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ABSTRACT. We consider the system of partial differential equations of
transversely isotropic elasticity with residual stress. Completing pre-
vious results we derive Carleman estimates for this system containing
time derivatives. This permits to obtain exact observability inequalities
for this system with the Cauchy data on the whole lateral boundary.
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1. Introduction

We consider a transversely isotropic elasticity system with residual stress [2, 15].
We let 2 € R? and (z,t) € Q which is a bounded domain in R*. Let u(z,t) =
(Ul,UQ,US)T : Q — R? be the displacement vector in . We introduce the
operator of the transversely isotropic elasticity

(Aru); Z 3( ikl 3kUz+3luk)) (1)

7,k,l=1

where Cjji, are elastic parameters. In general, they enjoy the following sym-
metry properties

Cijrt = Cjirt = Cijike = Chugj- (2)

In the transversely ((x1,2)-) isotropic case, in addition,

Ci111 = Co22 = c11, Cri22 = c12, Cr133 = Caa33 = c13, C333z = Caa,

1 .
Cazaz = C3131 = c23, Ci212 = 5(c11 — c12), Cijp = 0 otherwise.
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We assume that c;;, are functions on Q and impose a sufficient condition of
strict positivity of the elastic tensor:

€o < €11, €0 < €11 — C12, €9 < C12 + C11,
€g < €23, €9 < €33, €0 < €13 + €23, (4)

2 2
€0 + 2c¢i3 < (€11 + c12)e33, €0 + 13 < 11633 on

for some g9 > 0. We also introduce the scalar partial differential operator
R= E?,k:l 7j,0;0; used to model the residual stress.

To state the main results we introduce pseudo convexity condition for a
general scalar partial differential operator of second order P = Zj 1 @5£0;0k
in Q with the real-valued coefficients a’* € C1(2). The principal symbol of
this operator is P(X;¢) = X7 1 a;i(X)(jCk, X = (x,t). We will assume that
the coefficients of P admit the following bound |a;x|2(2) < M.

Let K be a positive constant. A function v is called K-pseudo-convex on
Q with respect to P if v € C%(Q), P(X, V(X)) # 0, X € Q, and

4

> (Bowge 5 ) (x:9)

J,k=1
aP BP a?P )
‘X (Feord - P ga ) o) o) > e

J,k=1

for any £ € R™ and any point X of € provided

P(X;¢) =0, Zac] X, )0;9(X) =

We use the following convention and notations. Let 0 = (01,...,04), D =
—i0, a= (o, ..,a) is a multi-index with integer components, (*=(" - - - ',

D% and 0% are defined similarly. x4 = ¢t. V denotes the gradient with respect
to spatial variables 1, x2,x3. v is the outward normal to the boundary of a
domain. Q. = QN {y(x) > e}. We recall that

1

@) = (3 [ 10°up)’

|| <k

is the norm in the Sobolev space H;)(2) and || ||z = || [/(o) is the L*-norm.
Let C be generic constants (different at different places) depending only on M,
on K, on the function v, on C?(Q)-norms of the coefficients p, cjk, ik of the
elasticity system, on gy, and on the domain 2. Any additional dependence will
be indicated.
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We let

C11 — C12 C23 €13 + Ca23

a) = 5 az = 2 B as = 2 )
C11 + C12 C11 + C12 C11 + C12 (5)

= (c11 — c12)(c13 + c23)

4=
(c11 + c12)cos3
and

A=a (812 + (922) + agag, divru = O1uy + Ooug + Cl383U3,
curlTu = (82u5 - a483u2, a483u1 - 81’LL3, (91U2 - 82u1) .
We introduce the following conditions
(¢f1 — cfy)ess — 2(c1s + c3)?(c11 — c12) — 2¢33(ca1 + ¢12) = 0,
C11 — C12 = 2023 on 2

and the weight and scaling functions

p=e" o=q7p. (8)

THEOREM 1.1. Let ¢ € C3(Q) be K- pseudo convex with respect to pd? — A —
R, pd}—A—07—03—a3a403—R in Q and let |p|2(Q)+|cjk|2(Q)+|rjk]2(Q) < M.
Let the conditions (7) be satisfied.

Then there are constants C,Cy(7y) such that

/ (02 luf? + o ((divrul® + |eurlrul) + A(|Oeul? +|Vu[2)e
Q
<c / (002 — Az — Ryu?e™  (9)
Q

for allu € HE(Q),C <~,Co < 7.

This estimate for isotropic elasticity with residual stress was obtained in [11]
and for more general transversely isotropic elasticity in [10] without the terms
with v on the left side.

