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1. Introduction

Let k be an algebraically closed field of characteristic zero, let V be a vector
space over k of dimension 3, and let P2 = PV be the corresponding projective
plane. Fix a linear polynomial P (m) = dm+c with integer coprime coefficients
and consider the Simpson [13] moduli space M := MP (X) of stable sheaves on
X with Hilbert polynomial P . As shown in [9], M is a fine moduli space, it is
a smooth irreducible projective variety of dimension d2 + 1. A generic sheaf in
M is a line bundle on its Fitting support, which is a planar projective curve of
degree d.

Singular sheaves
In general M contains a closed subvariety M ′ of sheaves that are not locally
free on their support. Since M is irreducible, the complement MB of M ′ is
an open dense subset whose points are sheaves that are locally free on their
support. So, one could consider M as a compactification of MB . We call the
sheaves from the boundary M ′ = M rMB singular. As one can see on the
following examples for d 6 3, the boundary M ′ does not have the minimal
codimension in general.

First examples
Notice that twisting with OP2(1) gives the isomorphism of the moduli spaces
Mdm+c(P2) ∼= Mdm+c+d(P2). Moreover, by the duality result from [12], there
is the isomorphism Mdm+c(P2) ∼= Mdm−c(P2) given by F 7→ Ext1(F , ωP2

). As
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shown in [14], two moduli spaces Mdm+c(P2) and Md′m+c′(P2) are isomorphic
if and only if f d = d′ and c = ±c′ mod d. Therefore, for fixed d, it is enough
to understand d/2 + 1 different moduli spaces.

For d = 1, Mm+c is a fine moduli space that consists of twisted structure
sheaves OL(c − 1) of lines L in P2. Therefore, each Mm+c is just the dual
projective plane P∗2 = PV ∗. In this case there are no singular sheaves.

For d = 2 and c = 2β + 1, M2m+c is a fine moduli space whose points are
the isomorphism classes of twisted structure sheaves OC(β) of planar conics
C ⊆ P2. In this case M2m+c is isomorphic to the space of conics PS2V ∗. As in
the previous case the subvariety M ′2m+c of singular sheaves is empty.

The situation changes for d = 3. For c ∈ Z with gcd(3, c) = 1 all moduli
spaces M3m+c are isomorphic to the universal plane cubic curve and M ′3m+c

is a smooth subvariety of codimension 2 isomorphic to the universal singular
locus of a cubic curve. A construction that interprets in this case the blow-up
ofM alongM ′ as a compactification ofMB by an irreducible divisor consisting
of vector bundles of curves in certain reducible surfaces was given in [8]. Since
it explicitly uses the properties of M ′, it seems important to understand the
geometry of M ′ in order to perform a similar modification for other moduli
spaces of planar 1-dimensional sheaves.

The main result of the paper

The cases with d 6 3 were the only cases where the boundary M ′ has been
completely understood. In this note we study the subvariety of singular sheaves
in the case of M = M4m+c(P2), gcd(4, c) = 1, i. e., for the fine Simpson
moduli spaces, which consist entirely of stable points and parameterize the
isomorphism classes of sheaves. As already mentioned above, it is enough to
consider the case c = −1.

We describe all possible singular sheaves inM , the main result of the paper
is summarized in the following:

Proposition 1.1. Let M be the Simpson moduli space of stable sheaves with
Hilbert polynomial P (m) = 4m+ c, gcd(4, c) = 1. Let M ′ ⊆M be the subvari-
ety of singular sheaves. Then M ′ is a singular (path-)connected subvariety of
codimension 2.

We use the merits of computer algebra computations: the most important
computations in the paper are performed using Singular [1]. At the same
time we comment on the restrictedness of computer algebra methods due to
the complexity of the involved algorithms.
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Structure of the paper
In Section 2 we give a detailed description of the stratification from [4] of the
moduli space M into an open stratum M0 and its closed complement M1.
In Section 3 we describe the open stratum of M as an open subvariety of a
projective bundle over the space of Kronecker modules N = N(3; 2, 3). In
Section 4 we give a characterization of singular sheaves in M0 and study the
fibres of M0 over N , which allows us to demonstrate in Section 5 the assertions
of Proposition 1.1. In Section 6 we study, for an isomorphism class [E ] in M0,
how being singular is related with the singularities of the support of E . The
computations with Singular [1] used in the paper (the code and its output)
are presented in Appendix A.

2. Description of M4m−1(P2)

Let M be the Simpson moduli space of stable sheaves on P2 with Hilbert
polynomial 4m − 1. In [4] it has been shown that M can be decomposed into
two strataM1 andM0 such thatM1 is a closed subvariety ofM of codimension 2
and M0 is its open complement.

2.1. Closed stratum.
The closed stratum M1 is a closed subvariety of M of codimension 2 given
by the condition h0(E) 6= 0 (more precisely h0(E) = 1). It consists of the
isomorphism classes of sheaves with locally free resolutions

0→ 2OP2
(−3)

( z1 q1z2 q2 )
−−−−−→ OP2

(−2)⊕OP2
→ E → 0, (1)

where z1 and z2 are linear independent linear forms on P2. M1 is a geo-
metric quotient of the variety of injective matrices ( z1 q1z2 q2 ) as above by the
non-reductive group

(Aut(2OP2
(−3))×Aut(OP2

(−2)⊕OP2
))/k∗

(cf. [5]). M1 is isomorphic to the universal quartic plane curve

{(p, C) | C ⊆ P2 is a quartic plane curve, p ∈ C}.

The latter can be explained as follows. The sheaves with resolution (1) are
exactly the non-trivial extensions

0→ OC → E → kp → 0, (2)

where C = CA = Z(detA) is the quartic curve defined by the determinant of A
and p = pA = Z(z1, z2) is the point on C defined by two linear independent
linear forms z1 and z2.
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2.2. Open stratum.

The open stratumM0 is the complement ofM1 given by the condition h0(E) =
0, it consists of the cokernels EA of the injective morphisms

OP2
(−3)⊕ 2OP2

(−2)
A−→ 3OP2

(−1) (3)

with

A =

 q0 q1 q2

z0 z1 z2

w0 w1 w2


such that the (2 × 2)-minors of the linear part of A are linear independent.
Equivalently, the Kronecker module

α =

(
z0 z1 z2

w0 w1 w2

)
(4)

is stable (cf. [6, Lemma 1], [2, Proposition 15]).

