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On elliptic curves of bounded degree in
a polarized Abelian surface
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Abstract. For a polarized complex Abelian surface A we study the
function NA(t) counting the number of elliptic curves in A with degree
bounded by t. We describe elliptic curves as solutions of an explicit
Diophantine equation, and we show that computing the number of solu-
tions is reduced to the classical problem in Number Theory of counting
lattice points lying on an explicit bounded subset of Euclidean space. We
obtain in this way some asymptotic estimate for the counting function.

Keywords: Elliptic curve, Abelian surface, polarization, lattice points.
MS Classification 2010: 14K20, 11D45.

1. Introduction

Let A be a complex Abelian surface. With the expression ‘elliptic curve in
an Abelian surface’ we mean a one-dimensional subtorus. The collection of
all elliptic curves in A is (at most) countable (and possibly empty). Assume
that A is endowed with a polarization. Every algebraic curve in A has a degree
with respect to the polarization, and the following finiteness theorem holds: for
every integer t ≥ 1 the collection of elliptic curves E ⊂ A such that deg(E) ≤ t
is finite. This was known to Bolza and Poincaré, and a modern account is in
the paper of Kani [4].

Denote by NA(t) the number of elliptic curves in A with degree bounded
by t. The aim in the present paper is to present an approach to the counting
function NA(t). The problem of bounding this function is invariant under
isogenies, and the most relevant case is when A is the product E × E′ of two
elliptic curves, with a split polarization (the sum of two pullback polarizations
from the factors). When we consider E ×E′ as a polarized Abelian surface we
always assume that it is endowed with such a split polarization.

We show (see §4) that computing elliptic curves in E×E′ is reduced to solv-
ing some explicit Diophantine equation, in terms of coordinates in the Néron
Severi group NS(E × E′). It turns out that computing NE×E′(t) is reduced
to counting points of the lattice Zr lying on an explicit bounded subset of Rr,
where r is the rank of the Néron Severi group. This is a classical topic in Num-
ber Theory, originating from Gauss’ circle problem and still a field of active
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research. So we are lead to apply some result from that field, and in this way
we obtain an asymptotic estimate for the counting function.

Clearly when r = 2 then NE×E′(t) = 2. So assume that r ≥ 3. Denote
by m the minimum of deg(E) and deg(E′), the degrees with respect to the
polarization, and assume that m = deg(E′). When r = 3 then E and E′ are
isogenous, so let d be the degree of a primitive isogeny E → E′. When r = 4,
E and E′ are isogenous elliptic curves with complex multiplication; we denote
by δ the discriminant of the relevant imaginary quadratic field (see §3.2). In
terms of these properties, we prove (in §5.2) the following main result.

Theorem 1.1. Assume that r ≥ 3. There is an asymptotic estimate

NE×E′(t) = C tr−1 +O(te),

the constant C being given by

π

4
√
dm2

for r = 3,
π

3
√
−δ m3

for r = 4,

the exponent e being

0 for r = 3, 85
52 = 1.634 . . . for r = 4.

Finally we show that the result for a product Abelian surface implies some
result holding for an arbitrary polarized Abelian surface (Proposition 6.1), and
we observe that the estimates for NA(t) obtained in this way are, at least
asymptotically, sharper than an existing upper bound (Remark 6.2).

2. Some preliminary material

2.1. Elliptic curves as divisor classes

Let A be an Abelian surface. Every curve C ⊂ A determines a divisor class [C]
in the Néron Severi group NS(A). For elliptic curves (subgroups), the induced
correspondence {

elliptic curves in A
}
−→ NS(A)

is injective and the divisor classes in NS(A) corresponding to elliptic curves in
A are characterized by the following properties (cf. [4], Theorem 1.1):

− D is primitive (indivisible),

− D ·D = 0,

− D ·H > 0 for some (every) ample divisor H.
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2.2. Degree with respect to a polarization

Let L in NS(A) be an ample divisor class, representing a polarization of A.
For every curve C ⊂ A the degree with respect to the polarization is

deg(C) := C · L.

