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1. Background for the improved Massera’s theorem

In this paper, we consider the well-known Liénard equation

ẍ+ f(x)ẋ+ x = 0.

Throughout, we assume for the above equation that the function f(x) satis-
fies smoothness conditions in order to guarantee the uniqueness of solutions
of initial value problems. This equation has been widely investigated in the
literature (for instance see [9]). We are interested in the unique existence of
the limit cycle of the equation under the following Property (A) (see [8]):

f(x) is continuous and there exist a < 0 < b such that f(x) < 0 for a < x < b,
f(x) > 0 for x ≤ a or x ≥ b; moreover, xF (x) > 0 for |x| large, where F (x)
=
∫ x
0
f(t)dt.

Note that F (x) has three zeros at α < 0, 0, β > 0 and is monotone increasing
for x < α and for x > β.

It is well-known that the Liénard equation is equivalent to the Liénard
system

ẋ = y − F (x), ẏ = −x. (L)

First, we recall some previous results for system (L). Levinson-Smith [3] in 1942
and Sansone [5] in 1949 (see also the paper of Villari [7] in 1985) have proved
the following
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Proposition 1.1. Under the property (A) a limit cycle intersecting both the
lines x = α and x = β is at most one.

Afterwards Massera [4] in 1954 improved a result of Sansone [6] in 1951 by
using the phase-plane analysis as follows.

Proposition 1.2. (Massera’s Theorem) System (L) has at most one limit cycle
which is stable if f(x) is monotone decreasing for x < 0 and f(x) is monotone
increasing for x > 0.

We remark that the existence of a limit cycle is not guaranteed in the above
theorem.

Recently, Villari [8] in 2012, on these bases, has presented the following

Proposition 1.3. Under the property (A) system (L) has exactly one limit
cycle, which is stable, provided that

• if |α| > β, then f(x) is monotone decreasing for α < x < 0,
f(x) is monotone increasing for 0 < x < δ,

• if |α| < β, then f(x) is monotone decreasing for δ1 < x < 0,
f(x) is monotone increasing for 0 < x < β,

where δ =

√(
1 + F (a) +

α2

2

)2
+ β2 and δ1 = −

√(
1− F (b) +

β2

2

)2
+ α2.

Our aim is to give a new criterion for the unique existence of the limit cycle
of system (L) by combining Proposition 1.3 with our result [2] in 2000 below.

Proposition 1.4. Assume that f(x) is continuous, f(a) = f(b) = 0 for a <
0 < b, f(0) < 0 and xF (x) > 0 for |x| large. System (L) has exactly one limit
cycle, which is stable, provided that

(i) |α| = β and f(x) > 0 for |x| ≥ β,

(ii) |a| ≤ β < |α| and f(x) > 0 for |x| ≥ β,

(iii) b ≤ |α| < β and f(x) > 0 for |x| ≥ |α|.

We produce the proof of the above proposition in the Appendix.

2. Main results

We show in this section that our method yields an improvement of the result of
Villari [8]. Instead of the Property(A), assume the following Property (B):

f(x) is continuously differentiable and F (0) = F (α) = F (β) = 0,
F (x)

x
< 0

for α < 0 < β, f(x) > 0 for x ≤ p and x ≥ β, or x ≤ α and x ≥ q, where
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p = min{x ∈ (α, 0)| F
′
(x) = 0, F

′′
(x) 6= 0}

and

q = max{x ∈ (0, β)| F
′
(x) = 0, F

′′
(x) 6= 0}.

Remark that Property (B) includes Property (A). We now state our result
concerning the unique existence of limit cycles of system (L).

