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Abstract. We derive and test a formal explicit approximated rule for
the reconstruction of a damaged inaccessible portion of the boundary of
a thin conductor from thermal data collected on the opposite accessible
face.
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1. Introduction

Let Ω = {(x, y, z) ∈ [−L,L]2 × [0, a] a < 1 � L} represent a uniform thin
plate of given thermal conductivity κ. We are modeling the following experi-
mental framework:

The half plane z > a is a forbidden aggressive environment, while z < 0 is
an accessible laboratory. We are able to heat the specimen Ω from below by
means of a controlled flux of density Φ0 generated by lamps or a laser device
and we are able to get temperature maps at z = 0 by means of an infrared
camera (TMC in Figure 1).

Small corrosion damages due to chemical or mechanical aggression may
appear on the upper inaccessible boundary of Ω. Since they are not accessible
to direct inspection, they must be identified through operations carried out
on the laboratory side. If the defect consists of a loss of matter (LOM), the
damaged domain is modeled by

Ωεθ = {(x, y, z) : (x, y) ∈ [−L,L]2, 0 ≤ z ≤ a− εθ(x, y)}.

We assume that the geometry of the damage is described by a continuous
function (x, y) → εθ(x, y). Here, ε � a is a constant dimensional scale factor
while θ(x, y) ∈ [0, 1] is dimensionless.
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Figure 1: Sketch of the experimental setup

The temperature of the damaged domain solves the following Initial Bound-
ary Value Problem in DT = Ωεθ × (0, T ]:

ut = α∆u , (1)

κun(x, y, a− εθ(x, y), t) + ah(u(x, y, a− εθ(x, y), t)− U0) = 0 , (2)

−κuz(x, y, 0, t) = Φ , (3)

ux(−L, y, z, t) = ux(L, y, z, t) = 0 , y ∈ [−L,L], z ∈ [0, a], t ∈ (0, T ] , (4)

uy(x,−L, z, t) = uy(x, L, z, t) = 0 , x ∈ [−L,L], z ∈ [0, a], t ∈ (0, T ] (5)

and
u(x, y, z, 0) = U0 , (6)

for all (x, y, z) ∈ Ωεθ (U0 is a positive constant). Here, α is the thermal diffu-
sivity, ah is the heat transfer coefficient between the specimen and the upper
half-space (see for example [5] and [14]). The positive constant U0 is both
the initial temperature of the specimen and the temperature of the outern en-
vironment. The heat flux density Φ is taken constant in space and time for
simplicity. In what follows we will refer to (4) and (5) as to “adiabatic condi-
tions on the vertical sides”.

Direct model. If εθ is given and it is sufficiently smooth, the IBVP (1)-(6) is
well posed and it has a unique classical solution uε [12]. This notation stresses
the dependence of the solution on the damage. Hence, the solution u0 (cor-
responding to ε = 0) is called the background temperature of the undamaged
specimen.

Inverse Problem. If εθ is not known, our goal is to identify it from the knowl-
edge of the thermal contrast G(x, y, t) = uε(x, y, 0, t) − u0(x, y, 0, t) measured
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from the laboratory side z = 0.

This method is called Active Thermography. Thermography is “Active”
when an external heat source (in our case, the heat flux Φ) stimulates the
specimen for inspection.

Bibliographic remark. See [10] for a complete reference book about ther-
mography. Amongst hundreds of research articles about thermal imaging, we
mention [3] because, in our knowledge, it is one of the oldest and [4] because
of the close relationship with the present paper. Since the mathematics of
stationary thermography is the same used in a class of electrostatic models in
nondestructive evaluation, we cite also [1, 7, 8] and references therein.

The idea of loss of matter used in (1)-(6) is very intuitive because LOM is
something real and, possibly, measurable in practice.

However, thermal effects of damages on the inaccessible surface can be
modeled also by means of perturbed boundary conditions. In this case, the
boundary is left unaltered so that the domain (and consequently the mesh in
numerical solution with finite elements!) is not dependent on the unknown εθ.

Here, we assume that ε
a is small enough to use the idea of Domain Derivative

([4, 13]). The domain derivative of uε can be obtained by formal differentiation
as u′ = duε

dε (ε = 0) or derived by means of straightforward calculations as done
in [4]. The LOM model (1)-(6) in Ωεθ is turned into an Initial Boundary Value
Problem in the undamaged domain Ω for the scaled domain derivative w = εu′.
It is remarkable that the unknown damage εθ appears now in the top boundary
condition.

Furthermore, in subsection 2.1, we rescale z and transform it in the new
variable ζ = z

a . Since the temperature of the specimen reaches a stationary
regime for t → ∞, after a time interval Tα (inversely proportional to the
diffusivity α) we focus our attention on the following stationary BVP on the
parallelepiped [−L,L]2 × [0, 1] (see section 3):

a2(wxx + wyy) + wζ,ζ = 0 , (7)

κwζ(x, y, 1) + a2hw(x, y, 1) = −a2εθ(x, y)h
Φ

k
, (8)

κwζ(x, y, 0) = 0 , (9)

with adiabatic conditions on the vertical sides.
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We expand w and θ in powers of a2 and plug them into the BVP above:
In this way we obtain a perturbative hierarchy of relations amongst their co-
efficients. This procedure is called Thin Plate Approximation and improves
what was done in [9] where perturbations of the heat transfer coefficient h were
identified.

