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Abstract. We consider the system of partial differential equations of
transversely isotropic elasticity with residual stress. Completing pre-
vious results we derive Carleman estimates for this system containing
time derivatives. This permits to obtain exact observability inequalities
for this system with the Cauchy data on the whole lateral boundary.
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1. Introduction

We consider a transversely isotropic elasticity system with residual stress [2, 15].
We let x ∈ R3 and (x, t) ∈ Ω which is a bounded domain in R4. Let u(x, t) =
(u1, u2, u3)> : Ω → R3 be the displacement vector in Ω. We introduce the
operator of the transversely isotropic elasticity

(ATu)i =

3∑
j,k,l=1

∂j

(
Cijkl

1

2
(∂kul + ∂luk)

)
, (1)

where Cijlk are elastic parameters. In general, they enjoy the following sym-
metry properties

Cijkl = Cjikl = Cijlk = Cklij . (2)

In the transversely ((x1, x2)-) isotropic case, in addition,

C1111 = C2222 = c11, C1122 = c12, C1133 = C2233 = c13, C3333 = c33,

C2323 = C3131 = c23, C1212 = 1
2 (c11 − c12), Cijkl = 0 otherwise.

(3)
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We assume that cjk are functions on Ω̄ and impose a sufficient condition of
strict positivity of the elastic tensor:

ε0 < c11, ε0 < c11 − c12, ε0 < c12 + c11,

ε0 < c23, ε0 < c33, ε0 < c13 + c23,

ε0 + 2c213 < (c11 + c12)c33, ε0 + c213 < c11c33 on Ω

(4)

for some ε0 > 0. We also introduce the scalar partial differential operator
R =

∑3
j,k=1 rjk∂j∂k used to model the residual stress.

To state the main results we introduce pseudo convexity condition for a
general scalar partial differential operator of second order P =

∑n
j,k=1 ajk∂j∂k

in Ω with the real-valued coefficients ajk ∈ C1(Ω̄). The principal symbol of
this operator is P (X; ζ) =

∑n
j,k=1 ajk(X)ζjζk, X = (x, t). We will assume that

the coefficients of P admit the following bound |ajk|2(Ω) ≤M.
Let K be a positive constant. A function ψ is called K-pseudo-convex on

Ω with respect to P if ψ ∈ C2(Ω̄), P (X,∇ψ(X)) 6= 0, X ∈ Ω̄, and

4∑
j,k=1

(
∂j∂kψ

∂P

∂ζj

∂P

∂ζk

)
(X; ξ)

+

4∑
j,k=1

((
∂P

∂ζk
∂k
∂P

∂ζj
− ∂kP

∂2P

∂ζj∂ζk

)
∂jψ

)
(X, ξ) ≥ K|ξ|2

for any ξ ∈ Rn and any point X of Ω̄ provided

P (X; ξ) = 0,

4∑
j=1

∂P

∂ζj
(X, ξ)∂jψ(X) = 0.

We use the following convention and notations. Let ∂ = (∂1, . . . , ∂4), D =
−i∂, α=(α1, . . . , α4) is a multi-index with integer components, ζα=ζα1

1 · · · ζ
α4
4 ,

Dα and ∂α are defined similarly. x4 = t. ∇ denotes the gradient with respect
to spatial variables x1, x2, x3. ν is the outward normal to the boundary of a
domain. Ωε = Ω ∩ {ψ(x) > ε}. We recall that

‖u‖(k)(Ω) =
( ∑
|α|≤k

∫
Ω

|∂αu|2
) 1

2

is the norm in the Sobolev space H(k)(Ω) and ‖ ‖2 = ‖ ‖(0) is the L2-norm.
Let C be generic constants (different at different places) depending only on M ,
on K, on the function ψ, on C2(Ω)-norms of the coefficients ρ, cjk, rjk of the
elasticity system, on ε0, and on the domain Ω. Any additional dependence will
be indicated.
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We let

a1 =
c11 − c12

c11 + c12
, a2 = 2

c23

c11 + c12
, a3 = 2

c13 + c23

c11 + c12
,

a4 =
(c11 − c12)(c13 + c23)

(c11 + c12)c23
,

(5)

and
A = a1(∂2

1 + ∂2
2) + a2∂

3
3 , divTu = ∂1u1 + ∂2u2 + a3∂3u3,

curlTu = (∂2u3 − a4∂3u2, a4∂3u1 − ∂1u3, ∂1u2 − ∂2u1) .
(6)

We introduce the following conditions

(c211 − c212)c33 − 2(c13 + c23)2(c11 − c12)− 2c223(c11 + c12) = 0,

c11 − c12 = 2c23 on Ω
(7)

and the weight and scaling functions

ϕ = eγψ, σ = γτϕ. (8)

Theorem 1.1. Let ψ ∈ C3(Ω̄) be K- pseudo convex with respect to ρ∂2
t −A−

R, ρ∂2
t−A−∂2

1−∂2
2−a3a4∂

2
3−R in Ω̄ and let |ρ|2(Ω)+|cjk|2(Ω)+|rjk|2(Ω) ≤M .

Let the conditions (7) be satisfied.
Then there are constants C,C0(γ) such that∫
Ω

(γσ2|u|2 + σ(|divTu|2 + |curlTu|2) + γ(|∂tu|2 + |∇u|2))e2τϕ

≤ C
∫

Ω

|(ρ∂2
t −AT −R)u|2e2τϕ (9)

for all u ∈ H2
0 (Ω), C < γ,C0 < τ .

This estimate for isotropic elasticity with residual stress was obtained in [11]
and for more general transversely isotropic elasticity in [10] without the terms
with γ on the left side.

Let us consider the following Cauchy problem

(ρ∂2
t −AT −R)u = f in Ω, u = g0, ∂νu = g1 on Γ ⊂ ∂Ω, (10)

where Γ ∈ C3. Let Ωδ = Ω∩ {ψ > δ}. The Carleman estimate of Theorem 1.1
by standard argument ([9], section 3.2) implies the following conditional Hölder
stability estimate for (10) in Ω(δ) (and hence uniqueness in Ω(0)).

Theorem 1.2. Let ψ ∈ C3(Ω̄) be K- pseudo convex with respect to ρ∂2
t −A−

R, ρ∂2
t−A−∂2

1−∂2
2−a3a4∂

2
3−R in Ω̄ and let |ρ|2(Ω)+|cjk|2(Ω)+|rjk|2(Ω) ≤M .