Let A be a polarized Abelian surface (we usually omit an explicit reference
to the polarization). The following is a classical result: for every integer t ≥ 1
the collection of elliptic curves E ⊂ A such that deg(E) ≤ t is finite (cf. [4],
Corollary 1.3). We define the function

NA(t)

counting the number of elliptic curves in A with degree bounded by t.
An important special case is when A = J(C) is the Jacobian variety of a

curve of genus 2, with the canonical polarization. Elliptic curves E ⊂ J(C)
correspond bijectively to isomorphism classes of non-constant morphisms f :
C → E to an elliptic curve E, which do not factor as C → E′ → E where E′ →
E is a non-isomorphic isogeny, and the degree deg(E) in J(C) coincides with the
degree deg(f) of the corresponding morphism. As a corollary of the theorem
above, it follows that: for every integer t ≥ 1 the collection of isomorphism
classes of morphisms f : C → E which do not factor through a non-trivial
isogeny of E and have deg(f) ≤ t is finite.

2.3. Product Abelian surfaces

Consider an Abelian surface of the form E×E′ where E,E′ are elliptic curves.
There is a natural isomorphism

Z2 ⊕Hom(E,E′) ∼−→ NS(E × E′),

induced by the homomorphism

D : Z2 ⊕Hom(E,E′) −→ Div(E × E′)

that is defined by

D(a, b, f) := (b− 1)Eh + (a− deg f)E′v + Γ−f

where Eh := E×{0} and E′v := {0}×E′ are the ‘horizontal’ and the ‘vertical’
factor, and Γ−f is the graph of the homomorphism −f . The intersection form
on NS(E × E′) is expressed as

D(a, b, f) ·D(a′, b′, f ′) = ab′ + ba′ −
(

deg(f + f ′)− deg(f)− deg(f ′)
)
.

This is a special case of the description of correspondences between two
curves in terms of homomorphisms between the associated Jacobian varieties
(cf. e.g. [1], Theorem 11.5.1) and also is a special case of a result of Kani ([5],
Proposition 61) for the Néron Severi group of a product Abelian variety.
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2.4. Reducibility

We will make use of the Poincaré reducibility theorem with respect to a polar-
ization, in the following form.

If A is a polarized Abelian variety and B is an Abelian subvariety of A,
there is a unique Abelian subvariety B′ of A such that the sum homomorphism
B × B′ → A is an isogeny and the pullback polarization on B × B′ is the
sum of the pullback polarizations from B and B′ (cf. [1], Theorem 5.3.5 and
Corollary 5.3.6).

3. The homomorphism group

Let E and E′ be elliptic curves, that we identify with Eτ and Eτ ′ for suitable
moduli τ and τ ′, and denote by Λ := 〈1, τ〉 and Λ′ := 〈1, τ ′〉 the corresponding
lattices in C. There is the natural identification

Hom(E,E′)←→ {α ∈ C s.t. αΛ ⊆ Λ′} =: H.

3.1. In presence of an isogeny

Assume that there is an isogeny E → E′.

Lemma 3.1. In this case, we can choose τ such that Λ = 〈1, τ〉 and such that
for some ` ∈ Q>0 the complex number `τ is the modulus of an elliptic curve
E′′ isomorphic to E′.

Proof. Assume that α ∈ C represents an isogeny C/Λ→ C/Λ′. In the present
setting the lattice Λ is of the form 〈1, τ〉. Hence α ∈ Λ′. Write α = pβ with
β ∈ Λ′ primitive and p ∈ Z>0.

In Λ′/〈α〉 the torsion submodule is 〈β〉/〈α〉 ∼= Zp. Since Λ′/〈β〉 is torsion
free of rank 1, one can find ω′ ∈ Λ′ such that

Λ′ = 〈β, ω′〉.

The module αΛ/〈α〉 is a free module of rank 1 (isomorphic to Λ/Z). There-
fore the induced homomorphism

αΛ/〈α〉 −→ Λ′/〈β〉

is injective. It follows that there is some multiple qω′ with q ∈ Z>0 such that
qω′ ∈ αΛ, thus qω′ = αω with ω ∈ Λ, and moreover

αΛ = 〈α, qω′〉,

whence it follows that
Λ = 〈1, ω〉.
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Note that Λ′/αΛ ∼= Zp × Zq, so the degree of the given isogeny is pq.
We can choose ω′ with im(ω′) > 0 and, replacing α with −α if necessary,

we obtain that im(ω) > 0. We can replace the initial τ with this ω. Then
define ω′′ := ω′/β = (p/q)ω and define Λ′′ := 〈1, ω′′〉. Clearly β represents
an isomorphism C/Λ′′ → C/Λ′ and the modulus ω′′ for C/Λ′′ is as in the
statement. (Note, by the way, that p represents an isogeny C/Λ→ C/Λ′′ that,
followed by the isomorphism β, gives the initial isogeny α.)