2.2.1. Twisted ideals of 3 non-collinear points of C

If the maximal minors of α are coprime, then EA ∼= IZ(1), where IZ is the
ideal sheaf of the zero dimensional subscheme Z ⊆ C of length 3 defined by the
maximal minors of α. In this case the isomorphism class of E = EA is a part of
the exact sequence

0→ E → OC(1)→ OZ → 0 (5)

and is uniquely defined by Z and C.
Let M00 denote the open subscheme of all such sheaves in M0.

2.2.2. Extensions

If the maximal minors of α have a linear common factor, say l, then f =
det(A) = l · h and EA is in this case a non-split extension

0→ OL(−2)→ EA → OC′ → 0, (6)

where L = Z(l), C ′ = Z(h).
For fixed L and C ′ the subscheme of the isomorphism classes of non-trivial

extensions (6) can be identified with k2.
LetM01 denote the closed subscheme ofM0 of all such sheaves. Notice that

M01 is locally closed in M .
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2.2.3. M0 as a geometric quotient.

M0 is the geometric quotient of the variety of injective matrices as in (3) by
the group

G′ = Aut(OP2
(−3)⊕ 2OP2

(−2))×Aut(3OP2
(−1)).

As shown in [11]M0 can be seen as an open subvariety in the projective quotient
B of the variety of all semistable matrices (3) by the same group.

3. Description of M0 as an open subvariety in B

3.1. Kronecker modules

Let V be the affine variety of Kronecker modules

2OP2
(−1)

Φ−→ 3OP2
. (7)

There is a natural group action of G = (GL2(k) × GL3(k))/k∗ on V. Since
gcd(2, 3) = 1, all semistable points of this action are stable and G acts freely
on the open subset Vs of stable points. A Kronecker module (7) is stable if its
maximal minors are linear independent quadratic forms. There exists a geo-
metric quotient N = N(3; 2, 3) = Vs/G, which is a smooth projective variety
of dimension 6. For more details consult [7, Section 6] and [2, Section III].

The cokernel of a stable Kronecker module Φ ∈ Vs is an ideal of a zero-
dimensional scheme Z of length 3 if the maximal minors of Φ are coprime. In
this case there is a locally free resolution

0→ 2OP2
(−3)

Φ−→ 3OP2
(−2)


d0

d1

d2


−−−−→ OP2 → OZ → 0 (8)

and, moreover, Z does not lie on a line. Let V0 denote the open subvariety of
Φ ∈ Vs of Kronecker modules with coprime maximal minors. Let N0 ⊆ N be
the corresponding open subvariety in the quotient space.

This way one obtains a morphism from N0 ⊆ N to the Hilbert scheme H of
zero-dimensional subschemes of P2 of length 3, which sends a class of Φ ∈ Vs
to the zero scheme of its maximal minors. Since, by Hilbert-Burch theorem,
every zero dimensional scheme of length 3 that does not lie on a line has a
minimal resolution of type (8), this gives an isomorphism between N0 and the
open subvariety H0 ⊆ H consisting of Z that do not lie on a line.

Let N ′ = N \ N0, then N ′ is the quotient of the variety of Kronecker
modules (7) whose maximal minors have a common linear factor.



570 OLEKSANDR IENA

Since every matrix representing a point in N ′ is equivalent to a matrix(
z0 0 z1
0 z0 z2

)
with linear independent linear forms z0, z1, z2, one can see that N ′ is

isomorphic to P∗2 = PV ∗, the space of lines in P2, such that a line corresponds to
the common linear factor of the minors of the corresponding Kronecker module.

The complement H ′ of H0 is an irreducible hypersurface (cf. [3, p. 46], [7]).
The isomorphism H0 → N0 can be extended to the morphism H

π−→ N that
describes H as the blowing up of N along N ′. The fibre over L ∈ P∗2 consists of
those Z ∈ H lying on L, i. e., the fibre over L is L[3] ∼= P3, the Hilbert scheme
of 3 points on L.

3.2. B as a projective bundle over N

Let us provide here the argument from the proof of [11, Proposition 7.7].
Consider two vector spaces U1 = 2Γ(P2,OP2(1)) and U2 = 3Γ(P2,OP2(2)).

One identifies elements of V× U2 with morphisms (3) by

(Φ, Q) 7→
(
Q
Φ

)
.

Both V × U1 and V × U2 are trivial vector bundles over V. Consider the
morphism

V× U1
F−→ V× U2, (Φ, L) 7→

(
L · Φ

Φ

)
.

Since the matrices from Vs have linear independent maximal minors, F is
injective over Vs. Therefore, Vs × U1

F−→ Vs × U2 is a vector subbundle and
hence the cokernel E of F is a vector bundle of rank 12 on Vs.

The group action of GL2(k) × GL3(k) on Vs × U1 and Vs × U2 induces a
group action of GL2(k)×GL3(k) on E and hence an action of G = (GL2(k)×
GL3(k))/k∗ on the projective bundle PE. Finally, since the stabilizer of Φ ∈ Vs
under the action of G is trivial, G acts trivially on the fibres of PE and thus
PE descends to a projective P11-bundle

B ν−→ N = N(3;n− 1, n) = Vs/G,

which is exactly the geometric quotient of Vs × U2 \ ImF with respect to G′
mentioned above.

3.2.1. The fibres of B ν−→ N over N0

A fibre over a point from N0 can be seen as the space of plane quartics through
the corresponding subscheme of 3 non-collinear points. Indeed, consider a
point from N0 given by a Kronecker module ( z0 z1 z2

w0 w1 w2
) with coprime minors
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d0, d1, d2. The fibre over such a point consists of the orbits of injective matrices q0 q1 q2

z0 z1 z2

w0 w1 w2

 , q0, q1, q2 ∈ S2V ∗,

under the group action of G′. In particular such a fibre is contained in M00. If
two matrices (

q0 q1 q2
z0 z1 z2
w0 w1 w2

)
,
(
Q0 Q1 Q2
z0 z1 z2
w0 w1 w2

)
lie in the same orbit of the group action, then their determinants are equal
up to a multiplication by a non-zero constant. Vice versa, if the determinants
of two such matrices are equal, q − Q = (q0 − Q0, q1 − Q1, q2 − Q2) lies in

the syzygy module of
(
d0
d1
d2

)
, which is generated by the rows of ( z0 z1 z2

w0 w1 w2
) by

Hilbert-Burch theorem. This implies that q − Q is a combination of the rows
and thus the matrices lie on the same orbit.

