein manifold with respect to a quarter-
symmetric connection.

Next, we study M = I×f F with metric −dt2 +f(t)2gF , where I is an open
interval in R, and we prove the following theorem.

Theorem 4.3. Let (M, g) be a warped product I ×f F with the metric tensor
−dt2 + f(t)2gF , P = ∂

∂t , dimF = l. Then (M, g) is a quasi-Einstein mani-

fold with respect to a quarter-symmetric connection ∇̆ with constant associated
scalars α and β if and only if the following conditions are satisfied:

i) (F, gF ) is a quasi-Einstein manifold with scalar αF , βF ;

ii) −l
(
λ2

f ′

f −
f ′′

f + λ2
1 − λ1λ2

)
= −α+ υ2β;

iii) αF − ff ′′ − (l − 1)f ′
2

+
(
λ2

2 − lλ1λ2 − α
)
f2 +

[
lλ1 + (l − 1)λ2

]
ff ′ = 0

and β = βF .

Proof. By Proposition 3.1, we have

S̆

(
∂

∂t
,
∂

∂t

)
= −l

(
λ2
f ′

f
− f ′′

f
+ λ2

1 − λ1λ2

)
,

S̆

(
∂

∂t
, V

)
= S̆

(
V,

∂

∂t

)
= 0,

S̆(V,W ) = SF (V,W ) + gF (V,W )
{
− ff ′′ − (l − 1)f ′

2

+ (λ2
2 − lλ1λ2)f2 +

[
lλ1 + (l − 1)λ2

]
ff ′
}
.

Since M is a quasi-Einstein manifold, we have

S̆(X,Y ) = αg(X,Y ) + βη(X)η(Y ).

Now,

S̆

(
∂

∂t
,
∂

∂t

)
= αg

(
∂

∂t
,
∂

∂t

)
+ βη

(
∂

∂t

)
η

(
∂

∂t

)
.
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We can decompose the vector field U uniquely into its components UI and UF
on I and F , respectively. Then we have U = UI +UF . Since dimI = 1, we can
take UI = υ ∂

∂t which gives U = υ ∂
∂t + UF , where υ is a function on M. Thus,

we can write

η

(
∂

∂t

)
= g

(
U,

∂

∂t

)
= υ. (30)

Therefore, we get

−l
(
λ2
f ′

f
− f ′′

f
+ λ2

1 − λ1λ2

)
= −α+ υ2β.

Again, S̆(V,W ) = αg(V,W ) + βη(V )η(W ).
Also, we have

S̆(V,W ) = SF (V,W ) + gF (V,W )
{
− ff ′′ − (l − 1)f ′

2

+ (λ2
2 − lλ1λ2)f2 +

[
lλ1 + (l − 1)λ2

]
ff ′
}
.

From the above two equations, we get

SF (V,W ) =
{
ff ′′ + (l − 1)f ′

2

− (λ2
2 − lλ1λ2 − α)f2

−
[
lλ1 + (l − 1)λ2

]
ff ′
}
gF (V,W ) + βη(V )η(W ).

Hence, (F, gF ) is a quasi-Einstein manifold.
Also, we have

S̆(V,W ) = SF (V,W ) + gF (V,W )
{
− ff ′′ − (l − 1)f ′

2

+ (λ2
2 − lλ1λ2)f2 +

[
lλ1 + (l − 1)λ2

]
ff ′
}
.

After some calculations, we show that

αF − ff ′′ − (l − 1)f ′
2

+ (λ2
2 − lλ1λ2 − α)f2 +

[
lλ1 + (l − 1)λ2

]
ff ′ = 0

and β = βF . Thus, the proof is completed.

Putting dimF = 1 in Theorem 4.3, we get the following corollary.

Corollary 4.4. Let (M, g) be a warped product I×f F with the metric tensor
−dt2 + f(t)2gF , P = ∂

∂t , dimF = 1. Then (M, g) is a quasi-Einstein manifold
with respect to a quarter-symmetric connection if and only if

f ′′ − λ2f
′ +
[
(α− υ2β)− (λ2

1 − λ1λ2)
]
f = 0.
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By using Corollary 4.4 and elementary methods for ordinary differential
equations, we obtain the following theorem.