Let us consider the following Cauchy problem

(p0f —Ar —Rju=finQ, u=gyp, du=g on I'C, (10)

where I' € C3. Let Q5 = QN {1y > 6}. The Carleman estimate of Theorem 1.1
by standard argument ([9], section 3.2) implies the following conditional Holder
stability estimate for (10) in ©(J) (and hence uniqueness in ©(0)).

THEOREM 1.2. Let ¢ € C3(Q) be K- pseudo conver with respect to po? — A —
R, pd}— A—07 —03—a3a405— R in Q and let | pl2 () +|cj]2(2)+|rjk|2(2) < M.

Let the condition (7) be satisfied. Assume that Qo C QNT.
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Then there exist C = C(0),k = k() € (0,1) such that for a solution
u € H?(Q) to (10) one has

Il 0) () + 1Vl o) () + [9rull0) () < C(F + MIT*F™), (1)
where F = |[£]/0)(%) + goll ) (D) + g1l (0), My = ull ().

In Theorems 1.3, 1.4 we assume that Q@ = G x (=T,T),0G € C? and that
R=0.

Due to (4) the system (10) is t-hyperbolic and from known results (e.g. [3],
I11.4, p.123) it follows that the first initial boundary value problem for this sys-
tem is uniquely solvable in standard energy spaces, moreover the conventional
energy integral

E(tiu) = /G (10l + [Vul® + [uf)(. 0

is bounded by the initial energy and the right side (more detail in the proof of
Theorem 1.3). Repeating the argument in [3] one can obtain the same result

when the smallest eigenvalue of the matrix rj is greater than than —<.

THEOREM 1.3. Let ¢ € C3(Q) be K- pseudo convex with respect to pd? — A —
R, p02—A—03—02—a3a,03— R in Q and let |p|a () +|cjr]2 () +|rjk|2(Q) < M.
Assume that

Y <0onGx{-T,T}, 0<v onG x {0}. (12)

Then there exist C such that for a solution u € H*(Q) to (10) one has

E(t;u) < C([[fll0) () + lIgoll(3)(T) + llgall¢z)(T))- (13)

Now we state results about identification of a source from additional bound-
ary data.
Let u be a solution to

(p0? — Ar — R)u = Af in Q,

14
u=0, du=00onG x {0}, u=00n0G x (-T,T). 14)

We will assume that A € C(9).
We will consider the boundary stress data as measurements (observations).
We introduce the norm of the of the lateral Cauchy data

F = [|970,u]1,(I). (15)

To guarantee the uniqueness, we impose some non-degeneracy condition on
the matrix A. We assume that

detA >¢e9 >0 on G x {0}. (16)
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THEOREM 1.4. Let ¢ € C3(Q) be K- pseudo convex with respect to pd7 — A —
R, p0? — A— 07 — 03 — a3a403 — R in Q. Assume that p, cji, ik, do not depend
on t and |pl2(Q) + |cjkl2(Q) + |7jk]2(Q) + [07A]0(Q) < M. Assume that the
condition (12) is satisfied. Let the matriz function A satisfy (16).

Then there exist C' such that

I£]l0)(©2) < CF. (17)

Observe that the classical isotropic elasticity is a particular case of the
system under consideration, when c11 = ¢33 = A + 2u, c12 = c13 = A, Cag = L.
In particular, the conditions (7) are satisfied.

Carleman estimates were introduced by Carleman in 1939 to demonstrate
uniqueness in the Cauchy problem for a system of first order in R? with non
analytic coefficients. Carleman type estimates and uniqueness of the continua-
tion theorems have been obtained for wide classes of scalar partial differential
equations [6, 9]. But useful concept of pseudo convexity is not available for
systems, and Carleman estimates were derived only in particular cases, like
for classical isotropic dynamical Maxwell’s and elasticity systems [5] (by us-
ing principal diagonalization). Two large parameters were introduced in [8].
They were a main tool in the first proof of uniqueness and stability of all three
elastic parameters in dynamical isotropic Lame system from two sets of bound-
ary data [7]. A system of transversely isotropic elasticity with residual stress
was recently studied in [10, 11, 12, 14] where there are Carleman estimates,
uniqueness and stability of the continuation and of the identification of elastic
coefficients.

In this paper for the transversely isotropic system with residual stress we
obtain Carleman estimates including time derivative. Most advanced previous
results [10] handled only spatial derivatives. Observe that our results are new
for the classical isotropic elasticity system. Including temporal derivative en-
ables to obtain exact controllability (Lipschitz) bounds in the lateral Cauchy
and inverse problems under minimal regularity assumptions. So far our results
need a special condition (7). The main idea is to use principal upper triangular
reduction, scalar Carleman estimates with two large parameters, and spatial
smoothing (pseudo-differential) operator with parameter. The crucial part is
L? bounds on commutators of this operator and of differential operators with
parameters.