Let the condition (7) be satisfied. Assume that Ω̄0 ⊂ Ω ∩ Γ.
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Then there exist C = C(δ), κ = κ(δ) ∈ (0, 1) such that for a solution
u ∈ H2(Ω) to (10) one has

‖u‖(0)(Ωδ) + ‖∇xu‖(0)(Ωδ) + ‖∂tu‖(0)(Ωδ) ≤ C(F +M1−κ
1 Fκ), (11)

where F = ‖f‖(0)(Ω0) + ‖g0‖( 3
2 )(Γ) + ‖g1‖( 1

2 )(Γ), M1 = ‖u‖(1)(Ω).

In Theorems 1.3, 1.4 we assume that Ω = G × (−T, T ), ∂G ∈ C3 and that
R = 0.

Due to (4) the system (10) is t-hyperbolic and from known results (e.g. [3],
III.4, p.123) it follows that the first initial boundary value problem for this sys-
tem is uniquely solvable in standard energy spaces, moreover the conventional
energy integral

E(t;u) =

∫
G

(|∂tu|2 + |∇u|2 + |u|2)(, t)

is bounded by the initial energy and the right side (more detail in the proof of
Theorem 1.3). Repeating the argument in [3] one can obtain the same result
when the smallest eigenvalue of the matrix rjk is greater than than − ε02 .

Theorem 1.3. Let ψ ∈ C3(Ω̄) be K- pseudo convex with respect to ρ∂2
t −A−

R, ρ∂2
t−A−∂2

1−∂2
2−a3a4∂

2
3−R in Ω̄ and let |ρ|2(Ω)+|cjk|2(Ω)+|rjk|2(Ω) ≤M .

Assume that
ψ < 0 on Ḡ× {−T, T}, 0 < ψ on G× {0}. (12)

Then there exist C such that for a solution u ∈ H2(Ω) to (10) one has

E(t;u) ≤ C(‖f‖(0)(Ω) + ‖g0‖( 3
2 )(Γ) + ‖g1‖( 1

2 )(Γ)). (13)

Now we state results about identification of a source from additional bound-
ary data.

Let u be a solution to

(ρ∂2
t −AT −R)u = Af in Ω,

u = 0, ∂tu = 0 on G× {0}, u = 0 on ∂G× (−T, T ).
(14)

We will assume that A ∈ C(Ω̄).
We will consider the boundary stress data as measurements (observations).

We introduce the norm of the of the lateral Cauchy data

F = ‖∂2
t ∂νu‖( 1

2 )(Γ). (15)

To guarantee the uniqueness, we impose some non-degeneracy condition on
the matrix A. We assume that

detA > ε0 > 0 on G× {0}. (16)
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Theorem 1.4. Let ψ ∈ C3(Ω̄) be K- pseudo convex with respect to ρ∂2
t −A−

R, ρ∂2
t −A− ∂2

1 − ∂2
2 − a3a4∂

2
3 −R in Ω̄. Assume that ρ, cjk, rjk do not depend

on t and |ρ|2(Ω) + |cjk|2(Ω) + |rjk|2(Ω) + |∂2
tA|0(Ω) ≤ M . Assume that the

condition (12) is satisfied. Let the matrix function A satisfy (16).
Then there exist C such that

‖f‖(0)(Ω) ≤ CF. (17)

Observe that the classical isotropic elasticity is a particular case of the
system under consideration, when c11 = c33 = λ + 2µ, c12 = c13 = λ, c23 = µ.
In particular, the conditions (7) are satisfied.

Carleman estimates were introduced by Carleman in 1939 to demonstrate
uniqueness in the Cauchy problem for a system of first order in R2 with non
analytic coefficients. Carleman type estimates and uniqueness of the continua-
tion theorems have been obtained for wide classes of scalar partial differential
equations [6, 9]. But useful concept of pseudo convexity is not available for
systems, and Carleman estimates were derived only in particular cases, like
for classical isotropic dynamical Maxwell’s and elasticity systems [5] (by us-
ing principal diagonalization). Two large parameters were introduced in [8].
They were a main tool in the first proof of uniqueness and stability of all three
elastic parameters in dynamical isotropic Lame system from two sets of bound-
ary data [7]. A system of transversely isotropic elasticity with residual stress
was recently studied in [10, 11, 12, 14] where there are Carleman estimates,
uniqueness and stability of the continuation and of the identification of elastic
coefficients.

In this paper for the transversely isotropic system with residual stress we
obtain Carleman estimates including time derivative. Most advanced previous
results [10] handled only spatial derivatives. Observe that our results are new
for the classical isotropic elasticity system. Including temporal derivative en-
ables to obtain exact controllability (Lipschitz) bounds in the lateral Cauchy
and inverse problems under minimal regularity assumptions. So far our results
need a special condition (7). The main idea is to use principal upper triangular
reduction, scalar Carleman estimates with two large parameters, and spatial
smoothing (pseudo-differential) operator with parameter. The crucial part is
L2 bounds on commutators of this operator and of differential operators with
parameters.

We stated our basic results in section 1. In section 2 we obtain auxil-
iary results where crucial are bounds on commutators of multiplication and of
smoothing operator and especially Lemma 2.4 on certain localization of this
pseudo-differential operator. In section 3 we prove estimates of Theorem 1.1
and in section 4 apply them to stability estimates in the continuation and
inverse problems. We tried to minimize technicalities and refer as much as
possible to known results.
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It is not easy to find functions ψ which are pseudo convex with respect to
a general operator. In an isotropic case explicit and verifiable conditions for
ψ(x, t) = |x− β|2− θ2t2 were found by Isakov in 1980 and their simplifications
are given in [9], section 3.4. In general anisotropic case Khaidarov [13] showed
that under certain conditions the same ψ is pseudo convex if the speed of the
propagation determined by A is monotone in a certain direction.

In the following Lemma for a general hyperbolic operator we give the con-
dition of K-pseudo convexity of ψ(x, t) = |x− β|2 − θ2t2.

Lemma 1.5. Let

P = ∂2
t −

3∑
j,k=1

ajk∂j∂k, ajk = akj ,

where ajk ∈ C1 satisfy the uniform ellipticity condition

3∑
j,k=1

ajk(X)ξjξk ≥ ε0|ξ|2, X ∈ Ω ξ ∈ R3, ε0 > 0.

Let

ψ(x, t) = |x− β|2 − θ2t2, β = (0, 0, β3).

Assume that

3∑
j,l=1

(
3∑
k=1

a3k∂kajl − 2

2∑
k=1

alk∂kaj3

)
ξjξl ≥ ε1|ξ|2, ξ ∈ R3.

for some ε1 > 0.
Then there is large β3 such that the function ψ is K-pseudo convex with

respect to P in Ω̄.

A proof is given in [11].