Theorem 4.5. Let (M, g) be a warped product I ×f F with the metric tensor
−dt2 + f(t)2gF , P = ∂

∂t , dimF = 1. Then (M, g) is a quasi-Einstein manifold
with respect to a quarter-symmetric connection if and only if

i) α− υ2β < (λ1 − λ2

2 )2,

f(t) = c1e

(
λ2+
√

(2λ1−λ2)2−4(α−υ2β)
2

)
t

+ c2e

(
λ2−
√

(2λ1−λ2)2−4(α−υ2β)
2

)
t
,

ii) α− υ2β = (λ1 − λ2

2 )2, f(t) = c1e
(λ22 )t + c2te

(λ22 )t,

iii) α−υ2β > (λ1− λ2

2 )2, f(t) = c1e
(λ22 )tc1 cos

((√
4(α−υ2β)−(2λ1−λ2)2

2

)
t

)
+

c2e
(λ22 )t sin

((√
4(α−υ2β)−(2λ1−λ2)2

2

)
t

)
.

Corollary 4.6. Let (M, g) be a warped product I×f F with the metric tensor
−dt2 + f(t)2gF , P = ∂

∂t , dimF = 1, and λ2 = 2λ1. Then (M, g) is a quasi-
Einstein manifold with respect to a quarter-symmetric connection if and only
if

i) α− υ2β < 0, f(t) = c1e

(
λ1+
√
−(α−υ2β)

)
t

+ c2e

(
λ1−
√
−(α−υ2β)

)
t
,

ii) α− υ2β = 0, f(t) = c1e
λ1t + c2te

λ1t,

iii) α−υ2β > 0, f(t) = c1e
λ1t cos

((√
α−υ2β

)
t
)

+c2e
λ1t sin

((√
α−υ2β

)
t
)
.

Next, the following theorem shows when the base of a quasi-Einstein warped
product manifold is isometric to a sphere of a particular radius.

Theorem 4.7. Let (M, g) be a warped product B ×f I of a complete connected
(n̄−1)-dimensional Riemannian manifold B where n̄ ≥ 3 and one-dimensional
Riemannian manifold I. If (M, g) is a quasi-Einstein manifold with constant
associated scalars α and β, U ∈ χ(M) with respect to a quarter-symmetric
connection, P ∈ χ(B) and the Hessian of f is proportional to the metric tensor
gB , then (B, gB) is a (n̄− 1)-dimensional sphere of radius ρ = n̄−1√

r̆B+α
.

Proof. Let M be a connected warped product manifold. Then from Proposi-
tion 3.1, we have

S̆M (X,Y ) = S̆B(X,Y ) +
Hf
B(X,Y )

f
+ λ2

Pf

f
g(X,Y )

+ λ1λ2ω(P )g(X,Y ) + λ1g(Y,∇XP )− λ2
1ω(X)ω(Y ), (31)
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for any vector field X,Y on B. Since M is a quasi-Einstein manifold with
respect to a quarter-symmetric metric connection, we have

S̆M (X,Y ) = αg(X,Y ) + βη(X)η(Y ). (32)

Decomposing the vector field U uniquely into its components UB and UI
on B and I, respectively, we have

U = UB + UI . (33)

Putting the values of (32), (33) in (31), we get

S̆B(X,Y ) = αgB(X,Y ) + βgB(X,UB)gB(Y, UB)−

[
Hf
B(X,Y )

f

+λ2
Pf

f
g(X,Y ) + λ1λ2ω(P )g(X,Y ) + λ1g(Y,∇XP )− λ2

1ω(X)ω(Y )

]
. (34)

By contraction over X and Y , we get

r̆B = r̆M − α− ∆Bf

f
− (n̄− 1)λ2

Pf

f

−
[
(n̄− 1)λ1λ2 − λ2

1

]
π(P )− λ1

n̄−1∑
i=1

g(ei,∇eiP ). (35)

Again from Proposition 3.1, we obtain

r̆M

n̄
= λ2

n̄−1∑
i=1

g(ei,∇eiP )+(n̄−1)λ1
Pf

f
+[(n̄−1)λ1λ2−λ2

2]ω(P )+
∆Bf

f
. (36)