We stated our basic results in section 1. In section 2 we obtain auxil-
iary results where crucial are bounds on commutators of multiplication and of
smoothing operator and especially Lemma 2.4 on certain localization of this
pseudo-differential operator. In section 3 we prove estimates of Theorem 1.1
and in section 4 apply them to stability estimates in the continuation and
inverse problems. We tried to minimize technicalities and refer as much as
possible to known results.
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It is not easy to find functions v which are pseudo convex with respect to
a general operator. In an isotropic case explicit and verifiable conditions for
Y(x,t) = |z — B]? — 6%t? were found by Isakov in 1980 and their simplifications
are given in [9], section 3.4. In general anisotropic case Khaidarov [13] showed
that under certain conditions the same 9 is pseudo convex if the speed of the
propagation determined by A is monotone in a certain direction.

In the following Lemma for a general hyperbolic operator we give the con-
dition of K-pseudo convexity of 1 (z,t) = |x — 8]? — 6%t2.

LEMMA 1.5. Let
3
P = 8152 - Z ajkajak, Qi = Qkj,

J,k=1

where aj, € C' satisfy the uniform ellipticity condition

3
a;r(X)E6 > eolé]?, X € Q £ €R?, g > 0.
j.k=1
Let
1/)($at) = |£L’ - 6|2 - 02t2’ 6 = (0>07ﬂ3)'

Assume that
3 3 2
Z <Z ask0kaj — QZalkakaﬁ’)) §& > e|¢?, e R
Gi=1 \k=1 k=1

for some g1 > 0.
Then there is large B3 such that the function v s K-pseudo conver with
respect to P in €.

A proof is given in [11].

2. Auxiliary results.

For a linear partial differential operator A ( with matrix coefficients) we intro-
duce A, by the equality (A, v)e™ 7% = A(ve™7%). From the Leibniz formula it
follows that A, is the linear partial differential operator with the same principal
part as A. We observe that

(0)p = 0; — 00;0 (18)

and
(A1A2)y = (A1)p(Az),. (19)
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Indeed, according to the definition,

(A1Ag),v)e™ ™ = A1 (Az(ve™ 7))
= A1(((A2)pv)e™ ™) = ((A1)p(Az),v)e 7.

In particular,

P,(D) = P(D +itVy) = P(D) + 7P (D) + 7°P(V) (20)

where P; is a first order differential operator with coefficients depending on
v. We will use the notation < ¢ >= (|¢]? + 1)z and the pseudo-differential
operator ASf = F~1(< & > +71)%Ff, where F is the Fourier transform in R?
and ¢ € R3. Let Q* be a bounded domain in R* with a smooth boundary
such that © C Q*. We can extend all coefficients of the operators Ap, R and
functions p, 1 onto R* preserving the regularity in such a way that they have
support in Q* and their C?-norms are bounded by C.
In next Lemmas we fix 2° with (2°,t°) € Q and introduce o(t) = o(2°,1)

LEMMA 2.1. There ezists a constant C(vy) such that

1A, 4 Dew = DA ull o) (RY) < CONIIA Ll o) (RY), (21)

o(t
1,01 5. . _ 1
o (A7 divr,pu — divr  AS L (W) o) (RY) < C()r % ullo) (),
1. _ _1
o (A curte o — curl oA () o (RY) < CO)r—H ull oy (@) (22)
and

1254 (Po) (P A w)ll o) (RY) < C0) oy (4154 Dl o) (RY)) (23)

for all u,u € H3().

Proof. We first prove (21). Observe that ¢ = 7yp, 0,0 = yoOu), 020 =
Yo (97 4 y(0up)?) , that

-1, _ 1 L‘T(t) ; U
QA Gyu=F ((<€> +U(t))2]-"u+ <Fs +O_(t)f8t ) (24)
and
o1 —070(t) (0o (t))?
Oy =7 (((<§> o ()2 (<£>+0(t>)3)fu
_ 0o u - 2
+2(< > +U(t))2]-'8t +2 S +0(t)fat > (25)
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Formula (24) implies that

_ _ Oro(t)
1 _ 1 t
Aa(t)atu 3t (t)u F <(< § > —‘,—O'(t))QFU) y

SO

”Ao(t)atu 8tA;(1t)U||?O (R4)

< Johol”
ool

2

O (t) dedt

<§> +o(t ))2

——————=Fu(x,t)

u(é,t)|* dédt

8150'
(<&> +o— (<€&€>+0(1))?