2. Auxiliary results.

For a linear partial differential operator A ( with matrix coefficients) we intro-
duce Aϕ by the equality (Aϕv)e−τϕ = A(ve−τϕ). From the Leibniz formula it
follows that Aϕ is the linear partial differential operator with the same principal
part as A. We observe that

(∂j)ϕ = ∂j − σ∂jψ (18)

and

(A1A2)ϕ = (A1)ϕ(A2)ϕ. (19)
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Indeed, according to the definition,

((A1A2)ϕv)e−τϕ = A1(A2(ve−τϕ))

= A1(((A2)ϕv)e−τϕ) = ((A1)ϕ(A2)ϕv)e−τϕ.

In particular,

Pϕ(D) = P (D + iτ∇ϕ) = P (D) + τP1(D) + τ2P (∇ϕ) (20)

where P1 is a first order differential operator with coefficients depending on
γ. We will use the notation < ξ >= (|ξ|2 + 1)

1
2 and the pseudo-differential

operator Λsτf = F−1(< ξ > +τ)sFf, where F is the Fourier transform in R3

and ξ ∈ R3. Let Ω∗ be a bounded domain in R4 with a smooth boundary
such that Ω ⊂ Ω∗. We can extend all coefficients of the operators AT , R and
functions ρ, ψ onto R4 preserving the regularity in such a way that they have
support in Ω∗ and their C2-norms are bounded by C.

In next Lemmas we fix x0 with (x0, t0) ∈ Ω and introduce σ(t) = σ(x0, t)

Lemma 2.1. There exists a constant C(γ) such that

‖Λ−1
σ(t)∂tu− ∂tΛ

−1
σ(t)u‖(0)(R

4) ≤ C(γ)‖Λ−1
σ(t)u‖(0)(R

4), (21)

‖σ 1
2 (Λ−1

σ(t)divT,ϕu− divT,ϕΛ−1
σ(t)(u))‖(0)(R

4) ≤ C(γ)τ−
1
2 ‖u‖(0)(Ω),

‖σ 1
2 (Λ−1

σ(t)curlT,ϕu− curlT,ϕΛ−1
σ(t)(u))‖(0)(R

4) ≤ C(γ)τ−
1
2 ‖u‖(0)(Ω) (22)

and

‖Λ−1
σ(t)(Pϕu)−(PϕΛ−1

σ(t)u)‖(0)(R
4) ≤ C(γ)(‖u‖(0)(Ω)+‖Λ−1

σ(t)∂tu‖(0)(R
4)) (23)

for all u,u ∈ H2
0 (Ω).

Proof. We first prove (21). Observe that σ = τγϕ, ∂tσ = γσ∂tψ, ∂
2
t σ =

γσ(∂2
t ψ + γ(∂tψ)2) , that

∂tΛ
−1
σ(t)u = F−1

(
−∂tσ(t)

(< ξ > +σ(t))2
Fu+

1

< ξ > +σ(t)
F∂tu

)
(24)

and

∂2
t Λ−1

σ(t)u = F−1

((
−∂2

t σ(t)

(< ξ > +σ(t))2
+

(∂tσ(t))2

(< ξ > +σ(t))3

)
Fu

+2
−∂tσ

(< ξ > +σ(t))2
F∂tu+

1

< ξ > +σ(t)
F∂2

t u

)
. (25)
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Formula (24) implies that

Λ−1
σ(t)∂tu− ∂tΛ

−1
σ(t)u = F−1

(
∂tσ(t)

(< ξ > +σ(t))2
Fu
)
,

so

‖Λ−1
σ(t)∂tu− ∂tΛ

−1
σ(t)u‖

2
(0)(R

4)

≤
∫
R

∫
R3

∣∣∣∣F−1(
∂tσ(t)

(< ξ > +σ(t))2
Fu(x, t)

∣∣∣∣2 dxdt
≤
∫
R

∫
R3

∣∣∣∣ ∂tσ(t)

(< ξ > +σ(t))2

∣∣∣∣2 |Fu(ξ, t)|2 dξdt

≤ C(γ)

∫
R

∫
R3

∣∣∣∣ 1

(< ξ > +σ(t))
Fu(ξ, t)

∣∣∣∣2 dξdt
and again using the Parseval equality we yield (21).

Due to (18), divT,ϕu is the sum of terms a(∂j−σ∂jψ)uk, where j, k = 1, 2, 3,
|a|2(R4) ≤ C, and a = 0 outside Ω∗. Hence it suffices to show that

‖Λ−1
σ(t)(b∂

βu)− b∂βΛ−1
σ(t)u‖(0)(R

4) ≤ C(γ)τ−1‖u‖(0)(Ω), (26)

for all β with |β| = 1, β4 = 0, and that

‖Λ−1
σ(t)(bu)− bΛ−1

σ(t)u‖(0)(R
4) ≤ C(γ)τ−2‖u‖(0)(Ω), (27)

when b ∈ C1(R4), |b|1(R4) < C(γ), and b = 0 outside Ω∗.
To prove (26) we introduce u1 = Λ−1

σ(t)∂
βu. Using also that Λσ = Λ0 + σ,

we have

Λ−1
σ(t)b∂

βu− b∂βΛ−1
σ(t)u = Λ−1

σ(t)(bΛσ(t) − Λσ(t)b)u1 = Λ−1
σ(t)(bΛ0 − Λ0b)u1.

As above, from the Parseval identity, ‖u1‖(0)(R
4) ≤ C‖u‖(0)(Ω). By known

(e.g. Coifman and Meyer ([1])) estimates of commutators of pseudo-differential
operators and of multiplication operators

‖(bΛ0 − Λ0b)u1(, t)‖2(0)(R
3) ≤ C(γ)‖u1(, t)‖2(0)(R

3).

Using that ‖Λ−1
σ(t)v‖

2
(0)(R

3) ≤ C(γ)τ−2‖v‖2(0)(Ω) and integrating with respect

to t we complete the proof of (26).
Proofs of (27) and for curl are similar.
Due to (18), (19), Pϕu is the sum of terms

a(∂j − σ∂jψ)(∂k − σ∂kψ)u
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where j, k = 1, 2, 3, 4, |a|2(R4) ≤ C, a = 1 when j = k = 4, a = 0 when
j = 1, 2, 3, k = 4, and a = 0 outside Ω∗ otherwise. Elementary calculations
show that this expression equals to

a∂j∂ku− aσ(∂kψ∂ju+ ∂jψ∂ku) + aσ((σ − 1)∂jψ∂kψ − ∂j∂kψ)u

Hence it suffices to show that

‖Λ−1
σ(t)a∂

αu−a∂αΛ−1
σ(t)u‖(0)(R

4) ≤ C(γ)(‖u‖(0)(Ω)+‖Λ−1
σ(t)∂tu‖(1)(R

4)), (28)

for all α with |α| ≤ 2, that

τ‖Λ−1
σ(t)b∂

βu− b∂βΛ−1
σ(t)u‖(0)(R

4) ≤ C(γ)‖u‖(0)(Ω), for all |β| ≤ 1 (29)

for all β with |β| ≤ 1, and that

τ2‖Λ−1
σ(t)(bu)− bΛ−1

σ(t)u‖(0)(R
4) ≤ C(γ)‖u‖(0)(Ω), (30)

when b ∈ C1(Ω∗), |b|1(Ω̄) < C, and b = 0 outside Ω∗.
To show (28) let first α4 = 2.
As above, (25) implies that

‖Λ−1
σ(t)∂

2
t u− ∂2

t Λ−1
σ(t)u‖(0)(R

4) ≤ C(γ)(‖u‖(0)(Ω) + ‖Λ−1
σ(t)∂tu‖(0)(R

4)).