In section 3, we derive the TPA formally in any order and implement the
following approximated inversion formula for the identification of the damage:

εθ(x, y) ≈ κ2

hΦ
(Gxx +Gyy)− κ

Φ
G(x, y). (10)

We succesfully tested this formula using synthetic data. Any difficulties
arising from numerical differentiation of an approximately given function like
the thermal contrast G are handled by using local weighted regeression [6]. A
seminal paper about regularized numerical differentiation is [2].

2. Domain derivative

Domain derivative, introduced in [13], is a techinque for studying PDEs on
geometrically perturbed domains. In our case the domain derivative of uε is
the Gateaux derivative of uε in the direction θ taken for ε = 0. This derivative
is a function u′ that satisfies the heat equation in Ω with boundary conditions

κu′z(x, y, a, t) + ahu′(x, y, a, t) = θ(x, y)

(
ahu0

z(x, y, a, t) + κ
u0
t (x, y, a, t)

α

)
(derived in [4] in agreement with Theorem 3.2 in [13]),

κu′z(x, y, 0, t) = 0

and “adiabatic conditions on the vertical sides”.

Since we assume Φ constant (in t and (x, y)), the background solution is
constant in space variables and, for increasing t, it approaches a stationary
value that, after a suitable time interval Tα, is very close to the linear function
u0
stat(z) = U0 + Φ

h + Φ
κ (a− z) (stationary background temperature).

2.1. Final form of the BVP: domain derivative and scaling

Since we have to recover εθ from the thermal contrast G(x, y, t) = uε(x, y, 0, t)−
u0(x, y, 0, t) ≈ εu′(x, 0, t), it is convenient to introduce the scaled function
w = εu′. Moreover, Thin Plate Approximation (see for example [9]) requires
the expansion of w in powers of a2. For this reason, we scale the variable
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z → ζ = z
a so that the domain becomes independent of a. Since wζ = wz

a we
have finally

a2

α
wt = a2(wxx + wyy) + wζζ ,

κwζ(x, y, 1, t) + a2hw(x, y, 1, t) = εθ(x, y)

(
a2hu0

z + aκ
u0
t (x, y, a, t)

α

)
,

κwζ(x, y, 0, t) = 0 ,

with adiabatic conditions on the vertical sides. Moreover, we have

w(x, y, 0, t) ≈ G(x, y, t).

3. Stationary model, Thin Plate Approximation of the
domain derivative

Here, we focus our attention to the stationary heat equation. In what follows,
we remove the time variable but, as a rule,we keep the same function names.
The stationary heat equation describes well the behavior of the temperature
in our model for t > Tα. Hence, we introduce a new function w that does not
depend on t and solve the elliptic BVP in [−L,L]2 × [0, 1]

a2(wxx + wyy) + wζζ = 0 , (11)

κwζ(x, y, 1) + a2hw(x, y, 1) = εθ(x, y)a2hu0
z ,

κwy(x, y, 0) = 0 ,

with adiabatic conditions on the vertical sides. Moreover, we have

w(x, y, 0) ≈ G(x, y). (12)

Remark. The remainder R2(h, ε) = maxx,y|uε(x, y, 0)−u0−w(x, y, 0)|measures
the precision of (12). In Figure 2 we plot R2(h, ε) for ε ∈ {.003, .005, .007} and
ah ∈ [20, 200] in the framework of the 2D example described in section 4.
Observe that the domain derivative is very close to thermal contrast not only
for small ε (as obviously expected), but also for large values of the heat transfer
coefficient ah. We believe that the stabilizing role of increasing ah is related
to the instability expected when h goes to zero (it is well known that for h = 0
the IBVP (1)-(6) has no stationary solution).
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Figure 2: R2(h, ε) measures how much the scaled domain derivative for ζ = 0
is a good approximation of the thermal contrast.

3.1. Thin Plate Approximation

Plugging the formal expansions

w = w0 + a2w1 +O(a4) , (13)

θ = θ0 + a2θ1 +O(a4) (14)

in the BVP, we obtain a hierarchy of relations amongst coefficients which allows
us to derive an approximate formula for the unknown εθ.

Zeroth order relations give w0ζ(x, y, 1) = w0ζ(x, y, 0) = w0ζζ(x, y, ζ) = 0 so
that w0 is actually independent on ζ. Hence, we set w0(x, y, ζ) ≡ w0(x, y) ≈
uε(x, y, 0)− u0(x, y, 0) as suggested by Figure 2.
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First order relations are

w0xx + w0yy + w1ζζ = 0 ,

κw1ζ(x, y, 1) + hw0(x, y, 1) = −εθ0(x, y)
Φ

κ
,

κw1ζ(x, y, 0) = 0 ,

so that (from the fundamental theorem of calculus)

−hw0(x, y)− εθ0(x, y)
Φ

κ
= −κ(w0xx(x, y) + w0yy(x, y)) .