Remark 3.2. In the setting of the proof above, we see that α defines a prim-
itive isogeny if and only if it defines a cyclic isogeny, and both conditions are
equivalent to p, q being coprime integers.

It is enough to observe that: if t is an integer, then (1/t)α sends Λ = 〈1, ω〉
into Λ′ = 〈β, ω′〉 if and only if t is a common divisor of p, q; on the other hand,
the quotient Λ′/αΛ ∼= Zp × Zq is a cyclic group if and only if p, q are coprime.

It is well known that an isogeny of minimum degree between two given
elliptic curves is a cyclic isogeny (cf. [6], Lemma 6.2).

Assume now that E and E′ are isogenous elliptic curves, and assume that
they have moduli τ and τ ′ as in the Lemma, with

τ ′ = `τ

and ` = p/q with p, q coprime positive integers. Then clearly H contains the
integer p (corresponding to some primitive isogeny of degree pq) and also the
subset pZ.

Remark 3.3. If f is the homomorphism corresponding to x ∈ Z, then

deg(f) = x2(pq).

Because f is just multiplication by x in E followed by the given isogeny E → E′,
of degree pq.

3.2. In presence of complex multiplication

Let us continue with the same setting (E and E′ isogenous, Λ = 〈1, τ〉 and
Λ′ = 〈1, τ ′〉, with τ ′ = `τ). We may assume that the given isogeny is primitive.

Assume now that the homomorphism group Hom(E,E′) has rank > 1.
Then E has complex multiplication, and the same is for E′. Therefore the
modulus τ is algebraic of degree 2 over Q (cf. e.g. [9], Chapter VI, Theorem
5.5). So, assume that τ satisfies the equation

τ2 +
u

w
τ +

v

w
= 0
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with u, v, w in Z such that w > 0 and (u, v, w) = (1) and moreover

δ := u2 − 4vw < 0

as τ is an imaginary complex number. Note that δ ≡ 0, 1 (mod 4).

Lemma 3.4. In the equation above we also have that p | w and q | v.

Proof. The quadratic equation for τ is related to the quadratic equation for `τ

over Q, that we write as
(
p
q τ
)2

+ u′

w′

(
p
q τ
)

+ v′

w′ = 0, where u′, v′, w′ are coprime

integers with w′ positive. Divide both w′, q by their greatest common divisor
and denote by w̃, q̃ the resulting coprime pair, and similarly define a coprime
pair ṽ, p̃ obtained from v′, p. So we have

τ2 +
u′p̃q̃

w̃p̃p
τ +

ṽq̃q

w̃p̃p
= 0,

and it is easily seen that u = u′p̃q̃, v = ṽq̃q, w = w̃p̃p have no common divisor:
because ṽq̃q, p and w̃p̃p, q are coprime pairs, and because u′, v′, w′ have no
common divisor.

Thus we define
w̄ := w/p and v̄ := v/q.

Moreover, since p, q are coprime, we can write

u = pp′ + qq′

for suitable integers p′, q′.

Proposition 3.5. In the present setting, an explicit isomorphism Z2 → H is
given by

(x, y) 7−→ (xp+ yq′) + (yw̄)(`τ).

Proof. Let α ∈ C represent an homomorphism C/Λ → C/Λ′, i.e. both α and
ατ belong to Λ′. Write α = a+ b(`τ) with a, b integers. Then

ατ = −(b`v/w) + ((a/`)− (bu/w))(`τ).

Hence ατ ∈ Λ′ if and only if

b`(v/w), a/`− b(u/w) ∈ Z.

So the set H consists of the complex numbers α ∈ Λ′ which satisfy the two
conditions above.

The map Z2 → C defined in the statement restricts to Z2 → H, as is easily
checked using the conditions above. It is clearly an injective homomorphism
and we have to show that it is surjective.
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Let α be an element of H. In the representation given above we have that
b(v̄/w̄) ∈ Z and aq − b(u/w̄) ∈ pZ, and in particular b(v̄/w̄) and b(u/w̄) are
integers. Since u, v, w are coprime, it follows that w̄ | b, and the first condition
above is satisfied. So write

b = yw̄

with y ∈ Z. Then the second condition above requires that yu = aq + a′p for
some integer a′. Since p, q are coprime, the solutions are of the form (a′, a) =
y(p′, q′) + x(−q, p) with x ∈ Z. Thus

a = xp+ yq′.