To complete a proof of (28) we now consider α4 = 0. Let αj > 0 and βj = 1
while other components of β be zero. We introduce u1 = Λ−1

σ(t)∂
α−βu. Using

also that Λσ = Λ0 + σ, we have

Λ−1
σ(t)a∂

αu− a∂αΛ−1
σ(t)u = Λ−1

σ(t)(aΛσ(t) − Λσ(t)a)∂ju1

= Λ−1
σ(t)(aΛ0 − Λ0a)∂ju1 = Λ−1

σ(t)(a∂jΛ0 − ∂j(Λ0a) + Λ0∂ja)u1

= Λ−1
σ(t)(∂j(aΛ0 − Λ0a) + (Λ0∂ja− ∂jaΛ0))u1.

As above, from the Parseval identity, ‖u1‖(0)(R
4) ≤ C‖u‖(0)(Ω). By known

(e.g. Coifman and Meyer [1]) estimates of commutators of pseudo-differential
operators and of multiplication operators

‖(aΛ0 − Λ0a)u1(, t)‖(0)(R
3) ≤ C(γ)‖u1(, t)‖(0)(R

3).

A similar estimate is valid when we replace a by ∂ja. Using, as above, that the
norm of the operator Λ−1

σ(t)∂j from L2(R3) into itself is bounded by C(γ) and

integrating with respect to t we complete the proof of (28).
Next we demonstrate (29). Let first β = (0, 0, 0, 1). Using (24) we have

‖∂tΛ−1
σ(t)u− Λ−1

σ(t)∂tu‖(0)(R
3) ≤ C(γ)‖u‖(0)(R

3)
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so it suffices to bound Λ−1
σ(t)b∂tu − bΛ

−1
σ(t)∂tu. To do this, let u2 = Λ−1

σ(t)∂tu,

then we need to bound

Λ−1
σ(t)bΛσ(t)u2 − bu2 = Λ−1

σ(t)(bΛσ(t)u2 − Λσ(t)(bu2)) = Λ−1
σ(t)(bΛ0u2 − Λ0(bu2))

because Λσ = Λ0 + σ. As above, from known bounds of commutators and the
definition of u2 it follows that

τ‖Λ−1
σ(t)(bΛ0u2 − Λ0(bu2))‖(0)‖(R4) ≤ C(γ)‖Λ−1

σ(t)∂tu‖(0)(R
4)

Proofs of (29) for general β and of (30) are similar.

Lemma 2.2. Let K(x, y; t) be the Schwartz kernel of the pseudo-differential op-
erator Λ−1

σ(t) with τ > 1.

Then
|∂αxK(x, y; t)| ≤ C(γ)τ−2|x− y|−8

provided |α| ≤ 2.

A proof is similar to [7], Lemma 3.4.

Proof. The Schwartz kernel K(x, y; t) is the oscillatory integral∫
R3

ei(x−y)·ξ(< ξ > +σ(t))−1dξ

= −|x− y|−2

∫
R3

(∆ξe
i(x−y)·ξ)(< ξ > +σ(t))−1dξ

= −|x− y|−2

∫
R3

ei(x−y)·ξ∆ξ(< ξ > +σ(t))−1dξ

= · · · = (−1)l|x− y|−2l

∫
R3

ei(x−y)·ξ∆l
ξ(< ξ > +σ(t))−1dξ

where we did integrate by parts. Observing that

|∆l
ξ(< ξ > +σ(t))−1| ≤ C(l)(< ξ > +σ(t))−2 < ξ >−2l+1, l = 1, 2, ...,

and letting l = 4 we complete the proof.

We denote by S′ the orthogonal projection of a set S in R4 onto R3 and
let Cyl(x0; δ) = (B′(x0; δ)×R) ∩ Ω∗.

Lemma 2.3. We have∫
R4\Cyl(x0;3δ)

(
τ3|Λ−1

σ(t)v|
2 + τ

∑
|α|=1

|∂αΛ−1
σ(t)v|

2
)

≤ C(γ, δ)τ−1

∫
R4

σ
(
|v|2 + |∂tΛ−1

σ(t)v|
2
)

(31)

for all v ∈ H1
0 (Cyl(x0; δ)), x0 ∈ Ω̄′.



CARLEMAN ESTIMATES 271

Proof. We can assume that x0 = 0 and drop x0.

We first consider the case when α4 = 0. Since suppv ⊂ Cyl(δ),

|∂αΛ−1
σ(t)v(x, t)| ≤

∫
B(δ)

|v(y, t)| |∂αK(x, y; t)| dy

≤ C(γ, δ)τ−2

∫
B(δ)

|x− y|−8|v(y, t)| dy

by Lemma 2.2, provided x ∈ R3 \B(3δ). When y ∈ B(2δ),

|x− y| ≥ 1

2
|x− y|+ 1

8
|x− y| ≥ δ

2
+

1

8
|x| − 1

8
|y| ≥ δ

4
+

1

8
|x| ≥ 1 + |x|

C(δ)
. (32)

Hence by using the Schwarz inequality

|∂αΛ−1
σ(t)v(x, t)| ≤ C(γ, δ)τ−2(1 + |x|)−8

(∫
B(δ)

|v(, t)|2
) 1

2

for all |α| ≤ 1,

provided x ∈ R3 \B(3δ). Using this estimate we conclude that the last integral
on the left side of (31) is less than C(γ, δ)

∫
Cyl(δ)

|v|2. Similarly we bound the

first integral.

Now we will handle the most delicate case of α = (0, 0, 0, 1), i.e. ∂α = ∂t.
Let w = ∂tv. Due to (21), it suffices to show that

τ

∫
R3\B(3δ)

|Λ−1
σ(t)w(, t)|2 ≤ C(γ)

∫
R3

|Λ−1
σ(t)w|

2(, t). (33)

To do so we will make use of the integral operator Λ∗σ(t)w = F−1(|ξ|2 +

σ(t))−1Fw which is obviously a fundamental solution of the differential op-
erator −∆ + σ(t) in R3. So for W = Λ∗σ(t)w,

(−∆ + σ(t))W = w in R3.