3.2.2. M0 and flags of subschemes on P2.

Let B0 denote the restriction of B to N0. Then B0 coincides with M00 as the
fibres over N0 are contained in M0.

Let PS4V ∗ = P14 be the space of plane quartics. Let

M
µ−→ PS4V ∗ = P14, [E ] 7→ Supp(E),

be the morphism sending an isomorphism class of sheaf E to its support. Then
its restriction to M0 is induced by the equivariant morphism that sends a
matrix (3) defining a point inM0 to the quartic determined by its determinant.

B0 is isomorphic to the image of the injective morphism

B0
µ×ν−−−→ P(S4V ∗)×N0

∼= P(S4V ∗)×H0, (9)

which coincides with the subvariety of pairs (C,Z) with Z ⊆ C. It is isomorphic
to the open subscheme H0(3, 4) ⊆ H(3, 4) of the Hilbert flag-scheme of flags
Z ⊆ C ⊆ P2 (zero-dimensional subscheme Z of length 3 on a curve C ⊆ P2 of
degree 4) such that Z does not lie on a line.

3.2.3. The fibres of B ν−→ N over N ′

A fibre over L ∈ N ′ can be seen as the join J(L∗,PS3V ∗) ∼= P11 of L∗ ∼= P1 and
the space of plane cubic curves P(S3V ∗) ∼= P9. To see this assume L = Z(x0),
i. e., L is given by

(
x0 0 x1
0 x0 x2

)
. Then the fibre over L is given by the orbits of

matrices q0(x1, x2) q1(x1, x2) q2(x0, x1, x2)
x0 0 x1

0 x0 x2

 (10)
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and can be identified with the projective space P(2H0(L,OL(2)) ⊕ S2V ∗).
Rewrite the matrix (10) as(

l·x2−b(x1,x2) −l·x1−cx2
2 a(x0,x1,x2)

x0 0 x1
0 x0 x2

)
, l(x1, x2) = ξ1x1 + ξ2x2, ξ1, ξ2 ∈ k.

Its determinant equals x0(a(x0, x1, x2) · x0 + b(x0, x1) · x1 + c · x3
2). This allows

to reinterpret the fibre as the projective space

P(H0(L,OL(1))⊕ S3V ∗) ∼= J(L∗,PS3V ∗).

The intersection of the fibre with M0 is J(L∗,P(S3V ∗)) \ L∗. It is a rank 2
vector bundle over P(S3V ∗) whose fibre over a cubic curve C ′ ∈ PS3V ∗ is
identified with the set of the isomorphism classes of sheaves from M01 defined
by (6) with fixed L and C ′. This fibre corresponds to the projective plane
joining C ′ with L∗ inside the join J(L∗,P(S3V ∗)). In the notations of the
example above ξ1 and ξ2 are the coordinates of this affine plane.

L∗ J(L∗,P(S3V ∗))

•
C ′

P(S3V ∗)

The points of J(L∗,P(S3V ∗)) \ L∗ parameterize the extensions (6) from M01

with fixed L.

3.2.4. Description of the complement of M0 in B.

Let B′ = B \M0. Then B′ is a union of lines L∗ from each fibre over N ′ (as
explained above), it is isomorphic to the tautological P1-bundle over N ′ = P∗2

{(L, x) ∈ P∗2 × P2 | L ∈ P∗2, x ∈ L}. (11)

The fibre P1 of B′ over, say, line L = Z(x0) ⊆ P2 can be identified with the
space of classes of matrices (3) with zero determinant(

ξ·x2 −ξ·x1 0
x0 0 x1
0 x0 x2

)
, ξ = αx1 + βx2, 〈α, β〉 ∈ P1.
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Let Nc be the open subset of N0 that corresponds to 3 different (and hence
non-collinear) points. Under the isomorphism N0

∼= H0 it corresponds to the
open subvariety Hc ⊆ H0 of the non-collinear configurations of 3 points on P2.

Let Mc = Bc be the restriction of B to Nc. Then Mc ⊆ M00 ⊆ M0 ⊆ M
are inclusions of open subvarieties of M .

4. The subvariety of singular sheaves

Let M ′1 and M ′0 denote the intersections of the subvariety M ′ = M ′4m−1 of
singular sheaves with M1 and M0 respectively.

4.1. Characterization of singular sheaves
4.1.1. Singular sheaves in M1

As shown in [8], the subvariety M ′1 coincides with the universal singular locus

{(p, C) | C ⊆ P2 is a quartic plane curve, p ∈ Sing(C)},

which is a smooth subvariety of M1 of codimension 2.

4.1.2. Singular sheaves in M0.

Lemma 4.1. The sheaf EA from M0 is singular if and only if the ideal Imin =
Imin(A) generated by all (2× 2)-minors of A defines a non-empty scheme.

Proof. If there are no zeros of Imin, then at every point of P2 at least one of the
(2× 2)-minors is invertible, hence using invertible elementary transformations
one can bring A to the form 1 0 0

0 1 0
0 0 detA


and therefore E is locally isomorphic to OC , C = Z(detA) = Supp E .

If p is a zero point of Imin, then the rank of A is at most 1 at p. Therefore,
the dimension of E(p) = Ep/mpEp is at least 2. Since the rank of E (on support)
is 1, we conclude that E is a singular sheaf.

4.2. M ′
0 and computer algebra

Lemma 4.1 suggests the following approach to study M ′0 using computer alge-
bra.