From the last two equations, it follows that

(r̆B + α)f = (n̄λ2 − λ1)
n̄−1∑
i=1

fg(ei,∇eiP ) + (n̄− 1)[n̄λ1 − λ2]Pf

+
[
(n̄− 1)2λ1λ2 + λ2

1 − n̄λ2
2

]
fω(P ) + (n̄− 1)∆Bf. (37)

Since the Hessian of f is proportional to the metric tensor gB , then we have

Hf (X,Y ) =
1

(n̄− 1)2

[
(λ1 − n̄λ2)

n̄−1∑
i=1

fg(ei,∇eiP ) + (n̄− 1)[λ2 − n̄λ1]Pf

+
(
n̄λ2

2 − (n̄− 1)2λ1λ2 − λ2
1

)
fω(P ) + (1− n̄)∆Bf

]
gB(X,Y ).
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Hence, from the above equation, we obtain

Hf (X,Y ) +
r̆B + α

(n̄− 1)2
fgB(X,Y ) = 0. (38)

So B is isometric to the (n̄−1)-dimensional sphere of radius n̄−1√
r̆B+α

[6]. Thus,

the theorem is proved.

5. Multiply Twisted Product Manifold with
Quarter-Symmetric Connection

Now, we have the following propositions from Propositions 4.5 and 4.7 of [8],
for later use.

Proposition 5.1. Let M = B ×b1 F1 ×b2 F2... ×bm Fm be a multiply twisted
product manifold with dimB = n, dimFi = li, dimM = n̄. If X,Y ∈ χ(B),
V ∈ χ(Fi), W ∈ χ(Fj) and P ∈ χ(B), then

(i) S̆(X,Y ) = S̆B(X,Y ) +

m∑
i=1

li

[
λ1λ2ω(P )g(X,Y ) +

Hbi
B (X,Y )

bi
+

λ2
Pbi
bi
g(X,Y ) + λ1g(Y,∇XP )− λ2

1ω(X)ω(Y )
]
,

(ii) S̆(X,V ) = S̆(V,X) = (li − 1)
[
V X(lnbi)

]
,

(iii) S̆(V,W ) = 0 if i 6= j,

(iv) S̆(V,W ) = SFi(V,W ) + g(V,W )
{

(li − 1)
|gradBbi|2B

b2i
+

∆Bbi
bi

+[
(n̄ − 1)λ1λ2 − λ2

2

]
ω(P ) + λ2divFP +

[
(n̄ − 1)λ1 + (li − 1)λ2

]Pbi
bi

+∑
s 6=i

ls
gB(gradBbi, gradBbs)

bibs
+ λ2

∑
s6=i

ls
Pbs
bs

}
if i = j, where divBP =

n∑
k=1

εk〈∇EkP,Ek〉 and Ek, 1 ≤ k ≤ n, is an orthonormal basis of B with

εk = g(Ek, Ek).

Proposition 5.2. Let M = B ×b1 F1 ×b2 F2... ×bm Fm be a multiply twisted
product, dimB = n, dimFi = li, dimM = n̄. If X,Y ∈ χ(B), V ∈ χ(Fi),
W ∈ χ(Fj) and P ∈ χ(Fr) for a fixed r, then

(i) S̆(X,Y ) = SB(X,Y )+

m∑
i=1

li
Hbi
B (X,Y )

bi
+
[
(n̄−1)λ1λ2−λ2

2

]
ω(P )g(X,Y )+

λ2g(X,Y )divFrP,
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(ii) S̆(X,V ) = (li − 1)
[
V X(lnbi)

]
+
[
(n̄− 1)λ1 − λ2

]
ω(V )Xbrbr ,

(iii) S̆(V,X) = (li − 1)
[
V X(lnbi)

]
+
[
λ2 − (n̄− 1)λ1

]
ω(V )Xbrbr ,

(iv) S̆(V,W ) = 0 if i 6= j,

(v) S̆(V,W ) = SFi(V,W )+g(V,W )
{

(li−1)
|gradBbi|2B

b2i
+ ∆Bbi

bi
+
[
(n̄−1)λ1λ2−

λ2
2

]
π(P ) +

∑
s6=i

ls
gB(gradBbi, gradBbs)

bibs

}
+
[
(n̄− 1)λ1 − λ2

]
g(W,∇V P ) +[

λ2
2 + (1− n̄)λ2

1

]
ω(V )ω(W ) + λ2g(V,W )divFrP if i = j.