We have

(|ξ|2 + σ(t))−1 ≤ C(γ)(< ξ > +σ(t))−1

and hence ∫
R3

|Λ∗σ(t)w|
2 ≤ C(γ)

∫
R3

|Λ−1
σ(t)w|

2. (34)

Let a cut-off function χδ = 1 on B(δ), suppχδ ⊂ B(2δ) and |∂αχδ| ≤ C(δ)
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when |α| ≤ 2. Due to the definition of K,

Λ−1
σ(t)w(x, t) =

∫
B(δ)

K(x− y;σ(t))w(y, t)dy

=

∫
B(2δ)

χδ(y)K(x− y;σ(t))(−∆ + σ(t))W (y, t)dy

=

∫
B(2δ)

(−∆ + σ(t))(χδ(y)K(x− y;σ(t)))W (y, t)dy.

Therefore, by Lemma 2.2 and (32)

|Λ−1
σ(t)w(x, t)| ≤ C(γ, δ)τ−1

∫
B(2δ)

|x− y|−8|W (y, t)|dy

≤ C(γ, δ)τ−1(1 + |x|)−8
(∫

B(2δ)

|W (y, t)|2dy
) 1

2

.

This combined with (34) completes the proof of (33) and hence of Lemma 2.3.

Since ψ ∈ C2, using (8) we will choose δ(γ) so that

σ(t)

2
≤ σ ≤ 2σ(t) (35)

on Cyl(x0; 4δ(γ)).

Lemma 2.4. There is C such that∫
R4

|∂jΛ−1
σ(t)v|

2 +

∫
R4

|Λ−1
σ(t)(aσv)|2 ≤ C

∫
R4

|v|2, j = 1, 2, 3, (36)

for all v ∈ H2
0 (Cyl(x0; 4δ(γ))), x0 ∈ Ω̄′, provided |a|1(R4) < C and a is con-

stant outside Ω∗.

Proof. As above we let x0 = 0 and drop it. Due to the Parseval identity∫
R4

|∂αΛ−1
σ(t)v|

2 ≤
∫
R

(∫
R3

|ξ|2

(< ξ > +σ(t))2
|Fv(ξ, t)|2dξ

)
dt

≤
∫
R

(∫
R3

|Fv(ξ, t)|2dξ
)
dt =

∫
R

(∫
R3

|v(x, t)|2dx
)
dt =

∫
Cyl(δ(γ))

|v|2

when |α| = 1, α4 = 0.
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Similarly,∫
R4

|Λ−1
σ(t)(aσv)|2 =

∫
R

(∫
R3

1

(< ξ > +σ(t))2
|F(aσv)(ξ, t)|2dξ

)
dt

≤
∫
R

1

σ(t)2

(∫
R3

|F(aσv)(ξ, t)|2dξ
)
dt

=

∫
R

1

σ(t)2

(∫
R3

|(aσv)(x, t)|2dx
)
dt

=

∫
Cyl(δ(γ))

(
σ

σ(t)

)2

|(av)|2 ≤ C
∫
Cyl(δ(γ))

|v|2

since, due to the definition of δ(γ), we have (35).

Lemma 2.5. Let ψ be K pseudo-convex with respect to P on Ω.
Then there is C such that∫

R4

σ
(
|v|2 + |Λ−1

σ(t)∂tv|
2
)
≤ C

∫
R4

|Λ−1
σ(t)Pϕv|

2

for all v ∈ H2
0 (Cyl(x0; δ(γ))) provided τ > C, x0 ∈ Ω̄′.

Proof. We can assume that x0 = 0 and we let Cyl(δ) = Cyl(x0; δ(γ)). By
Theorem 1.1 in [11] there exists C such that the following Carleman estimate
holds

1∑
|α|=0

∫
Cyl(4δ)

σ3−2|α||∂αv0|2 ≤ C
∫
Cyl(4δ)

|Pϕv0|2 for all v0 ∈ H2
0 (Cyl(4δ))

provided C < γ,C(γ) < τ .
Let χ ∈ C∞0 (Cyl(4δ)), is determined only by γ, 0 ≤ χ ≤ 1, annd χ = 1 on

Cyl(3δ). Using this Carleman type estimate for v0 = χΛ−1
σ(t)v, we obtain∫

Cyl(4δ)

(
σ3χ2|Λ−1

σ(t)v|
2 + σ

∑
|α|=1

|χ∂α(Λ−1
σ(t)v) + ∂αχΛ−1

σ(t)v|
2
)

≤ C
∫
Cyl(4δ)

|Pϕ(χΛ−1
σ(t)v)|2

≤ C
∫
Cyl(4δ)

(
|Pϕ(Λ−1

σ(t)v)|2 + C(γ)
(
τ2|Λ−1

σ(t)v|
2 +

∑
|α|=1

|∂α(Λ−1
σ(t)v)|2

))
. (37)

where we used (20), the Leibniz’ formulas

P (χw) = χPw + P1(;χ)w + P (χ)w, P1(χw;ϕ) = χP1(w;ϕ) + P1(χ;ϕ)w,
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and the triangle inequality.
Using these inequalities, Lemma 2.4, and recalling that χ = 1 on Cyl(3δ)

we derive from the bound (37) that∫
Cyl(3δ)

(
σ3|Λ−1

σ(t)v|
2 + σ

∑
|α|=1

|∂α(Λ−1
σ(t)v)|2

)
− C(γ)

∫
Cyl(δ)

|v|2

≤ C
∫
Cyl(4δ)

(
|Pϕ(Λ−1

σ(t)v)|2 + C(γ)(|v|2) + |∂tΛ−1
σ(t)v|

2
)
. (38)

The Parseval identity, (35), and the definition of Λσ yield∫
Cyl(δ)

σv2 ≤ 2

∫
Cyl(δ)

σ(t)v2

=

∫
R

σ(0)

∫
R3

σ(t)2 + 1

< ξ >2 +σ(t)2
|v̂(ξ, t)|2dξdt

+

∫
R

σ(t)

∫
R3

|ξ|2

< ξ >2 +σ(t)2
|v̂(ξ, t)|2dξdt

= C

∫
R

(σ(t))3

∫
R3

|Λ−1
σ(t)v|

2 +
∑

|α|=1,α4=0

∫
R

σ(t)

∫
R3

|∂α(Λ−1
σ(t)v)|2

≤ C
∫
Cyl(3δ)

σ3|Λ−1
σ(t)v|

2 + C
∑

|α|=1,α4=0

∫
Cyl(3δ)

σ|∂α(Λ−1
σ(t)v)|2

+C

∫
R4\Cyl(3δ)

((σ(t))3|Λ−1
σ(t)v|

2 + σ(t)
∑

|α|=1,α4=0

|∂α(Λ−1
σ(t)v)|2).