Put A := Hom(OP2(−3) ⊕ 2OP2(−2), 3OP2(−1)) ∼= k36 and let W0 ⊆ A
be the quasi-affine variety of injective matrices (3) such that M0

∼= W0/G
′
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as mentioned in 2.2.3. Consider the ideal I ⊆ k(A)[x0, x1, x3] of (2 × 2)-
minors of the universal matrix on A. Then eliminating the variables x0, x1, x2

from the saturation ideal I : (x0, x1, x2)∞, we will obtain the ideal J = (I :
(x0, x1, x2)∞)∩k[A] defining the subvariety in A of the matrices whose cokernels
are singular sheaves. Having this, one computes the dimension of the zero
scheme of J , its singularities, etc.

Though all actions with the ideals mentioned above are implemented in
different systems of computer algebra, the complexity of the involved algorithms
have not even made it possible for us to compute J . Therefore, we are going
to study first the fibres of M ′0 over N .

4.3. Fibres of M ′
0 over N

Let us consider the restriction of ν to M ′0 and describe its fibres. There are the
following possible cases:

1. fibres over Nc ∼= Hc, i. e., over 3 different non-collinear points;

2. fibres over Z ∈ N0 consisting of a simple point and a double point;

3. fibres over curvilinear triple points Z ∈ N0;

4. fibres over non-curvilinear triple points Z ∈ N0;

5. fibres over N ′.

The corresponding fibres will be referred to as fibres of type (1), (2), (3), (4),
and (5) respectively.

4.3.1. Fibres of type (1)

Let Z ∈ Hc
∼= Nc be a non-collinear configuration of 3 points in P2. Then,

after applying an appropriate coordinate change, we can assume without loss
of generality that Z is the union of three points pt0 = 〈1, 0, 0〉, pt1 = 〈0, 1, 0〉,
pt2 = 〈0, 0, 1〉, the corresponding Kronecker module is

Φ =

(
x0 x1 0
x0 0 x2

)
,

whose minors d0 = x1x2, d1 = −x0x2, d2 = −x0x1 generate the ideal IZ of Z.

• x0 = 0

x1 = 0x2 = 0

•

•
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The fibre of ν over the class of Φ in N0 consists of the orbits of the matrices

A =

q0(x0, x1, x2) q1(x0, x2) q2(x0, x1)
x0 x1 0
x0 0 x2

 .

The coefficients of

q0 = a0x
2
0 + a1x0x1 + a2x0x2 + a3x

2
1 + a4x1x2 + a5x

2
2,

q1 = b0x
2
0 + b2x0x2 + b5x

2
2,

q2 = c0x
2
0 + c1x0x1 + c3x

2
1

(12)

can be seen as the projective coordinates of the fibre ν−1([Φ]) ∼= P11.
The ideal that defines the subvariety corresponding to the singular sheaves

is computed by eliminating the variables x0, x1, x2 from the saturation of Imin
with respect to the non-essential maximal ideal (x0, x1, x2). We perform the
computations using the computer algebra system Singular (cf. [1]).

We get the ideal (see A.1 for computations)

(b0, c0) ∩ (a3, c3) ∩ (a5, b5),

i. e., the fibre ofM ′0 over [Φ] is a union of 3 components, each being a projective
subspace in P11 of codimension 2. The components lie in a general position:
each two components intersect along a projective subspace of codimension 4 and
the intersection of all three of them is a projective subspace of codimension 6.

4.3.2. Fibres of type (2)

Let Z ∈ H0 \Hc be a non-collinear configuration of a simple point pt1 and a
double non-collinear point at pt2. The double point is defined by the underlying
simple point pt2 and a tangent vector at pt2. Since Z does not lie on a line,
the tangent vector should be normal to the line joining pt1 and pt2. Therefore,
after applying an appropriate coordinate change, we can assume without loss
of generality that pt1 = 〈0, 0, 1〉, pt2 = 〈0, 1, 0〉, and the tangent vector at pt2

is parallel to the line given by x2.

•• •x0 = 0

x2 = 0
x1 = 0

The ideal of Z equals (x0, x1) ∩ (x2
0, x2), the corresponding Kronecker module

can be taken to be
Φ =

(
x0 x1 0
0 x0 x2

)
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The fibre of ν over the class of Φ in N0 consists of the orbits of the matrices

A =

q0(x0, x1, x2) q1(x0, x2) q2(x0, x1)
x0 x1 0
0 x0 x2

 .

The coefficients of q0, q1, q2 as in (12) can be seen as the projective coordinates
of the fibre ν−1([Φ]) ∼= P11.

The fibre of M ′0 over [Φ] ∈ N is given by the ideal

(a2
3, c

2
3, a3c3, a1c3 − a3c1) ∩ (a5, b5)

whose radical is (a3, c3) ∩ (a5, b5), which means that the fibre consists of two
components each of which is a projective subspace of ν−1([Φ]) ∼= P11 of codi-
mension 2. For computations see A.2.

4.3.3. Fibres of type (3)

Let Z be a triple curvilinear point. Without loss of generality, applying an
appropriate coordinate change if necessary, we can assume that Z is supported
at pt = 〈1, 0, 0〉 and the ideal of Z in the affine coordinates x = x1/x0, y =
x2/x0 is in this case

(y3, x− sy − t−1y2), s ∈ k, t ∈ k∗.

•••

The corresponding Kronecker module can be taken to be

Φ =

(
x2 + 2stx0 x1 − sx2 tx0

x1 + sx2 0 x2

)
.

The fibre of ν over the class of Φ in N0 consists of the orbits of the matrices

A =

q0(x0, x1, x2) q1(x0, x2) q2(x0, x1)
x2 + 2stx0 x1 − sx2 tx0

x1 + sx2 0 x2

 . (13)

The coefficients of q0, q1, q2 as in (12) can be seen as the projective coordinates
of the fibre ν−1([Φ]) ∼= P11.

The fibre of M ′0 over [Φ] ∈ N is given by the ideal whose radical is

(b0, a0 − 2sc0),

which means that the fibre consists of one component which is a projective
subspace of codimension 2 in ν−1([Φ]) ∼= P11. For computations see A.3.
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4.3.4. Fibres of type (4)

Let Z be a non-curvilinear triple point. After a change of coordinates we may
assume that Z is supported at pt = 〈1, 0, 0〉. Since there is only one non-
curvilinear triple point at a given point of a smooth surface, the ideal of Z
equals (x2

1, x1x2, x
2
2), the corresponding Kronecker module can be taken to be

Φ =

(
x2 x1 0
x1 0 x2

)
.