SC(’Y)/R/RB

and again using the Parseval equality we yield (21).
Due to (18), divy ,u is the sum of terms a(9; —00;1))uy, where j,k =1,2,3,
lal2(R*) < C, and a = 0 outside Q*. Hence it suﬂices to show that

2

Fu(é,t)| dedt

(<&>+0o(t))

1AZ 4y (007 w) — b7 A5 ull oy (RY) < C(0) 7™ [ull0) (), (26)

(t)
for all 8 with |8 =1, 84 = 0, and that

1A, &y (bw) = B ull o) (RY) < C(9)7 7 [[ull o) (), (27)
when b € CY(R?), [b];(R*) < C(v), and b = 0 outside Q*.
To prove (26) we introduce u; = (t)a u. Using also that A, = Ag + o,
we have

A;(lt)baﬁu — baﬁA;(lt)u = Ao (bAo(t) = Apyb)ur = A, (bAg — Agb)us

U(t)

o’(t

As above, from the Parseval identity, ||u1]/(o)(R*) < Cllul/(0)(€2). By known
(e.g. Coifman and Meyer ([1])) estimates of commutators of pseudo-differential
operators and of multiplication operators

1(0A0 — Agb)ur ( £)]Fo) (R?) < C(y)us ()T (R?).

Using that ||A v||(0 (R3) < C(y)r ’2||11H%0)(Q) and integrating with respect
to t we complete the proof of (26).

Proofs of (27) and for curl are similar.
Due to (18), (19), P,u is the sum of terms

a(9; — 00;9) (O — 0Ok)u
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where j k = 1,2,3,4, |al2(R*) < C, a = 1 when j = k = 4, a = 0 when
j=1,2,3,k = 4, and a = 0 outside 2* otherwise. Elementary calculations
show that this expression equals to

a0;O0ru — ao(@kz/@ju + 8j1/)8ku) +ao((oc — 1)8jzp8kzp — ajakl/))u
Hence it suffices to show that

1Ay adu— a0 A ull o) (RY) < C)(ull 0y () + A5y Dyl (RY)), (28)

o(t)
for all a with |a] < 2, that

P8 yb0%u — 007 A L ullio) (R < O ull (). for all |5 <1 (29)

(t)
for all 8 with |8] < 1, and that

T2 AS Gy (bu) = DAL yull o) (R?) < C()llull) (), (30)

when b € C1(Q%), b]1(Q) < C, and b = 0 outside Q*.
To show (28) let first ay = 2.
As above, (25) implies that

1A, 07w = 07A L ull o) (RY) < CO)(lull0) () + 1A Drull o) (RY)).

To complete a proof of (28) we now consider cy = 0. Let ae; > 0 and 3; =1
while other components of 8 be zero. We introduce u; = A;(lt)8a’ﬁu. Using
also that A, = Ay + o, we have

A;(lt)aaau ad“A” (t) A_(lt)(aA — Ay ya)juy
=A (t)(a/\o Aoa)a Uy = 0( (a@ Ay — G(Aoa) + Aoaja)ul
(8J (CLAQ - Aoa) + (Aoaja - 3jaA0))u1
As above, from the Parseval identity, [lu1[|o)(R*) < C||ul|(0)(€2). By known

(e.g. Coifman and Meyer [1]) estimates of commutators of pseudo-differential
operators and of multiplication operators

I(afo — Aoa)ur(, t)ll0) (R) < C(y)llus(, t)ll o) (R?)-

A similar estimate is valid when we replace a by d;a. Using, as above, that the
norm of the operator A;(lt)aj from L?(R?) into itself is bounded by C(v) and

integrating with respect to ¢ we complete the proof of (28).
Next we demonstrate (29). Let first 5 = (0,0,0,1). Using (24) we have

||(9tA;(1t)u - A;(lt)atu”(O) (R?) < C(’Y)HUH(O)(R?’)
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so it suffices to bound A;(lt)batu — bA;(lt)(’?tu. To do this, let ugy = A;(lt)(?tu,
then we need to bound

A;(lt)bAo(t)UQ — bu2 = A;(lt) (bAg(t)UQ — Ao-(t)(bUQ)) = A;(lt)(bAOUQ — Ao(bUQ))

because A, = Ag + 0. As above, from known bounds of commutators and the
definition of us it follows that
PIAZE (Bhouz — Ao(buz)) o l(R?) < CIATE draulo) (RY)
Proofs of (29) for general 8 and of (30) are similar. O

LEMMA 2.2. Let K(x,y;t) be the Schwartz kernel of the pseudo-differential op-
erator A;(lt) with 7> 1.
Then
02K (2, y; )| < C(7)7 2w —y|
provided || < 2.

A proof is similar to [7], Lemma 3.4.