Choosing τ > C(γ) and using Lemma 2.3 we will have from (38)∫
R4

σ
(
|v|2 + |∂tΛ−1

σ(t)v|
2
)
≤ C

∫
Cyl(4δ)

|Λ−1
σ(t)Pϕv|

2

+ C(γ)

∫
R4\Cyl(3δ)

(
τ3|Λ−1

σ(t)v|
2 + τ

∑
|α|=1

|∂αΛ−1
σ(t)v|

2
)
. (39)

Now, by using Lemma 2.3 and choosing again τ > C(γ) we will eliminate the
last integral in this bound and complete the proof.

3. Proof of Theorem 1.1

Lemma 3.1. Let |∇ψ| > 0 on Ω̄.
Then for any x ∈ Ω̄ there are δ(γ) and C such that

γ

∫
B(δ)

(σ2|v∗|2 + |∂jv∗|2) ≤ C
∫
B(δ)

σ(|divT,ϕv∗|2 + |curlT,ϕv∗|2), j = 1, 2, 3,
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for all v∗ ∈ H1
0 (Cyl(x0; δ(γ)) provided τ > C.

Proof is available in [10], Lemma 5, where the spatial bound need to be
integrated with respect to t like in the proof of Lemma 2.1.

Proof of Theorem 1.1. In [10], (25) it was shown that the system (10) implies

P (1)u =
f

ρ
+ A(1)u,

P (2)v = divT
f

ρ
+A(2)u,

P (1)w = curlT
f

ρ
+ A(3)u,

where

P (1) = ∂2
t − ρ−1(A+R), P (2) = ∂2

t − ρ−1(A+R+ ∂2
1 + ∂2

2 + a3a4∂
2
3),

A(j) are sums of ∂k(A1∂tu), ∂m(A1∂ku), A∂ku, A∂tu Au with the (matrix)
coefficients A,A1, |A|1(Ω) + |A1|0(Ω) ≤ C, j, k,m = 1, 2, 3.

Using the the substitution u∗ = eτϕu, v∗ = eτϕv,w∗ = eτϕw, f∗ = eτϕf
this system is transformed into

Pϕ(1)u∗ =
f∗

ρ
+ Aϕ(1)u∗,

Pϕ(2)v∗ = divT,ϕ
f∗

ρ
+Aϕ(2)u∗, (40)

Pϕ(1)w∗ = curlT,ϕ
f∗

ρ
+ Aϕ(3)u∗.

Let x0 ∈ Ω̄′ and Cyl(δ) = Cyl(x0; δ(γ)) with δ(γ) defined in (35). Let a
cut off function χ = 1 on Cyl( δ2 ), suppχ ⊂ Cyl(δ)′, 0 ≤ χ ≤ 1, |χ|2|(R4) ≤
C(γ), ∂tχ = 0, then the system (40) implies

Pϕ(1)(χu∗) = χ
( f∗
ρ

+ Aϕ(1)u∗
)

+ A(1, 1)(u∗)

Pϕ(2)(χv∗) = χ
(
divT,ϕ

f∗

ρ
+Aϕ(2)u∗

)
+A(2, 1)(v∗), (41)

Pϕ(1)(χw∗) = χ
(
curlT,ϕ

f∗

ρ
+ Aϕ(3)u∗

)
+ A(3, 1)(w∗),

where A(j, 1) are sums of the terms a(γ)∂ju, a(γ)∂jv, a(γ)∂jw, σa(γ)u, σa(γ)v,
σa(γ)w with |a(γ)|2(Ω) < C(γ).
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Using that v∗ = divT,ϕu
∗,w∗ = curlT,ϕu

∗, applying Lemma 2.5 to each
of 7 scalar equations in this system, and adding the resulting inequalities we
yield

∫
R4

σ
(
|χu∗|2 + |Λ−1

σ(t)(χ∂tu
∗)|2 + |χv∗|2 + |χdivT,ϕ(u∗)|2

+ |Λ−1
σ(t)(χ∂tdivT,ϕ(u∗))|2 + |χw∗|2 + |χcurlT,ϕ(u∗)|2

+ |Λ−1
σ(t)(χ∂tcurlT,ϕ(u∗))|2

)
≤ C

∫
R4

χ2
(
|f∗|2 +

4∑
j=1

|∂ju|2 + σ2|u∗|2
)

+ C(γ)τ−2

∫
R4

(
|f∗|2 +

4∑
j=1

|∂ju|2 + σ2|u∗|2
)

+ C(γ)

∫
R4

(|u∗|2 + |v∗|2 + |w∗|2). (42)

Observe that for a first order operator P1v =
∑3
j=1 bj∂jv we have χP1,ϕv =

P1,ϕ(χv) − P1(χ)v. Since divT,ϕ(ρ−1f) is the sum of terms a∂jfj , σafj with
|a|1(Ω∗) < C, by using Lemma 2.4 we will have the terms with f∗ on the right
side of (42). Moreover, χAϕ(m)u is the sum of terms (∂k − σ∂kψ)(χ(A1(∂1 −
σ∂jψ)u∗) and of ∂k(A1(∂j −σ∂jψ)u∗), so again using Lemma 2.4 we will have
remaining terms of the first two integrals on the right side of (42).

By standard calculations ∂tdivT,ϕu
∗ = divT,ϕ∂tu

∗ + r(1) where r(1) is the
sum of terms a(γ)σu∗j and a∂ku

∗ with |a(γ)|1(Ω) < C(γ), |a|1(Ω) < C and
χdivT,ϕ∂tu

∗ = divT,ϕ(χ∂tu
∗) + r(2) where r(2) is the sum of terms a(γ)∂tu

∗
j

with |a(γ)|1(Ω) < C(δ). Hence

Λ−1
σ(t)(χ∂t(divT,ϕu

∗))− divT,ϕ(Λ−1
σ(t)(χ∂tu

∗))

= Λ−1
σ(t)(χdivT,ϕ∂tu

∗) + Λ−1
σ(t)(χr(1))− divT,ϕ(Λ−1

σ(t)(χ∂tu
∗))

= Λ−1
σ(t)(divT,ϕ(χ∂tu

∗))− divT,ϕ(Λ−1
σ(t)(χ∂tu

∗)) + Λ−1
σ(t)(χr(1) + r(2))).