••• x1 = 0

x2 = 0

The fibre of ν over the class of Φ in N0 consists of the orbits of the matrices

A =

q0(x0, x1, x2) q1(x0, x2) q2(x0, x1)
x2 x1 0
x1 0 x2

 .

By Lemma 4.1 all such matrices define singular sheaves since all (2×2)-minors
vanish at pt. Therefore, M ′0 is a P11-bundle over the locus of non-curvilinear
triple points.

4.3.5. Fibres of type (5)

Let [Φ] ∈ N ′, then without loss of generality

Φ =

(
x0 0 x1

0 x0 x2

)
and the fibre of ν over [Φ] consists of the orbits of the matrices (10). By
Lemma 4.1 the sheaf defined byq0(x1, x2) q1(x1, x2) q2(x0, x1, x2)

x0 0 x1

0 x0 x2


is singular if and only if the quadratic forms

q0(x1, x2) = a3x
2
1 + a4x1x2 + a5x

2
2 and q1(x1, x2) = b3x

2
1 + b4x1x2 + b5x

2
2

have a common zero. The latter holds if and only if the resultant of q0 and q1

R = R(q0, q1)(a3, a4, a5, b3, b4, b5)
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vanishes. Since R is an irreducible homogeneous polynomial of degree 4 in
variables a3, a4, a5, b3, b4, b5, the fibres over N ′ are open subsets of irreducible
hyper-surfaces of degree 4 in P11. These subsets are obtained by throwing away
the points corresponding to matrices with zero determinant, i. e., the line L∗
(cf. 3.2.3), which is contained in the hypersurface.

5. Main result

The information about the fibres ofM ′0 over N obtained in the previous section
allows to prove Proposition 1.1.

5.1. Dimension
We showed that the fibres ofM ′0 overN are generically 9-dimensional, the fibres
are more than 9-dimensional only over a subvariety of N of dimension 2. There-
fore, the dimension of M ′0 (and thus of M ′) is 15, i. e., M ′ has codimension 2
in M .

5.2. Singularities
Notice that the computation from 4.3.1 works also locally over the base. Let
us make this clear in the case of k = C, i. e., in the analytic category with
analytic topology.

Let us vary the points

p0 = 〈1, p(0)
1 , p

(0)
2 〉, p1 = 〈p(1)

0 , 1, p
(1)
2 〉, p2 = 〈p(2)

0 , p
(2)
1 , 1〉

in disjoint neighborhoods in P2 of points 〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉 respectively.
Assume moreover that p0, p1, p2 are always non-collinear. Then p(0)

1 , p(0)
2 , p(1)

0 ,
p

(1)
2 , p(2)

0 , p(2)
1 are local coordinates of N around the class of the Kronecker

module
Φ =

(
x0 x1 0
x0 0 x2

)
.

Denote by Up0,p1,p2 the corresponding neighborhood of [Φ].
Let x̄i, i = 0, 1, 2, be a linear form that defines the line not passing through

pi and passing through the other two points.
The fibre of ν over the class of

Φ̄ =

(
x̄0 x̄1 0
x̄0 0 x̄2

)
consists of the orbits of the matrices

A =

q̄0(x̄0, x̄1, x̄2) q̄1(x̄0, x̄2) q̄2(x̄0, x̄1)
x̄0 x̄1 0
x̄0 0 x̄2

 .



SINGULAR 1-DIMENSIONAL PLANAR SHEAVES ON QUARTICS 579

The coefficients of

q̄0 = a0x̄
2
0 + a1x̄0x̄1 + a2x̄0x̄2 + a3x̄

2
1 + a4x̄1x̄2 + a5x̄

2
2,

q̄1 = b0x̄
2
0 + b2x̄0x̄2 + b5x̄

2
2,

q̄2 = c0x̄
2
0 + c1x̄0x̄1 + c3x̄

2
1

can be seen as the projective coordinates of the fibre ν−1([Φ̄]) ∼= P11, this gives
a trivialization of B around [Φ]. As in 4.3.1 we conclude that M ′ over Up0,p2,p3
is a trivial bundle with the fibre computed in 4.3.1. Therefore, M ′c = M ′ ∩Mc

is a bundle over Nc with this singular fibre, which shows that M ′ is singular.

Remark 5.1. Our argument shows that the singularities of M ′0 over Nc lie in
codimension 2.

Remark 5.2. Notice that in the algebraic category a modification of the argu-
ment above would lead to a local triviality of M ′ over Nc only in étale topology.
This would not affect however our conclusions.

5.3. Connectedness

As shown in 4.3, every fibre ofM ′0 over N is (path-)connected. Therefore, since
N is (path-)connected, M ′0 is (path-)connected. Since M ′1, which is isomorphic
to the universal singular locus of plane quartic curves, is (path-)connected, it
remains to connect M ′1 with M ′0.

The latter can be done, for example, as follows. Let C be a quartic curve
with a simple double point singularity p0 ∈ C. Fix a line through p0 that is
not a component of C and intersects C at 3 different points p0, p1, p2.

Consider a degeneration Zt = {p0, p1, p(t)} of a configuration of 3 non-
collinear points on C to the configuration Z0 = {p0, p1, p2}, i. e., p(t) → p2,
t→ 0.

•
p2

•
p1

•
p0 •

p(t)

This gives a degeneration of the twisted ideal sheaf Et = IZt
(1) of Zt in C to

the twisted ideal sheaf IZ0
(1) of Z0.

Notice that E0 = IZ0(1) is a non-trivial extension (2) with p = p0. There-
fore, E0 defines a point in M1. Since p0 is a singular point of C, as mentioned
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in 4.1.1, E must be a singular sheaf. On the other hand, as we shall show in
Proposition 6.1, Et is a singular sheaf for t 6= 0 as p0 is a singular point of C.
This gives a path connecting M ′0 with M ′1.