Theorem 2.1. Under the property (B), if system (L) satisfies one of the con-
ditions :

(1) |α| = β and f(x) > 0 for |x| ≥ β,

(2) |p| ≤ β < |α| and f(x) > 0 for |x| ≥ β,

(3) q ≤ |α| < β and f(x) > 0 for |x| ≥ |α|,

(4) |α| > β and β < |p|, f(x) > 0 for x ≤ p and x ≥ β, f(x) is monotone

decreasing for p ≤ x < 0, f(x) is monotone increasing for 0 < x < δ∗,

where δ∗ =

√(
1 + F (a∗) +

p2

2

)2
+ β2 for a∗ = min{x| max

x∈(α,0)
F (x)},

(5) |α| < β and |α| < q, f(x) > 0 for x ≤ α and x ≥ q, f(x) is monotone

decreasing for δ∗1 < x < 0, f(x) is monotone increasing for 0 < x ≤ q,

where δ∗1 = −
√(

1− F (b∗) +
q2

2

)2
+ α2 for b∗ = max{x| min

x∈(0,β)
F (x)},

then it has a unique stable limit cycle.

Remark 2.2. In [8] the case of p = a = a∗ or q = b = b∗ is treated.

Remark 2.3. In Theorem 2.1 the unique limit cycle intersects the lines x = ±β
in the case (1) or (2). In the case (3) it intersects the lines x = ±α, in the case
(4) x = p and x = β, in the case (5) x = α and x = q.

We now apply Theorem 2.1 to the Liénard equation with a positive param-
eter λ:

ẍ+ λf(x)ẋ+ x = 0.

It is equivalent to the Liénard system

ẋ = y − λF (x), ẏ = −x. (Lλ)



490 MAKOTO HAYASHI

Theorem 2.4. Under each condition in Theorem 2.1 system (Lλ) satisfies the
following:

(1)
′

if |α| = β, then it has a unique stable limit cycle intersecting the lines
x = α and x = β, for all λ > 0,

(2)
′

if |p| ≤ β < |α|, then it has a unique stable limit cycle intersecting the
lines x = ±β, for all λ > 0.

(3)
′

if q ≤ |α| < β, then it has a unique stable limit cycle intersecting the
lines x = ±α, for all λ > 0.

(4)
′

if |α| > β and β < |p|, then it has a unique stable limit cycle intersecting

the lines x = p and x = β, for all λ > λ̃1 =

√
p2 − β2

F 2(b∗)
.

(5)
′

if |α| < β and |α| < q, then it has a unique stable limit cycle intersecting

the lines x = α and x = q, for all λ > λ̃2 =

√
q2 − α2

F 2(a∗)
.

3. Proofs of theorems

Proof of Theorem 2.1. First, the cases of (1), (2) and (3) follow from [1] and [2].
So we omit the details. Next, we prove the case (4). By the Property (B), the
existence of the limit cycle for system (L) is guaranteed. From [2] system (L)
has at most one limit cycle intersecting the lines x = p and x = β. Further
it is stable. On the other hand, the limit cycle of system (L) contained in the
region D = {(x, y) | p ≤ x ≤ δ∗, y ∈ R} is at most one, by the monotonicity
condition on the function f(x), and is stable (see [8]). Thus we conclude from
the stability of the limit cycle that system (L) has exactly one limit cycle, either
intersecting the lines x = p and x = β, or in D. Similarly, we can prove the
case (5).

Proof of Theorem 2.2. The case (1)
′

is well-known from [1] or [8]. In the case
(2)

′
or (3)

′
the result in [2] applies. So we consider the case (4)

′
. Any positive

semitrajectory which starts from the point (β, λF (b∗)) must intersect the line
x = p for the positive number λ such that√

λ2F 2(b∗) + β2 ≥ |p|,

namely, for all λ > λ̃1. Then, as was mentioned in Theorem 2.1, the unique
limit cycle intersecting x = p and x = β exists. Further δ∗ is given by

δ∗ =

√(
1 + λF (a∗) +

p2

2

)2
+ β2
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for each λ satisfying λ > λ̃1. Similarly, the case (5)
′

is discussed, where

δ∗1 = −
√(

1− λF (b∗) +
q2

2

)2
+ α2

for all λ > λ̃2.

4. An example

We shall apply our results to some polynomial system.