Let M = B×b1 F1×b2 F2...×bm Fm be a multiply warped product with the
metric tensor −dt2 ⊕ b21gF1

⊕ .... ⊕ b2mgFm , and let I be an open interval in R
and bi ∈ C∞(I).

Now, we prove the following theorem for multiply generalized Robertson-
Walker spacetime.

Theorem 5.3. Let M = I×b1 F1×b2 F2...×bm Fm be a multiply warped product
with the metric tensor −dt2 ⊕ b21gF1

⊕ .... ⊕ b2mgFm and P = ∂
∂t .Then (M, g)

is a quasi-Einstein manifold with respect to a quarter-symmetric connection ∇̆
with constant associated scalars α and β, if and only if the following conditions
are satisfied:

i) (Fi, gFi) are quasi-Einstein manifolds with scalars αFi , βFi , i∈{1, 2, ...m};

ii)

m∑
i=1

li

(
λ2
b′i
bi
− b′′i
bi

+ λ2
1 − λ1λ2

)
= α− υ2β;

iii) αFi − bib′′i − (li − 1)b′
2

i +
(
λ2b

2
i − bib′i

)∑
s6=i

ls

(
b′s
bs

)
+
(
λ2

2 + (1− n̄)λ1λ2 −

α
)
b2i +

(
(n̄− 1)λ1 + (li − 1)λ2

)
bib
′
i = 0 and β = βFi .

Proof. By Proposition 5.1, we have

S̆

(
∂

∂t
,
∂

∂t

)
=

m∑
i=1

li

(
−λ2

b′i
bi

+
b′′i
bi
− λ2

1 + λ1λ2

)
, (39)

S̆

(
∂

∂t
, V

)
= S̆

(
V,

∂

∂t

)
= (li − 1)V

(
b′i
bi

)
, (40)

S̆(V,W ) = 0, if i 6= j, (41)
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S̆(V,W ) = SFi(V,W ) + gFi(V,W )
{
− (li − 1)b′

2

i − b′′i bi +
[
(n̄− 1)λ1

+ (li − 1)λ2

]
b′ibi + (λ2b

2
i − b′ibi)

∑
s 6=i

ls
b′s
bs

+
(
λ2

2 + (1− n̄)λ1λ2

)
b2i

}
. (42)

Since M is a quasi-Einstein manifold, we have

S̆(X,Y ) = αg(X,Y ) + βη(X)η(Y ).

Now,

S̆

(
∂

∂t
,
∂

∂t

)
= αg

(
∂

∂t
,
∂

∂t

)
+ βη

(
∂

∂t

)
η

(
∂

∂t

)
.

Decomposing the vector field U uniquely into its components UI and UF on
I and F , respectively, we have U = UI + UF . Since dimI = 1, we can take
UI = υ ∂

∂t which gives U = υ ∂
∂t +UF , where υ is a function on M. Then we can

write

η

(
∂

∂t

)
= g

(
U,

∂

∂t

)
= υ. (43)

Hence, we get

m∑
i=1

li

(
λ2
b′i
bi
− b′′i
bi

+ λ2
1 − λ1λ2

)
= α− υ2β.

Again, S̆(V,W ) = αg(V,W ) + βη(V )η(W ).
From Proposition 5.1 and equation (42), we obtain that (Fi, gFi) are quasi-

Einstein manifolds.
After a brief calculation, we can easily prove that

αFi − bib′′i − (li − 1)b′
2

i + (λ2b
2
i − bib′i)

∑
s 6=i

ls

(
b′s
bs

)
+
[
λ2

2 + (1− n̄)λ1λ2 − α
]
b2i +

[
(n̄− 1)λ1 + (li − 1)λ2

]
bib
′
i = 0

and β = βFi .
Thus, the proof of the theorem is completed.

Next, the following theorem establishes the necessary and sufficient con-
ditions on a multiply warped product to be a quasi-Einstein manifold with a
quarter-symmetric connection whenever P ∈ χ(Fr).