This proves that α belongs to the image of the map in the statement.

Proposition 3.6. The degree of the homomorphism f : E → E′ corresponding
to (x, y) ∈ Z2 is given by

deg(f) = x2(pq) + xy(qq′ − pp′) + y2(−p′q′ + v̄w̄).

The discriminant of the quadratic form f 7→ deg(f) on Hom(E,E′) is
equal to δ.

Proof. With the notation of the preceding proof, the degree is given by the
absolute value of the determinant of the submodule αΛ in Λ′, that is∣∣∣∣a −b`(v/w)

b (a/`)− b(u/w)

∣∣∣∣ =

∣∣∣∣xp+ yq′ −yv̄
yw̄ xq − yp′

∣∣∣∣ ,
where we used the expressions for a, b given in the preceding proof. It is then
easy to calculate that the determinant is equal to the expression given in the
statement. It is also easy to check that the discriminant of this quadratic form
in x, y is given by u2 − 4(pq)(v̄w̄) = u2 − 4vw = δ.

4. Elliptic curves in a product Abelian surface

Consider an Abelian surface of the form E×E′ where E,E′ are elliptic curves.
Let r be the rank of the Néron Severi group NS(E × E′). We have (see §2.3)
a natural isomorphism

Z2 ⊕Hom(E,E′) ∼−→ NS(E × E′)

and we can describe (see §2.1) the collection of elements (a, b, f) in the group
Z2 ⊕ Hom(E,E′) such that the corresponding divisor class [D(a, b, f)] is the
class of an elliptic curve in E × E′.
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Besides the condition of primitivity of the element (a, b, f), the numerical
condition D ·D = 0 becomes

ab = deg(f)

and the positivity condition D ·H > 0 is equivalent to

a+ b > 0

(using the ample divisor H := Eh + E′v).
If on E × E′ we choose a split polarization L = mEh + nE′v = D(n,m, 0),

where m,n are positive integers, then the degree deg(D) = D · L with respect
to the polarization is given by the linear function

am+ bn.

Furthermore, we have (see §3) a description of the group of homomorphisms
between two elliptic curves, i.e. an explicit isomorphism

Hom(E,E′)←→ Zh

where h is the rank of the homomorphism group. So we have an explicit
isomorphism

NS(E × E′)←→ Zr

where r = h + 2 is the rank of the Néron Severi group, and in terms of co-
ordinates in Zr the description of elliptic curves in E × E′ can be written as
a Diophantine equation, with some limitation. We will study the equation
according to the values of the rank r.

The case r = 2, i.e. h = 0, is when E and E′ are not isogenous. Clearly Eh
and E′v are the only elliptic curves in E × E′. When E and E′ are isogenous,
i.e. r ≥ 3 and h ≥ 1, there are infinitely many elliptic curves in E × E′, the
graphs of homomorphisms E → E′. Then (see §3) we have r = 4 if and only if
both E and E′ have complex multiplication.

For small values of the degree am+ bn, it is sometimes possible to compute
all solutions of the Diophantine equation.

Example 4.1. Elliptic curves of degree at most 2. The maximum number is
attained only if on E × E′ is given the principal split polarization (m = n =
1). So assume this is the case. The only elliptic curves of degree 1 are Eh
and E′v. An elliptic curve of degree 2 must be the graph of an isomorphism
E ∼−→ E′ (follows from ab = deg(f)). Hence, without loss of generality, we
may assume that E = E′ (and ` = 1). In the self product E2 the diagonal
and the anti-diagonal are elliptic curves of degree 2. If E has no complex
multiplication, these are the only ones. If E has complex multiplication, the



ELLIPTIC CURVES OF BOUNDED DEGREE 503

maximum number of elliptic curves of degree 2 in E2 is equal to 6, and is
attained if and only if δ = −3. The degree form is written as x2−uxy+ vwy2,
equal to

(
(2x − uy)2 − δt2

)
/4, and we only have to compute the solutions of

(2x − uy)2 − δt2 = 4 (where δ ≡ 0, 1 (mod 4)). Two solutions are (±1, 0) for
every δ, that give the diagonal and the anti-diagonal; for more solutions we
must have −δ = 3, 4; if −δ = 4 two more are ±(u/2, 1), if −δ = 3 four more
are ±((u± 1)/2, 1).