Example 4.1. Consider the function

F (x) =


1

3
x3 +

3

2
x2 − 4x for x ≤ −4, x ≥ 0

−1

2
x2 − 4x for − 4 < x < 0

for system (L). This system has a unique stable limit cycle. Indeed, we have
α = (−9 −

√
273)/4 < p(= a∗) = −4 < b = 1 < β = (−9 +

√
273)/4 and all

conditions of the case (4) in Theorem 2.1 hold. For instance we have that F
′
(x)

is monotone decreasing for −4 < x < 0 and F
′
(x) is monotone increasing for

x > 0.

5. Appendix

We give the outline of the proof of Theorem 2 in our result in [2]. This is a
special case of Theorem 1 in [2]. It is well-known from the Poincaré-Bendixson’s
theorem that if System (L) satisfies the conditions that f(0) < 0 and xF (x) > 0
for |x| large, then it has at least one limit cycles.

We consider the case of |a| ≤ β ≤ |α| and f(x) = F
′
(x) > 0 for |x| ≥ |β|.

The other case can be discussed similarly. Letting G(x) = (1/2)x2, there exists
a negative number −β ∈ [α, 0) such that G(−β) = G(β). Then System (L)
has no limit cycles in the strip domain Ω = {(x, y) | |x| ≤ β, y ∈ R} because
of xF (x) < 0 for |x| < β (for instance see [1]). Thus, we know that there is a
closed orbit which C surrounds the origin and meets Ωc.

We show its uniqueness. Without loss of generality we can assume that C̃
is outside C. We define Lyapunov-type functions by

V (x, y, t) =


V1(x, y) = (1/2)y2 +G(x) if x ≥ β,
V2(x, y, t) = (1/2)y2 +G(x) + γ1t if |x| < β and y < F (x),
V3(x, y) = (1/2)(y − F (a))2 +G(x) if x ≤ −β,
V4(x, y, t) = (1/2)y2 +G(x) + γ2t if |x| < β and y > F (x).
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We use the same notations as in [2]. Let (x(t), y(t)) be a periodic solution
which starts from a point on the positive half of the vertical line x = β, T > 0
be its smallest period and

A = y(T2)− y(T3)− δ1 and Ã = ỹ(T̃2)− ỹ(T̃3)− δ2

for some constants δ1 and δ2.
We assume M = (T − T3)(T̃2 − T̃1) − (T̃ − T̃3)(T2 − T1) > 0. Then the

constants γ1 and γ2 are defined by

γ1 =
F (a){(T̃ − T̃3)A− (T − T3)Ã}

M

and

γ2 =
F (a){(T̃2 − T̃1)A− (T2 − T1)Ã}

M
.

Since ỹ(T̃2)− ỹ(T̃3) < y(T2)−y(T3) < 0 and F (a) > 0, we can take the numbers
δ1 and δ2 such that γ1 > 0, γ2 > 0 and δ1 ≤ δ2.

Then it follows from the same calculations as in [2] that Ii =
∫
Ci
dVi > Ĩi =∫

C̃i
dVi for i = 1, . . ., 4. Hence we have I =

∑4
i=1 Ii > Ĩ =

∑4
i=1 Ĩ.

On the other hand, we have from the choice of δ1 and δ2 that

I =

∮
C

dV = F (a){y(T2)− y(T3)}+ γ1(T2 − T1)− γ2(T − T3)

= F (a)(A+ δ1) + γ1(T2 − T1)− γ2(T − T3) = F (a)δ1.

Similarly we have

Ĩ = F (a)(Ã+ δ2) + γ1(T̃2 − T̃1)− γ2(T̃ − T̃3) = F (a)δ2.

Thus we have I ≤ Ĩ. This contradicts I > Ĩ.
In the case M < 0, by replacing with V2(x, y, t) = (1/2)y2 +G(x)− γ1t and

V4(x, y, t) = (1/2)y2 +G(x)−γ2t, we can take the numbers δ1 and δ2 satisfying
γ1 < 0, γ2 < 0 and δ1 ≤ δ2. In the case M = 0, we have by taking δ1 = δ2 that
I = Ĩ for some numbers γ1 > 0 and γ2 > 0. These contradict I > Ĩ too.
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