6. Singular sheaves and singularities of their support

Let [E ] ∈M00 = B0. Let C = Supp E be its support, which is a quartic curve in
P2. As E is a part of an exact sequence (5), it is a subsheaf of OC(1), hence a
torsion free sheaf on C. Since torsion free sheaves on smooth curves are locally
free (see e.g. [10, Lemma 5.2.1]), we conclude that E is non-singular if C is
smooth at all points of Z. So E can only be singular if C is singular at some
points of Z. This demonstrates that the image ofM ′00 = M ′∩M00 under (9) is
included in the subvariety of pairs (C,Z) such that Z contains a singular point
of C. We shall demonstrate that M ′00 generically coincides with this variety.
More precisely, the image of M ′c = M ′ ∩Mc under the morphism

Mc
µ×ν−−−→ PS4V ∗ ×H0

consists of the pairs (C,Z), Z ⊆ C, such that C is a singular plane curve of
degree 4 whose singular locus contains at least one of the points of Z.

Proposition 6.1. Let [E ] as above belong to Mc, then
1) E is singular if and only if SingC ∩ Z 6= ∅;
2) the fibre of M ′0 over Z ∈ Hc, Z = {pt0,pt1,pt2}, under the morphism

M ′0
ν−→ Nc ∼= Hc corresponds to the variety of plane quartic curves through Z

such that one of the points of Z is a singular point of C;
3) for each i = 0, 1, 2, the variety of quartics through Z such that pti is a

singular point of C coincides with one of three different irreducible components
of the fibre.

Proof. Follows from the computations given in A.1.

Remark 6.2. Since E is a twisted ideal sheaf of 3 different points on a quartic
curve (cf. (5)), the statement 1) of Proposition 6.1 immediately follows from
Lemma 6.3 below.

6.1. An observation from commutative algebra

Let R = OC,p be a local k-algebra of a curve C at point p ∈ C. Let m = mC,p
be its maximal ideal and let kp = R/m be the local ring of the structure sheaf
of the one point subscheme {p} ⊆ C. An R-module homomorphism R

ϕ−→ kp
is uniquely defined by ϕ(1) = λ ∈ kp. Then ϕ(s) = s̄ · λ. If ϕ is different from
zero, then the kernel of ϕ coincides with m.
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Lemma 6.3. Consider an exact sequence of R-modules.

0→M → R→ kp → 0

with a non-zero R-module M . Then M is free if and only if R is regular.

Proof. If M is free, then M ∼= R (otherwise M → R would not be injective)
and we obtain an exact sequence of R-modules

0→ R→ R→ kp → 0,

which means that the maximal ideal m of p is generated by one element. There-
fore, R is regular in this case.

Vice versa, assume R is regular. Notice that M is always a torsion free R-
module as a submodule of R. Therefore, if R is regular, M is free as a torsion
free module over a regular one-dimensional local ring.

Remark 6.4. Notice that Proposition 6.1 does not hold over N0 \Nc. Indeed,
take [EA] ∈M00 \Mc with

A =

x2
2 0 x2

1

x0 x1 0
0 x0 x2

 .

Then the support C of EA is given by x1(x3
2 + x2

0x1) = 0, one obtains an exact
sequence

0→ EA → OC(1)→ OZ → 0

such that Z consists of the simple point 〈0, 0, 1〉 and the double point 〈0, 1, 0〉.
In this case EA is a non-singular sheaf but 〈0, 1, 0〉 ∈ Z ∩ SingC.

In A.2 we compute that every matrix A as in 4.3.2 with a3 = 0, a5 6= 0
defines a non-singular sheaf, however the intersection of Z with the singular
locus of the supporting curve C is non-empty.

A. Computations of the fibres of M ′
0 over N with

Singular

A.1. Fibres of type (1)
t1.sng 1> LIB "elim.lib";
t1.sng 2> ring r=0, (x(0..2), a(0..5), b(0..5), c(0..5)), dp;
t1.sng 3> ideal maxm=x(0..2);
t1.sng 4> poly X=x(0)*x(1)*x(2);
t1.sng 5> poly q(0..2);
t1.sng 6> q(0) = a(0)*x(0)^2 + a(1)*x(0)*x(1) + a(2)*x(0)*x(2) + a(3)*x(1)^2 + a(4)*x(1)*x(2) + a(5)*x(2)^2;
t1.sng 7> q(1) = b(0)*x(0)^2 + b(1)*x(0)*x(1) + b(2)*x(0)*x(2) + b(3)*x(1)^2 + b(4)*x(1)*x(2) + b(5)*x(2)^2;
t1.sng 8> q(2) = c(0)*x(0)^2 + c(1)*x(0)*x(1) + c(2)*x(0)*x(2) + c(3)*x(1)^2 + c(4)*x(1)*x(2) + c(5)*x(2)^2;
t1.sng 9> q(1)=subst(q(1), x(1), 0);
t1.sng 10> q(2)=subst(q(2), x(2), 0);
t1.sng 11> // general form of matrices representing the points in the fibre
t1.sng 12. matrix A[3][3] = q(0), q(1), q(2), x(0), x(1), 0, x(0), 0, x(2);
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t1.sng 13> print(A);
A[1,1],A[1,2],A[1,3],
x(0), x(1), 0,
x(0), 0, x(2)
t1.sng 14> // the Kronecker module corresponding to 3 non-collinear points
t1.sng 15. matrix Phi=submat(A, 2..3, 1..3);
t1.sng 16> print(Phi);
x(0),x(1),0,
x(0),0, x(2)
t1.sng 17> // the ideal of 2x2 minors of A
t1.sng 18. ideal minm = minor(A, 2);
t1.sng 19> minm = sat(minm, maxm)[1]; // compute its saturation
t1.sng 20> minm = elim(minm, X); // eliminate the variables x(0), x(1), x(2)
t1.sng 21> print(minm);
b(5)*c(0)*c(3),
a(5)*c(0)*c(3),
b(0)*b(5)*c(3),
a(5)*b(0)*c(3),
a(3)*b(5)*c(0),
a(3)*a(5)*c(0),
a(3)*b(0)*b(5),
a(3)*a(5)*b(0)
t1.sng 22> // look at the primary decomposition of the result
t1.sng 23. primdecGTZ(minm);
[1]:

[1]:
_[1]=c(3)
_[2]=a(3)

[2]:
_[1]=c(3)
_[2]=a(3)

[2]:
[1]:

_[1]=c(0)
_[2]=b(0)

[2]:
_[1]=c(0)
_[2]=b(0)

[3]:
[1]:

_[1]=b(5)
_[2]=a(5)

[2]:
_[1]=b(5)
_[2]=a(5)

t1.sng 24> // let us establish a link between the singular sheaves
t1.sng 25. // and the singularities of their support
t1.sng 26. poly f = det(A); // determinant of A
t1.sng 27> // ideal of partial derivatives of f
t1.sng 28. // with respect to x(0), x(1), x(2)
t1.sng 29. // together with the 2x2-minors of Phi,
t1.sng 30. // its zeroes are exactly the singular points of C contained in Z
t1.sng 31. ideal D = diff(f, x(0)), diff(f, x(1)), diff(f, x(2)), minor(Phi, 2);
t1.sng 32> // look at the equations of the subvariety of the fibre defining such sheaves
t1.sng 33. D = sat(D, maxm)[1];
t1.sng 34> D = elim(D, X);
t1.sng 35> // the result coincides with the ideal for singular sheaves
t1.sng 36. primdecGTZ(D);
[1]:

[1]:
_[1]=c(3)
_[2]=a(3)

[2]:
_[1]=c(3)
_[2]=a(3)

[2]:
[1]:

_[1]=c(0)
_[2]=b(0)

[2]:
_[1]=c(0)
_[2]=b(0)

[3]:
[1]:

_[1]=b(5)
_[2]=a(5)

[2]:
_[1]=b(5)
_[2]=a(5)

t1.sng 37> // the ideal of the intersection of pt0 with the singular locus of C
t1.sng 38. D = diff(f, x(0)), diff(f, x(1)), diff(f, x(2)), x(1), x(2);
t1.sng 39> D = sat(D, maxm)[1];
t1.sng 40> D = elim(D, X);
t1.sng 41> // the result coincides with one of the components
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t1.sng 42. // of the fibre of singular sheaves computed above
t1.sng 43. primdecGTZ(D);
[1]:

[1]:
_[1]=c(0)
_[2]=b(0)

[2]:
_[1]=c(0)
_[2]=b(0)

t1.sng 44> // the ideal of the intersection of pt0 with the singular locus of C
t1.sng 45. D = diff(f, x(0)), diff(f, x(1)), diff(f, x(2)), x(0), x(2);
t1.sng 46> D = sat(D, maxm)[1];
t1.sng 47> D = elim(D, X);
t1.sng 48> // the result coincides with one of the components
t1.sng 49. // of the fibre of singular sheaves computed above
t1.sng 50. primdecGTZ(D);
[1]:

[1]:
_[1]=c(3)
_[2]=a(3)

[2]:
_[1]=c(3)
_[2]=a(3)

t1.sng 51> // the ideal of the intersection of pt0 with the singular locus of C
t1.sng 52. D = diff(f, x(0)), diff(f, x(1)), diff(f, x(2)), x(0), x(1);
t1.sng 53> D = sat(D, maxm)[1];
t1.sng 54> D = elim(D, X);
t1.sng 55> // the result coincides with one of the components
t1.sng 56. // of the fibre of singular sheaves computed above
t1.sng 57. primdecGTZ(D);
[1]:

[1]:
_[1]=b(5)
_[2]=a(5)

[2]:
_[1]=b(5)
_[2]=a(5)

t1.sng 58> $

A.2. Fibres of type (2)
t2.sng 1> LIB "elim.lib";
t2.sng 2> ring r = 0, (x(0..2), a(0..5), b(0..5), c(0..5)), dp;
t2.sng 3> ideal maxm = x(0..2);
t2.sng 4> poly X = x(0)*x(1)*x(2);
t2.sng 5> poly q(0..2);
t2.sng 6> q(0) = a(0)*x(0)^2 + a(1)*x(0)*x(1) + a(2)*x(0)*x(2) + a(3)*x(1)^2 + a(4)*x(1)*x(2) + a(5)*x(2)^2;
t2.sng 7> q(1) = b(0)*x(0)^2 + b(1)*x(0)*x(1) + b(2)*x(0)*x(2) + b(3)*x(1)^2 + b(4)*x(1)*x(2) + b(5)*x(2)^2;
t2.sng 8> q(2) = c(0)*x(0)^2 + c(1)*x(0)*x(1) + c(2)*x(0)*x(2) + c(3)*x(1)^2 + c(4)*x(1)*x(2) + c(5)*x(2)^2;
t2.sng 9> q(1) = subst(q(1), x(1), 0);
t2.sng 10> q(2) = subst(q(2), x(2), 0);
t2.sng 11> // general form of matrices representing the points in the fibre
t2.sng 12. matrix A[3][3] = q(0), q(1), q(2), x(0), x(1), 0, 0, x(0), x(2);
t2.sng 13> print(A);
A[1,1],A[1,2],A[1,3],
x(0), x(1), 0,
0, x(0), x(2)
t2.sng 14> // the Kronecker module corresponding to 3 non-collinear points
t2.sng 15. matrix Phi = submat(A, 2..3,1..3);
t2.sng 16> print(Phi);
x(0),x(1),0,
0, x(0),x(2)
t2.sng 17> // the ideal of 2x2 minors
t2.sng 18. ideal minm = minor(A, 2);
t2.sng 19> minm = sat(minm, maxm)[1]; // compute its saturation
t2.sng 20> minm = elim(minm, X); // eliminate the variables x(0), x(1), x(2)
t2.sng 21> minm;
minm[1]=b(5)*c(3)^2
minm[2]=a(5)*c(3)^2
minm[3]=a(3)*b(5)*c(3)
minm[4]=a(3)*a(5)*c(3)
minm[5]=a(3)*b(5)*c(1)-a(1)*b(5)*c(3)
minm[6]=a(3)*a(5)*c(1)-a(1)*a(5)*c(3)
minm[7]=a(3)^2*b(5)
minm[8]=a(3)^2*a(5)
t2.sng 22> // look at the primary decomposition of the result
t2.sng 23. primdecGTZ(minm);
[1]:

[1]:
_[1]=c(3)^2
_[2]=a(3)*c(3)
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_[3]=a(3)^2
_[4]=-a(3)*c(1)+a(1)*c(3)

[2]:
_[1]=c(3)
_[2]=a(3)

[2]:
[1]:

_[1]=b(5)
_[2]=a(5)

[2]:
_[1]=b(5)
_[2]=a(5)

t2.sng 24> // polynomial defining the quartic curve C
t2.sng 25. poly f=det(A);
t2.sng 26> // ideal of singularities of the curve C lying on Z
t2.sng 27. ideal D = diff(f, x(0)), diff(f, x(1)), diff(f, x(2)), minor(Phi, 2);
t2.sng 28> // compute the equations of the subvariety of the corresponding sheaves
t2.sng 29. D = sat(D, maxm)[1];
t2.sng 30> D = elim(D, X);
t2.sng 31> D;
D[1]=a(3)*b(5)*c(3)
D[2]=a(3)*a(5)*c(3)
D[3]=a(3)^2*b(5)
D[4]=a(3)^2*a(5)
t2.sng 32> // look at its primary decomposition
t2.sng 33. // the corresponding variety has an extra component
t2.sng 34. // whose points do not define singular sheaves
t2.sng 35. primdecGTZ(D);
[1]:

[1]:
_[1]=a(3)

[2]:
_[1]=a(3)

[2]:
[1]:

_[1]=b(5)
_[2]=a(5)

[2]:
_[1]=b(5)
_[2]=a(5)

[3]:
[1]:

_[1]=c(3)
_[2]=a(3)^2

[2]:
_[1]=c(3)
_[2]=a(3)

t2.sng 36> $

A.3. Fibres of type (3)
t3.sng 1> LIB "elim.lib";
t3.sng 2> ring r = (0,s, t), (x(0..2), a(0..5), b(0..5), c(0..5)), dp;
t3.sng 3> ideal I = x(2)^3, x(1)*x(0)-s*x(2)*x(0)-(1/t)*x(2)^2;
t3.sng 4> I=sat(I, x(0))[1];
t3.sng 5> I;
I[1]=x(1)*x(2)+(-s)*x(2)^2
I[2]=x(1)^2+(-2*s)*x(1)*x(2)+(s^2)*x(2)^2
I[3]=(t)*x(0)*x(1)+(-s*t)*x(0)*x(2)-x(2)^2
I[4]=x(2)^3
t3.sng 6> ideal J = I[1..3];
t3.sng 7> std(J);
_[1]=x(1)*x(2)+(-s)*x(2)^2
_[2]=x(1)^2+(-2*s)*x(1)*x(2)+(s^2)*x(2)^2
_[3]=(t)*x(0)*x(1)+(-s*t)*x(0)*x(2)-x(2)^2
_[4]=x(2)^3
t3.sng 8> // thus I = J
t3.sng 9. I = J;
t3.sng 10> matrix S[2][3] = (2*s*t)*x(0)+x(2), x(1)-(s)*x(2), (t)*x(0), x(1)+(s)*x(2), 0 ,x(2);
t3.sng 11> print(S);
(2*s*t)*x(0)+x(2),x(1)+(-s)*x(2),(t)*x(0),
x(1)+(s)*x(2), 0, x(2)
t3.sng 12> // the ideal of maximal minors coincides with I
t3.sng 13. minor(S,2);
_[1]=x(1)*x(2)+(-s)*x(2)^2
_[2]=(-t)*x(0)*x(1)+(s*t)*x(0)*x(2)+x(2)^2
_[3]=-x(1)^2+(s^2)*x(2)^2
t3.sng 14> ideal maxm=x(0..2);
t3.sng 15> poly X=x(0)*x(1)*x(2);
t3.sng 16> poly q(0..2);
t3.sng 17> q(0) = a(0)*x(0)^2 + a(1)*x(0)*x(1) + a(2)*x(0)*x(2) + a(3)*x(1)^2 + a(4)*x(1)*x(2) + a(5)*x(2)^2;
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t3.sng 18> q(1) = b(0)*x(0)^2 + b(1)*x(0)*x(1) + b(2)*x(0)*x(2) + b(3)*x(1)^2 + b(4)*x(1)*x(2) + b(5)*x(2)^2;
t3.sng 19> q(2) = c(0)*x(0)^2 + c(1)*x(0)*x(1) + c(2)*x(0)*x(2) + c(3)*x(1)^2 + c(4)*x(1)*x(2) + c(5)*x(2)^2;
t3.sng 20> q(1) = subst(q(1), x(1), 0);
t3.sng 21> q(2) = subst(q(2), x(2), 0);
t3.sng 22> // the linear part is S
t3.sng 23. matrix A[3][3];
t3.sng 24> A = q(0), q(1), q(2), (2*s*t)*x(0)+x(2), x(1)-(s)*x(2), (t)*x(0), x(1)+(s)*x(2), 0, x(2);
t3.sng 25> print(A);
A[1,1], A[1,2], A[1,3],
(2*s*t)*x(0)+x(2),x(1)+(-s)*x(2),(t)*x(0),
x(1)+(s)*x(2), 0, x(2)
t3.sng 26> // the linear part Phi
t3.sng 27. matrix Phi = submat(A, 2..3, 1..3);
t3.sng 28> //ideal of 2x2 minor sof A
t3.sng 29. ideal minm = minor(A, 2);
t3.sng 30> // compute the ideal of the subvariety of singular sheaves in the fibre
t3.sng 31. minm = sat(minm, maxm)[1];
t3.sng 32> minm = elim(minm, X);
t3.sng 33> // look at its primary decomposition
t3.sng 34. list PD = primdecGTZ(minm);
t3.sng 35> // it has only one component
t3.sng 36. size(primdecGTZ(minm));
1
t3.sng 37> // the corresponding prime ideal is
t3.sng 38. PD[1][2];
_[1]=b(0)
_[2]=a(0)+(-2*s)*c(0)
t3.sng 39> $
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