Proof. The Schwartz kernel K (x,y;t) is the oscillatory integral
/ V(< ¢ s yo(t))Tde
R3
— oyl [ (Bee ") (< > () e
R3
o=yl [ A< 6> () e

== () ey /R TTIEAY(< € > o (1) de
where we did integrate by parts. Observing that
AL (< E>4ot) T <CU(<E> o) 2 <> 1=12,..,
and letting | = 4 we complete the proof. O

We denote by S’ the orthogonal projection of a set S in R* onto R? and
let Cyl(2;0) = (B'(2%;0) x R) N Q*.

LEMMA 2.3. We have

31A—1 2 apA—1 2
oA "+ T |0*A_ v )
»/R4\Cyl(zo;35) ( © Z ©

|a]=1
<Cayrt [ o (P +1an; o) @D
R4

for all v € HE (Cyl(x°;6)),2° € (V.
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Proof. We can assume that 2 = 0 and drop x°.
We first consider the case when ay = 0. Since suppv C Cyl(9),

0Ny < [ Jolw. 0] 107K (i) dy
B(9)
<CO0 [ o=yl Mot 0ldy
B(9)

by Lemma 2.2, provided z € R?\ B(3§). When y € B(24),

=3l = Lo~y + 2oyl = L+ 2ol — <yl
T — —lx — |z — 4 <zl — <
=5 YT 3 yg=357+3 gVl =

0
1

+ >
— |
Ll >

Hence by using the Schwarz inequality

1
2

084y ole, )] < Oy, 0)r 21+ Jal) = ( / p(0))" forallja] <1,

B(9)

provided x € R3\ B(3J). Using this estimate we conclude that the last integral
on the left side of (31) is less than C(v, 9) fcyl(é) |v]2. Similarly we bound the
first integral.

Now we will handle the most delicate case of « = (0,0,0,1), i.e. 9% = 9.
Let w = 0yv. Due to (21), it suffices to show that

o N LRIl N S ) (33)
R3\ B(36) R3

To do so we will make use of the integral operator A%, w = F~'(|¢{]* +

o(t)) "' Fw which is obviously a fundamental solution of the differential op-
erator —A + o(t) in R3. So for W = A7 w,

(A +o(t))W = win R3.

We have
(P + o)t <CO(<E> +o(t)

and hence

| sl <ct) [ 18zl (34)
R3 R3

Let a cut-off function x5 = 1 on B(d), supp xs C B(26) and |0%xs| < C(9)
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when |a| < 2. Due to the definition of K,

M@MLUL@Km%dmwmw@
=/’ o W)E (@ — y:0(0) (—A + o())W(y, t)dy
B(26)
=/ (A + o) (W) K (@ — y:0(6))W (. £)dy.
B(26)

Therefore, by Lemma 2.2 and (32)

A yw(a,t)] < 0(7,6)7*1/ 2 —y| 8| W (y, t)|dy
B(26)

< Clrndyrta+ja) ([

1
W (y.t)dy) .
B(26)

This combined with (34) completes the proof of (33) and hence of Lemma 2.3.

O
Since ¢ € C?, using (8) we will choose §(v) so that
20 <5 <20(1) (3)

on Cyl(z%;45(7)).
LEMMA 2.4. There is C such that
/ |6jA;(1t)v|2+/ A (aov)|? < C/ lv|?, 7 =1,2,3, (36)
R4 R4 R4

for all v € H2(Cyl(2°;45(%))),2° € O, provided |a|;(R*) < C and a is con-
stant outside 2*.

Proof. As above we let ° = 0 and drop it. Due to the Parseval identity

a A —1 2 |£|2 2 >
Juloraciont < [ ([, ees somrimecotae)

< /R </R |]~"v(§,t)2d§) dt:/R (/R v(:c,t)|2dx) dt = /Cyl(ém) |v|?

when |a| =1,a4 = 0.
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Similarly,

/R‘l‘ t) (o) /R (/Rs (< &> +ol(t ))2|]:(a‘7”)(§ 1) dg)
/R ( / Flaov)(€,1)| d£> dt
/R o(t)? (/R3 |(aav)($,t)l2dx> dt

2
g
- ) N <o oP
/C’yl(6('y)) (U(t)) Cyl(s(v))

since, due to the definition of §(y), we have (35). O

IN

LEMMA 2.5. Let ¢ be K pseudo-convex with respect to P on Q.
Then there is C such that

[ ool o) <€ [ a7k Pl

for all v € HE(Cyl(x°;6(7))) provided T > C,z" € Q.