Remark 4.2. The following result is found in a recent paper by Rosen and
Schnidman ([8], Lemma 2.10): in a polarized Abelian surface with polarization
degree ≥ 5 there is at most one elliptic curve of degree 2.

5. On the number of elliptic curves

5.1. A result from Number Theory

The following is a classical problem in Number Theory, originating from Gauss’
circle problem. Given a compact convex subset K in R2, estimate the number
N := card (Z2∩K) of integer vectors (or lattice points) belonging to the convex
set. This number is naturally approximated by the area A of the subset, and
then the question is to estimate the (error or) discrepancy N−A. The following
estimate is due to Nosarzewska [7]. If K is a compact convex region in R2 of
area A whose boundary is a Jordan curve of length L then

N ≤ A+
1

2
L+ 1.

We will apply this result through the following consequence. For every scale
factor t ∈ R≥0 denote by N(t) the number of lattice points in the deformed
region

√
tK. Then

N(t) ≤ A t+
L

2
t1/2 + 1.

The inequality above is valid for arbitrary t. But in an asymptotic estimate

N(t) = A t+O(te)

(an implicit inequality holding for t� 0) the exponent e may be lowered, and
precisely one can take e = 33/104 = 0.317 . . . . This follows from a result of
Huxley [2].

5.2. Estimate for the counting function

Let E × E′ be a product Abelian surface, endowed with a split polarization.
Let r be the rank of the Néron Severi group NS(E × E′) and assume that
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r ≥ 3. Here we prove the result in the introduction, asserting that there is an
asymptotic estimate NE×E′(t) = Ctr−1 + O(te), with the constant C and the
exponent e as given in the statement.

Proof of Theorem 1.1. We work in terms of coordinates, as explained in §4.
The degree with respect to the polarization is given by the linear function
am+ bn. We assume that m ≤ n, so that m = deg(E′v) is the minimum degree
occurring in the statement. Define t′ := [t/m], and assume that t′ ≥ 1 since
otherwise the inequality am+ bn ≤ t has no nonzero solution.

We have to estimate the collection of primitive vectors (a, b, f) in Z2 ×
Hom(E,E′) such that ab = deg(f) and a+ b > 0 and am+ bn ≤ t. Note that
a + b > 0 may be replaced with a, b ≥ 0. There are at most two such vectors
with ab = 0, since then f = 0. The subcollection with ab 6= 0 is mapped,
forgetting b, to the collection{

(a, f) s.t. f 6= 0, 0 < a < t′, deg(f) ≤ a(t′ − a)
}

and the map is injective. Therefore we have

NE×E′(t) ≤ 2 +

t′∑
a=0

R(a, t)

where R(a, t) is the number of nonzero f such that deg(f) ≤ a(t′ − a). The
function R(a, t) can be estimated, according to the values of the rank r = h+2,
using the description of the quadratic form deg(f) given in §3.

When r = 3 then R(a, t) is the number of nonzero x ∈ Z such that x2d ≤
a(t′ − a), where d is the degree of a primitive isogeny E → E′, by Remark 3.3,

and hence R(a, t) ≤ 2√
d

(
a(t′ − a)

)1/2
. We will show in Remark 5.1 below that

t′∑
a=0

(
a(t′ − a)

)1/2
=
π

8
t′
2

+O(1).

Therefore, since t′ ≤ t/m, in this case we have the asymptotic estimate

NE×E′(t) =
π

4
√
dm2

t2 +O(1).

When r = 4 then R(a, t) is the number of nonzero vectors (x, y) ∈ Z2 such
that Q(x, y) ≤ a(t′ − a), where Q(x, y) is the coordinate expression for the
quadratic form deg(f), given in Proposition 3.6, whose determinant is equal to
−δ. Applying the result in §5.1 we have

R(a, t) = Aa(t′ − a) +O((a(t′ − a))e)
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with e = 33/104, where A = 2π/
√
−δ is the area of the region Q(x, y) ≤ 1 in

R2. Remark here that for every a the discrepancy above arises from a single
discrepancy function N(t)−At. It follows that

t′∑
a=0

R(a, t) = A

 t′∑
a=0

a(t′ − a)

+O

 t′∑
a=0

(
a(t′ − a)

)e .