Hence, we have the following approximation of the boundary damage

εθ0(x, y) =
κ2

hΦ0
(w0xx(x, y) + w0yy(x, y))− κ

Φ
w0(x, y).

3.2. The complete hierachic scheme in 2D

We can iterate the perturbative step just described. For simplicity we limit
ourselves to the 2D model in the variables (x, ζ). We have

w0xx + w1ζζ = 0,

so that it is easy to see that

w1(x, ζ) = −w0xx(x)
ζ2

2
.

Since for all n ≥ 1 we have

wnxx + wn+1ζζ = 0,

we obtain wn(x, ζ) = d2nw0(x)
dx2n (−1)n ζ2n

(2n)! .

Hence, the coefficients of the expansion of θ are derived plugging expansions
(13), (14) in the BVP (11). We have

εθn(x) = (−1)(n+1) κ
2

hΦ

d2nw0

dx2n
(x)

1

(2n− 1)!

+ (−1)n
κ

Φ0

d2(n−1)w0

dx2(n−1)
(x)

1

2(n− 1)!
. (15)

Since z = aζ, the formal expansion in (13) becomes

w(x, z) =

∞∑
n=0

d2nw0(x)

dx2n
(−1)n

z2n

(2n)!
.
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For x fixed in [−L,L], this is a power series in z that converges uniformly in

[−a, a] if, for a positive real number δ, S =
∑∞
n=0

d2nw0

dx2n

(a+δ)2n

(2n)! <∞. Although

the Neumann condition wz(x, 0) = 0 allows us to prove the analiticity of w(x, 0),
we do not know anything about the convergence of S. In agreement with [11]
we must be content of convergence in a smaller interval. It is not a big drawback
as long as we keep the formal character of our result.

4. Recovering surface damages using formal TPA. A
numerical example.

In our numerical experiment, we fix the following geometrical and physical pa-
rameters. The values L = −.5 m, a = .05 m, ε = .005 m, θ = e−90x2

define
the domain Ωεθ in R2. As for the conducting material we have κ = 100 W

m K

and α = 10−4 m2

s while the heat exchange coefficient is ah = 100 W
m2 K . The

controlled heat flux is Φ = 1000 W
m2 .

Here we limit ourselves to the second order formal approximation and show
some numerical result. The formula comes directly from (15):

εθ ≈ κ2

hΦ

d2G

dx2
− κ

Φ
G(x) + a2(− κ2

3!hΦ

d4G

dx4
+

κ

2!Φ

d2G

dx2
)

+ a4(
κ2

5!hΦ

d6G

dx6
− κ

4!Φ

d4G

dx4
) . (16)

We produce syntetic data of thermal contrast by solving numerically the
IBVP (1)-(6). If t > Tα, we assume that the thermal contrast is the stationary
difference G(x) ≈ uε(x, 0, t)− U0 − ( aκ + 1

h )Φ.

Formula (16) gives a good approximation of εθ: In Figure 3a we show what
we obtained by means of (16) when w(x, 0) = uε(x, 0)− u0(x, 0). Convergence
at orders > 2 seems to be slow in the neigborhood of x = 0 (maximum of
the damage size). In Figure 3b it is w(x, 0) = uε(x, 0) − u0(x, 0) + R2(h, ε).
Although the contrast is now affected by noise, TPA still indentify the damage.

We remark that temperature maps at z = 0 allow us to localize the inac-
cessible defect. On the other hand, our goal is to evaluate the health of the
specimen. For this reason, we could consider acceptable also the 3D estimate of
zeroth order that gives a precise evaluation of the scale parameter ε (Figure 4).
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(a)

(b)

Figure 3: (a) When the thermal contrast is equal to the Domain Derivative
(R2(h, ε) = 0), the unknown defect (bold line) is well approximated by the
zeroth order TPA (dashed). The reconstruction is improved using the first order
TPA (full thin line). The correction due to the second order term (the pointed
line overlaps the first order line) seems to be neglectable. (b)Here the TPA is
constructed from the thermal contrast (that is w0(x) = w(x, 0)+R2(h, ε)). It is
equivalent to using noisy data. TPA gives anyhow a quite good approximation
of the defect. When further noise added, some regularization is required.
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(a) (b)

(c)

Figure 4: (a) Temperature map on the accessibile side: there is a damage
spread around the origin of axes. It seems a regular gaussian hole. This image
gives an idea of the diameter but we have no information about its depth ε.
(b) Level sets of the damage as reconstructed in (10). The damaged area is
clearly revealed. (c) Section y = 0 of the damage (full line) compared to the
reconstruction mapped in Figure 4b. The depth is fully identified by (10).

5. Conclusions

We derive here an explicit formal inversion rule for recovering an unknown sur-
face damage from uncomplete thermal data. Our formula is based on the Thin
Plate Approximation of the Direct Model. Numerical results are encouraging,
but much work is still required: in particular, regularization of numerical dif-
ferentiation and Cauchy problem for Laplace’s equation are expected in the
perspective of using real data.
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