Proof. We can assume that 20 = 0 and we let Cyl(6) = Cyl(z°;6(v)). By
Theorem 1.1 in [11] there exists C such that the following Carleman estimate
holds

1
/ o=2lol | geg 2 < ¢ Puof2 for all vy € H2(Cyl(43))
Cyl(45) Cyl(45)

|| =0

provided C < v,C(v) < 7.
Let x € C§°(Cyl(40)), is determined only by v, 0 < x < 1, annd x = 1 on

Cyl(39). Using this Carleman type estimate for vy = XAg(t v, we obtain

/ <03X2|Aa<t>“‘2+‘7 > X (A HaaXA;é)”'Q)
Cyl(49) |a]=1

<C |P¢(XA;(1t)v)|2
Cyl(46)

<C <|P¢(A;(1t)v)|2+C(7)<72|A;(1t)v\2+ 3 |aa(A;(1t)v)|2)). (37)

Cyl(45) =1
where we used (20), the Leibniz’ formulas

P(xw) = xPw + P1(; x)w + P(x)w, Pi(xw;p) = xP1(w; ) + Pi(x; p)w
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and the triangle inequality.
Using these inequalities, Lemma 2.4, and recalling that xy = 1 on Cyl(36)
we derive from the bound (37) that

AL v 4o %A L v)|? —07/ v|?
/Cyl(%)( Al o 30 )~ [

|a]=1

<0 [ (RGP + OO+ 00 39)

The Parseval identity, (35), and the definition of A, yield

2 2
/Cyl(é) = Q/Cyl((s)a(t)v
= L 2
|§|2 o
" /R"(t) | —eos it Pacar

:c/R(o—(t))?)/ Ao+ Y / / 10%(A, )

la|=1,a4
<c PIAL o 4 O / ol0 (AL )2
Cyl(39) ®) a|_§4_0 Cyl(36) )
+C ((a(0)?A, Gy vl* + o(t) 0% (A, 0)?)-
R4\ Cyl(35) ) Z (t)

|a|=1,ct4=0
Choosing 7 > C(v) and using Lemma 2.3 we will have from (38)

2 —1 2
/R o (1ol + |2 t)v| <o Cyl(43) Ao Pe

—l—Cv/ 3AU o2+ 7 0N v 39
<)R4\cyl(35>( Ao D 10" AL l). (39)

lee|=1

Now, by using Lemma 2.3 and choosing again 7 > C(v) we will eliminate the
last integral in this bound and complete the proof. O

3. Proof of Theorem 1.1

LEMMA 3.1. Let [Vip| > 0 on €.
Then for any x € Q there are §(v) and C such that

fy/ (02|v*|2 + |8jv*|2) < C’/ c7(|dz'vT7<pv”‘|2 + |curlT#,V*|2), j=1,23,
B(5) B(5)
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for all v* € HE(Cyl(2°;§(v)) provided T > C.

Proof is available in [10], Lemma 5, where the spatial bound need to be
integrated with respect to t like in the proof of Lemma 2.1.

Proof of Theorem 1.1. In [10], (25) it was shown that the system (10) implies

P(l)u = E +A(1)u,

P2y = diva + A(2)u,
p

P(lyw = curle +A(3)u,
p
where
P1)=0?—p Y(A+R),P(2) = — p Y (A+ R+ 8% + 92 + a3a402),

A(j) are sums of Oy (A10pu), On(A10ku), Adyu, Ad;u Au with the (matrix)
coefficients A, A1, |[A|1(Q) +|A1]0(Q) < C, 4, k,m =1,2,3.

Using the the substitution u* = e"%u,v* = e™?v, w* = e"?w, f* = e"%f
this system is transformed into

f*
Po(Du" = — + A (D,

*

f
Py(2)v* = dwwz + A (2)u*, (40)

*

f
P(p(l)w* — curlT#,? + A¢(3)u*.

Let 2° € ' and Cyl(§) = Cyl(z%;5(7y)) with §(7) defined in (35). Let a
cut off function x = 1 on Cyl(3), suppx C Cyl(8), 0 < x < 1,|x[2|(R*) <
C(7),0¢x = 0, then the system (40) implies

*

P,(1)(xu*) = x(% + A (1)u*) + A(1,1)(u¥)

*

P,(2)(xv") = X(divT,@% + A¢(2)u*) + A(2,1)(vY), (41)

*

Po(1)(cw") = x(curlry - + A, (3)u) + A D) (w),

where A(j,1) are sums of the terms a(v)0;u, a(v)d;v, a(y)0;w, ca(y)u, ca(y)v,
oa(y)w with |a(7)[2(2) < C(9).
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Using that v* = divy u*,w* = curlr ,u*, applying Lemma 2.5 to each
of 7 scalar equations in this system, and adding the resulting inequalities we
yield

/R o (b P 1A () o+ [ P+ i ()
+ 1A (rdivr o (w [ + ew* [ + [xeurly o (u)[?