We have to estimate the summations occurring in this formula. For one
summation we have an exact formula

t′∑
a=0

a(t′ − a) =
1

6
t′(t′ + 1)(t′ − 1).

For the other summation, using a basic approximation method as explained in
Remark 5.1 below, we find the asymptotic estimate

t′∑
a=0

(
a(t′ − a)

)e
= O(t′

2e+1
).

Summing up, we obtain for the function NE×E′(t) an estimate that is a
function of t′ and then, using t′ ≤ t/m, we obtain one that is a function of t.
Explicitely, we find the asymptotic estimate

NE×E′(t) =
A

6

(
t3

m3
− t

m

)
+O(t2e+1) =

(
2π

6
√
−δ m3

)
t3 +O(t2e+1),

with e = 33/104, as in the statement.

Remark 5.1. In the interval [0, t], with t a positive integer, for the function
f(x) :=

(
x(t−x)

)e
with 0 < e < 1, applying the approximation method known

as the ‘trapezoidal rule’, in the interval [1, t− 1] and for t ≥ 2, we have that∫ t−1

1

f(x)dx−
t−1∑
n=1

f(n) = − t− 2

12
f ′′(ξ)

for some ξ in [1, t− 1]; since for f ′′ the maximum value is f ′′(t/2) = −c/t2−2e
where c = (e/2)42−e, and since∫ t

0

f(x)dx = H t2e+1

where H =

∫ 1

0

(y(1− y))edy, it follows that

t∑
n=0

f(n) ≤ H t2e+1 − c

12

t− 2

t2−2e
.
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For e = 1/2 the special value H = π/8 is used in the proof above.

6. Arbitrary polarized Abelian surfaces

6.1. Behavior under isogenies

Let A,B be polarized Abelian surfaces and let ϕ : B → A be an isogeny,
preserving the polarizations (the polarization on B is the pullback of the po-
larization on A), whose degree we call d. There is a one to one correspondence{

elliptic curves in A
} ∼−→

{
elliptic curves in B

}
.

Given E ⊂ A the corresponding E∗ in B is the connected component of 0 in
the pre-image ϕ−1(E). The restricted isogeny E∗ → E has degree dE ≤ d (in
fact a divisor of d), and the degree of E∗ is given by

deg(E∗) = dE deg(E)

(by the projection formula: E∗ · ϕ∗L = ϕ∗E
∗ · L = dE E · L). Therefore:

deg(E) ≤ deg(E∗) ≤ d deg(E).

It follows that the functions counting elliptic curves in A and in B are
related by the following inequalities:

NA(t) ≤ NB(dt) and NB(t) ≤ NA(t).

6.2. On the counting function

Let A be a polarized Abelian surface. Let r be the rank of the Néron Severi
group NS(A). We may assume that A is a non-simple Abelian surface, so it
contains an elliptic curve E. It follows from the reducibility theorem (see §2.4)
that A also contains a complementary elliptic curve E′ and there is an isogeny
E ×E′ → A, where the pullback polarization on E ×E′ is a split polarization.
Let d be the minimum degree of such an isogeny. Choose an isogeny E×E′ → A
as above of degree d.

The rank of the Néron Severi group NS(E × E′) is also equal to r, and
there is a bijective correspondence{

elliptic curves in A
} ∼−→

{
elliptic curves in E × E′

}
described in the previous subsection. Clearly, as A is non-simple, then r ≥ 2
and if r = 2 then NA(t) = 2. Note that: when r ≥ 3 there are in A infinitely
many elliptic curves, as is in E × E′.
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Proposition 6.1. Assume that r ≥ 3. The function NA(t) can be given an
asymptotic estimate of the form

NA(t) = C tr−1 +O(te),

for some constant C and exponent e < r − 2.

Proof. If A is non-simple, and E ×E′ → A is an isogeny of degree d, as in the
description above, then

NA(t) ≤ NE×E′(d t)

(see §6.1); the estimate for the function NE×E′(t) is given in Theorem 1.1, and
so the statement follows.

Remark 6.2. When A = J(C) is the Jacobian of a curve of genus g > 1, there
is an effective bound for the function NA(t) due to Kani (cf. [3], Theorem 4),

which is of order O(t2g
2−2), in particular for g = 2 of order O(t6). As the order

found in the present paper is smaller, we are encouraged to believe that our
approach may lead to some sharper asymptotic estimate for arbitrary g.
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