So using Lemma 2.1 we yield

‖σ 1
2 (Λ−1

σ(t)(χ∂t(divT,ϕu
∗))− divT,ϕ(Λ−1

σ(t)(χ∂tu
∗)))‖(0)(R

4)

≤ C(γ)τ−
1
2 ‖χ∂tu∗‖(0)(R

4) + C(γ)(τ−
1
2 ‖∂tu∗‖(0)(R

4)

+ τ−
1
2 ‖χ∇u∗‖(0)(R

4) + τ
1
2 ‖χu∗‖(0)(R

4)).
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Therefore from (42) we obtain∫
R4

σ(|χu∗|2 + |χv∗|2 + |χu∗|2 + |Λ−1
σ(t)(χ∂tu

∗)|2 + |divT,ϕ(χu∗)|2

+ |curlT,ϕ(χu∗)|2 + |divT,ϕΛ−1
σ(t)(χ∂t(u

∗))|2 + |curlT,ϕΛ−1
σ(t)(χ∂t(u

∗))|2)

≤ C
∫
R4

χ2
(
|f∗|2 +

4∑
j=1

|∂ju∗|2 + σ2|u∗|2
)

+ C(γ)τ−1

∫
R4

(
|f∗|2 +

4∑
j=1

|∂ju∗|2 + σ2|u∗|2
)

+ C(γ)

∫
R4

(|u∗|2 + |v∗|2 + |w∗|2). (43)

Introducing another cut off function χ1, ∂tχ1 = 0, supported in B′(4δ)×R
with χ1 = 1 on B′(3δ) × R, |χ1|1(R4 < C(γ), and applying Lemma 3.1 we
yield∫

R4

σ
(
|divT,ϕ(χ1(Λ−1

σ(t)(χ∂tu
∗)))|2 + |curlT,ϕ(χ1(Λ−1

σ(t)(χ∂tu
∗)))|2

)
≥ C−1γ

∫
R4

(
σ2|χ1Λ−1

σ(t)(χ∂tu
∗)|2 +

3∑
j=1

|∂j(χ1(Λ−1
σ(t)(χ∂tu

∗)))|2
)

≥ C−1γ

∫
R4

σ2
(
|Λ−1
σ(t)(χ∂tu

∗)|2 +

3∑
j=1

|∂jΛ−1
σ(t)(χ∂tu

∗)|2
)

− C(γ)τ−2

∫
R4

σ2|χ∂tu∗)|2,

because∫
R4

(
σ2|(1− χ1)Λ−1

σ(t)(χ∂tu
∗)|2 + |∂j((1− χ1)(Λ−1

σ(t)(χ∂tu
∗)))|2

)
≤ C(γ)τ−2

∫
R4

σ2|χ∂tu∗|2

due to Lemma 2.1.

As above, by using the basic Fourier analysis we yield

C

∫
R4

σ2
(
|Λ−1
σ(t)(χ∂tu

∗)|2 +

3∑
j=1

|∂jΛ−1
σ(t)(χ∂tu

∗)|2
)
≥
∫
R4

σ2|χ∂tu∗|2.
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Using the two previous inequalities, from (43) we obtain∫
R4

(
γ
(
|∂j(χu∗)|2 + σ2|χu∗|2

)
+ σχ2

(
|v∗|2 + |w∗|2

))
≤ C

∫
R4

χ2
(
|f∗|2 +

4∑
j=1

|∂ju∗|2 + σ2|u∗|2
)

+ C(γ)τ−2

∫
R4

(
|f∗|2 +

4∑
j=1

|∂ju∗|2 + σ2|u∗|2
)

+ C(γ)

∫
R4

(
|u∗|2 + |v∗|2 + |w∗|2

)
. (44)

Now the claim follows by partition of the unity argument. Since our choice of δ
depends on γ we give this argument in some detail.

The balls B′(x0; δ(γ)) form an open covering of the compact set Ω̄′, so
we can find a finite covering of Ω̄′ by balls B′(x(k), δ(γ)), k = 1, ...,K(γ).
Let χ(; k) be a C∞- partition of the unity subordinated to this covering, i.e.

suppχ(; k) ⊂ B′(x(k); δ(γ) with
∑K
k=1 χ

2(; k) = 1 on Ω.
Summing (44) with x = x(k), δ = δ(γ, k) over k = 1, ...,K and choosing

τ > C(γ) we get

∫
Ω

γ( 4∑
j=1

|∂ju∗|2 + σ2|u∗|2
)

+ σ(|v∗|2 + |w∗|2)


≤ (C + C(γ)τ−2)

∫
Ω

|f∗|2 + C

∫
Ω

( 4∑
j=1

|∂ju∗|2 + σ2|u∗|2
)

+C(γ)τ−1

∫
Ω

( 4∑
j=1

|∂ju∗|2 + σ2|u∗|2
)

+ C(γ)

∫
Ω

(
|u∗|2 + v∗2 + |w∗|2

)
.

By choosing γ > 2C we can absorb the second integral in the right side by the
left side. Then we fix γ and choosing τ > C(γ) absorb the third and the fourth
integral by the left side and complete the proof of (9).

4. Proofs of stability estimates

In this section we will prove Theorems 1.3, 1.4.

Proof of Theorem 1.3. By extension theorems for Sobolev spaces we can find
u∗ ∈ H2(Ω) so that

u∗ = g0, ∂νu
∗ = g1 on Γ
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and
‖u∗‖(2)(Ω) ≤ CF. (45)

Let
v = u− u∗. (46)

The function v solves the Cauchy problem

(ρ∂2
t − (AT +R))v = f∗ in Ω, v = 0, ∂νv = 0 on ∂G× (−T, T ), (47)

where f∗ = f − (ρ∂2
t − (AT +R))u∗.

Due to the strict positivity condition (4) by standard energy estimates for
hyperbolic systems (i.e. [3], p. 128 ) we have

C−1
(
E(0;v)− ||f∗||(0)(Ω)

)
≤ E(t;v) ≤ C

(
E(0;v) + ||f∗||(0)(Ω)

)
, (48)

when t ∈ (−T, T ).
Let us fix γ in Theorem 1.1. By using (12) we choose δ0 depending on the

same parameters as C so that ϕ < 1 − 2δ0 on {t : T − δ0 < |t| < T} and
1 − δ0 < ϕ on (−δ0, δ0). We choose a smooth cut-off function 0 ≤ χ0(t) ≤ 1
such that χ0(t) = 1 when |t| < T − 2δ0 and χ0(t) = 0 when |t| > T − δ0. It is
clear that

(ρ∂2
t − (AT +R))(χ0v) = χ0f

∗ + 2ρ∂tχ0∂tv + ρ∂2
t χ0v. (49)

Obviously, χ0v ∈ H2
0 (Ω), hence by Theorem 1.1∫

Ω

(
|∂2
t (χ0v)|2 + |∇(χ0v)|2 + |χ0v|2

)
e2τϕ

≤ C
∫

Ω

(
|(ρ∂2

t − (AT +R))(χ0v)|2
)
e2τϕ

≤ C

(∫
Ω

|f∗|2e2τϕ +

∫
G×{T−2δ0<|t|<T}

(|∂tv|2 + |v|2)e2τϕ

)
by (47).