+ A t)(xatcurlT W(u*))\Q)

<c/ |f*|2+2\3u|2+02|u|)

+er [ (167 + 3 oyl + o)
R* =
+C0O) [ (0P ) (42

Observe that for a first order operator Piv = Z?Zl b;j0;v we have x P ,v =
Py ,(xv) — Pi(x)v. Since divy,,(p~'f) is the sum of terms ad; f;,oaf; with
lal1 (€2*) < C, by using Lemma 2.4 we will have the terms with £* on the right
side of (42). Moreover, yA,(m)u is the sum of terms (Op — 00x¥)(x(A1(01 —
00;¢)u*) and of Oy (Al( —00j1¢)u*), so again using Lemma 2.4 we will have
remaining terms of the ﬁrst two integrals on the right side of (42).

By standard calculations ddivr ,u* = divy ,0;u* + (1) where 7(1) is the
sum of terms a(y)ou; and adyu* with |a(y)[1(2) < C(v),]al1(2) < C and
xdivr, ,0u" = divy o (x9;u*) + r(2) where r(2) is the sum of terms a(y)0;u}
with |a(y)]1(Q2) < C(d). Hence

A;(lt)(Xat(divT,WU*)) — divr (A o’(t (Xatu )
= A;(lt)(xdiv;pﬂoﬁtu )+ Ag(t)( xr(l)) — dwT,ga(A;(lt)(xatu*))
A;(lt)(dwT,w(XatU-*)) - dwT,sa(A;(lt) (xOu™)) + A;(lt)(XT(l) +7(2)))-

So using Lemma 2.1 we yield

llo® (A (XD (divr pu™)) = divr o (A, (x0u™))) | o) (RY)
< C(y)7 #[[x0u* || (o) (RY) + C(7)(m % | 8pu 0y (RY)
7 V| o) (RY) + 72 xut [ o) (RY)).
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Therefore from (42) we obtain

ol b b P A (00 e )
R4

- leurly, o (eu®) P + divr oA (0h () + leurlr oA (x0h (")) ?)

<c/ |f*|2+Z|8u\2+02|u\>
+C(7)T*1/ (|f*|2+Z|aju*|2+o2\u*|2)
R4 =

+C() A4(Iu*\2+|v*\2+\W*l2)~ (43)

Introducing another cut off function x1,9:x1 = 0, supported in B’(44) x R
with x1 = 1 on B'(38) x R, |[x1|1(R* < C(v), and applying Lemma 3.1 we
yield

/R o (Idivrp O (A7 (@) + leurtr (1 (A7) (D) 2)

3
>0y [ (ot (0m)R + 210,00 (A (o))

j=1
3
>0y [ a® (1 () P+ 3 0,054 (o) )
j=1
—0(7)7‘2/ o [xou*)?,
R4
because
/R (@10 =) AS ) (@) + 10;((1 = x) (A7 (D))
<c)r? [ ohowP
R4

due to Lemma 2.1.
As above, by using the basic Fourier analysis we yield

3
[ (g o)+ 21030 00mR) = [ oo
J:
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Using the two previous inequalities, from (43) we obtain
[ (00,0002 + 02 ) (07 + w )
<c/ |f*|2+z|au\2+02|u\)
R I (G S o+ o)
i=1

+00) [ (R ). )

Now the claim follows by partition of the unity argument. Since our choice of §
depends on v we give this argument in some detail.

The balls B’(z%;6(7)) form an open covering of the compact set Q', so
we can find a finite covering of € by balls B'(x(k),0(7)),k = 1,..., K (7).
Let x(; k) be a C°°- partition of the unity subordinated to this covering, i.e.

suppx(; k) C B'(x(k); 5(y) with Zszl x2(;k) =1 on Q.
Summing (44) with x = x(k),0 = (v, k) over k = 1,..., K and choosing
7> C(v) we get

4
L (o« ) + oo+ 1w )
j=1
4
<cvemr) [P+ ¢ [ (Slow P+ o)
Q QN4
4
+C(7)7_1/Q (Z |0,u* 2 +U2|u*|2) +C(v) /Q (Ju* > + 0™ + [w*]?).
j=1

By choosing v > 2C we can absorb the second integral in the right side by the
left side. Then we fix v and choosing 7 > C(+) absorb the third and the fourth
integral by the left side and complete the proof of (9). O

4. Proofs of stability estimates

In this section we will prove Theorems 1.3, 1.4.

Proof of Theorem 1.3. By extension theorems for Sobolev spaces we can find
u* € H%(Q) so that
u* =gp,du*=g;onl
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and
[u™]|(2)(©2) < CF. (45)

Let
v=u-—u". (46)

The function v solves the Cauchy problem
(pd2 —(Ar +R)v=Ff"inQ, v=0, 9,v=0 on 0Gx (-T,T), (47)

where f* = f — (p0? — (A7 + R))u*.
Due to the strict positivity condition (4) by standard energy estimates for
hyperbolic systems (i.e. [3], p. 128 ) we have

CTHEWO;v) = [[f]l0) () < E(t:v) < C(EO;v) + [0 (), (48)

when t € (-T,T).