Theorem 5.4. Let M = I ×b1 F1 ×b2 F2...×bm Fm be a multiply warped prod-
uct with the metric tensor −dt2 ⊕ b21gF1

⊕ .... ⊕ b2mgFm with P ∈ χ(Fr) and
gFr (P, P ) = 1 and n̄ ≥ 2. Then (M, g) is a quasi-Einstein manifold with re-
spect to a quarter-symmetric connection ∇̆ with constant associated scalars α
and β, if and only if the following conditions are satisfied:
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i) (Fi, gFi) (i 6= r) are quasi-Einstein manifolds with scalars αi, βi, i ∈
{1, 2, ...m};

ii) br is constant and

m∑
i=1

li
b′′i
bi

= µ0, divFrP = µ1, µ0 − λ2µ1 + α − υ2β =

[(n̄− 1)λ1λ2 − λ2
2]b2r, where µ0, µ1 are constants;

iii) SFr (V,W ) + ᾱgFr (V,W ) + βη(V )η(W ) =
[
(n̄ − 1)λ2

1 − λ2
2

]
ω(V )ω(W ) −[

(n̄ − 1)λ1 − λ2

]
g(W,∇V P ), for V,W ∈ χ(Fr), where ᾱ = b2r

{[
(n̄ −

1)λ1λ2 − λ2
2

]
b2r + λ2µ1 − α

}
.

iv) αFi − bib′′i +
[
(n̄− 1)λ1λ2 − λ2

2

]
b2i b

2
r − bib′i

∑
s6=i

ls
b′s
bs
− (li − 1)(b′i)

2 = (α−

λ2µ1)b2i and β = βFi .

Proof. By Proposition 5.2 (ii) and gFr (P, P ) = 1, it follows that br is a con-
stant. By Proposition 5.2 (i), we obtain

S̆

(
∂

∂t
,
∂

∂t

)
=

m∑
i=1

li
b′′i
bi

+
[
λ2

2 + (1− n̄)λ1λ2

]
b2r − λ2divFrP = −α+ υ2β.

By separation of variables, we have

m∑
i=1

li
b′′i
bi

= µ0, divFrP = µ1, µ0 − λ2µ1 + α− υ2β =
[
(n̄− 1)λ1λ2 − λ2

2

]
b2r.

Then we get ii). By proposition 5.2 (v), we have

S̆(V,W ) = SFi(V,W ) + b2i gFi(V,W )
{

(li − 1)
−(b′i)

2

b2i
+
−b′′i
bi

+
[
(n̄− 1)λ1λ2 − λ2

2

]
ω(P ) +

∑
s 6=i

ls
−b′ib′s
bibs

}
+
[
(n̄− 1)λ1 − λ2

]
g(W,∇V P )

+
[
λ2

2 + (1− n̄)λ2
1

]
ω(V )ω(W ) + λ2g(V,W )divFrP, if i = j.

When i 6= r, then ∇V P = ω(V ) = 0, so,

S̆(V,W ) = SFi(V,W ) + b2i gFi(V,W )
{

(li − 1)
−(b′i)

2

b2i
+
−b′′i
bi

+
[
(n̄− 1)λ1λ2 − λ2

2

]
ω(P ) +

∑
s6=i

ls
−b′ib′s
bibs

}
+ λ2µ1b

2
i gFi(V,W )

= αb2i gFi(V,W ) + βη(V )η(W ).
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By separation of variables, it follows that (Fi, gFi) (i 6= r) are quasi-Einstein
manifolds with scalars αi, βi, i ∈ {1, 2, ...m}, and

αFi − bib′′i +
[
(n̄− 1)λ1λ2 − λ2

2

]
b2i b

2
r − bib′i

∑
s6=i

ls
b′s
bs
− (li − 1)(b′i)

2

= (α− λ2µ1)b2i

and β = βFi . Then we have i) and iv).
When i = r and br is a constant, then we get

SFr (V,W ) + ᾱgFr (V,W ) + βη(V )η(W )

=
[
(n̄− 1)λ2

1 − λ2
2

]
ω(V )ω(W )−

[
(n̄− 1)λ1 − λ2

]
g(W,∇V P ),

for V,W ∈ χ(Fr),

where ᾱ = b2r
{[

(n̄− 1)λ1λ2 − λ2
2

]
b2r + λ2µ1 − α

}
, and thus we obtain iii).
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