Shrinking the integration domain Ω on the left side to G× (0, δ0) and using
our choice of δ0 we yield

e2τ(1−δ0)

∫ δ0

0

E(t;v)dt ≤ C
∫
G×(−δ0,δ0)

(|∂tv|2 + |∇v|2 + |v|2)e2τϕ

≤ C
∫

Ω

|f∗|2e2τϕ + Ce2τ(1−2δ0)

∫
{T−2δ0<|t|<T}

∫
G

(|∂tv|2 + |∇v|2 + |v|2)

≤ C
∫

Ω

|f∗|2e2τϕ + Ce2τ(1−2δ)

∫ T

T−2δ0

E(t;v)dt.
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Choosing Φ = sup
Ω
ϕ and using (48)

e2τ(1−δ0) δ

C
E(0;v)− Ce2τΦ||f∗||2(1)(Ω)

≤ Ce2τ(1−2δ0)E(0;v) + Ce2τΦ||f∗||2(0)(Ω)

To eliminate the first term on the right side we choose τ (depending on C) so
large that e−2τδ0 < 1

C2 and by using energy estimates (48) we finally get

E(t;v) ≤ C||f∗||(0)(Ω)

and

E(t;u) ≤ C
(
||f∗||(0)(Ω) + E(t;u∗)

)
≤ C

(
||f∗||(0)(Ω) + ||u∗||( 3

2 )(Γ) + ||∂νu∗||( 1
2 )(Γ)

)
≤ C

(
||f ||(0)(Ω) + ||g0||( 3

2 )(Γ) + ||g1||( 1
2 )(Γ)

)
.

The proof is complete.

Proof of Theorem 1.4. By extension theorems for Sobolev spaces we can find
U∗ ∈ H2(Ω) so that

U∗ = 0, ∂νU
∗ = ∂2

t ∂νu on Γ

and
‖U∗‖(2)(Ω) ≤ CF. (50)

Let
V = ∂2

t u−U∗. (51)

Differentiating (14) in t and using time-independence of the coefficients of
the system, we get

(ρ∂2
t − (AT +R))V = ∂2

tAf − F∗ in Ω,

v = 0, ∂νv = 0 on ∂G× (−T, T ),
(52)

where F∗ = (ρ∂2
t − (AT +R))U∗.

By standard energy estimates for hyperbolic systems (i.e. [3])

C−1E(0;V)− C
(∫

G

|f |2 +

∫
Ω

|F∗|2
)

≤ E(t;V) ≤ CE(0;V) + C
(∫

G

|f |2 +

∫
Ω

|F∗|2
)
, (53)

when t ∈ (−T, T ).
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Using (12) we choose δ0 depending on the same parameters as C so that
ψ < −δ0 on G × {t : T − δ0 < |t| < T} and 0 < ψ on G × (−δ0, δ0). Then
we fix a smooth cut-off function χ0, 0 ≤ χ0(t) ≤ 1 such that χ0(t) = 1 when
|t| < T−2δ0 and χ0(t) = 0 when |t| > T−δ0, 0 ≤ χ0 ≤ 1, |∂jtχ0| ≤ C, j = 0, 1, 2.
By the Leibniz formula

(ρ∂2
t − (AT + R))(χ0V) = χ0(∂2

tAf − ∂jt f
∗) + 2ρ∂tχ0∂tV + ρ∂2

t χ0V.

Obviously, χ0V ∈ H2
0 (Ω), hence by Theorem 1.1∫

Ω

γ
(
|∂t(χ0V)|2 + |∇(χ0V)|2 + σ2|(χ0V)|2

)
e2τϕ

≤ C
(∫

Ω

(|f |2 + |F∗|2)e2τϕ +

∫
G×{T−2δ0<|t|<T}

(|∂tV|2 + |V|2)e2τϕ
)
. (54)

We have

V(, 0)eτϕ(,0) = −
∫ T

0

∂s

(
(χ0V(, s))eτϕ(,s)

)
ds

= −
∫ T

0

(
∂s(χ0V(, s)) + σ∂sψ(, s)χ0V(, s)

)
eτϕ(,s)ds.

So by splitting the left side in (54) into two equal terms and using the Cauchy-
Schwarz inequality we obtain

γ

∫
G

|V(, 0))|2e2τϕ(,0) + e2τ

∫ δ0

−δ0
E(, t;V)dt

≤ C
(∫

Ω

(|f |2 + |F∗|2)e2τϕ + e2τθ

∫
{T−2δ0<|t|<T}

E(t;V)dt
)
,

where θ = e−γδ0 < 1. Using (53) and the inequality

|f | ≤ C|∂2
t u(, 0)| ≤ C(|U∗(, 0)|+ |V(, 0)|)

(due to (52) at t = 0, the condition (16), and to (51) ) we yield

γ

∫
G

|f |2e2τϕ(,0) − Cγ
∫
G

|U∗(, 0)|2e2τϕ(,0)

+ e2τE(0;V)− Ce2τ
(∫

G

|f |2 +

∫
Ω

|F∗|2
)

≤ C
∫
G

|f |2e2τϕ(,0) + Ce2τθ

∫
Ω

|F∗|2 + Ce2τθE(0;V) + Ce2τθ

∫
G

|f |2.
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We choose and fix large γ (depending on C only) to absorb three other terms
with f by the first term on the left side. Then we choose and fix τ (depending
on C) so large that Ce2τθ < e2τ to absorb the term with V on the right by the
term with V on the left and arrive at∫

G

|f |2 ≤ C
∫
G

|U∗(, 0)|2 + C

∫
Ω

|F∗|2.

Using the bound (50), Trace theorems and the definition of F∗, we complete
the proof of Theorem 1.4.

5. Conclusion

One can use Carleman estimates of Theorem 1.1 for coefficients identification
as in [7, 11]. However, for systems in divergent form (like the elasticity system)
most precise results need a weak form of Carleman estimate which is expected
to follow from Theorem 1.1 by using smoothing operators similar to Λ−1

σ . At
present, the condition (7) is essential for our proofs. Geometrical or mechani-
cal meaning of this condition is not clear. A challenge is to obtain Carleman
estimates and identification results for the system of transversely isotropic elas-
ticity, without (or with relaxed) condition (7).

Acknowledgments

This work was supported in part by the Emylou Keith and Betty Dutcher
Distinguished Professorship and the NSF grant DMS 15-14886.

References

[1] R. Coifman and Y. Meyer, Commutateurs d’intégrales singulières et
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