Let us fix 7 in Theorem 1.1. By using (12) we choose dy depending on the
same parameters as C' so that ¢ < 1 —2§y on {t : T —dp < |t| < T} and
1—4d0 < ¢ on (—dp,dp). We choose a smooth cut-off function 0 < yxo(t) <1
such that xo(¢f) =1 when |t| < T — 2§y and xo(t) = 0 when [t| > T — 0. It is
clear that

(p0} — (A7 + R))(x0v) = Xof* + 200y x00;v + pOf X0V (49)

Obviously, xov € H2(f2), hence by Theorem 1.1
[ (020 + 1V (o) + o)

<c /Q (102 — (A + R))(xov)[)¢*7

<C / |£*|2e?7 +/ (|10, v)? + |[v]?)e?¢
Q Gx{T—260<|t|<T}
by (47).

Shrinking the integration domain €2 on the left side to G x (0, ) and using
our choice of dg we yield

do
e‘”ﬂ—&ﬂ/ B(tv)dt < C (V]2 + [VV]2 + [v]2)e2®
0 GX(—(s(),(So)

§C/ |f*‘262ﬂp+0627(1—260)/ /<|8tv|2+‘vv‘2+‘V|2>
Q {T—280<|t|<T} Ja

T
<C [ |FF2e 4+ 0271729 / E(t;v)dt.
Q T—280
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Choosing ® = sup ¢ and using (48)
Q

T(1— g T *
e2r(1 50)6E(0;v) —Ce*?|If ||%1)(Q)
< C€2T(17260)E(0;V) + Ce2T<I>||f*H%O)(Q)

To eliminate the first term on the right side we choose 7 (depending on C') so
large that e=27% < % and by using energy estimates (48) we finally get

E(t;v) < Ol 0) ()

and

E(t;u) < C(lI£]10)(2) + B(tu"))
< C(IIE 110y () + [[u” [l 5 (D) + 180”5 (D)
< O(11€l10) () + lgoll ) (T) + llgall 5 (D).

The proof is complete. O

Proof of Theorem 1.4. By extension theorems for Sobolev spaces we can find
U* € H?(Q) so that
U*=0,0,U" =920,uonT

and
U2y () < CF. (50)

Let
V = 9?u - U*. (51)

Differentiating (14) in ¢ and using time-independence of the coefficients of
the system, we get

(p0? — (A7 + R))V = 92Af —F*  inQ,
v=0, J,v=0 on 0G x (=T,T),

where F* = (pd? — (A1 + R))U*.
By standard energy estimates for hyperbolic systems (i.e. [3])

c—lE(o;V)—C(/G|f|2+/Q|F*|2)

< BE(t:V) gCE(O;V)+C(/G\f|2+/Q|F*\2), (53)

(52)

when t € (=T, T).
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Using (12) we choose Jp depending on the same parameters as C' so that
P < =foon Gx{t:T -39 <|t| <T}and 0 <t on G x (—dp,d). Then
we fix a smooth cut-off function xo,0 < xo(t) < 1 such that xo(t) = 1 when
|t| < T—200 and xo(t) = 0 when || > T—85,0 < xo < 1, |#/x0| < C,j = 0,1,2.
By the Leibniz formula

(00} — (Az + R))(x0V) = xo(0PAF — 8]F%) + 2p0ix00:V + pd}x0V.
Obviously, xoV € HZ(2), hence by Theorem 1.1
L2100V + 190V + o0V )7
< c(/(|f|2+ \F*|2)e27¢+/ (10VE + [V2)e2). (54)
Q Gx{T—-260<|t|<T}

We have

V(,0)e™?00) = — /T d, ((XOV(, s))eW(’S)>ds

0

T
= - aS(XOV(7S)) + Uasw(as)XOV(vs) eTip(,S)dS.

So by splitting the left side in (54) into two equal terms and using the Cauchy-
Schwarz inequality we obtain

do
v / IV(0) P 0 e [ B(t;V)dt
G —(50

SC(/Q(|f|2+|F*‘2)627—Lp+e27'9/

E(t; V)dt),
{T—260<|t|<T}

where § = e=7% < 1. Using (53) and the inequality
[f| < CloFu(,0)] < C(TU*(,0)[ +[V(,0)])

(due to (52) at t = 0, the condition (16), and to (51) ) we yield
v [P0~y [ U o)eno
G a

+627E(0;V)—062T(/ |f|2+/ |F*|2)

G Q

SC/ |f|262Ttp(70)+Ce2T9/ |F*|2+06279E(0;V)+C€279/ ‘f|2
G Q G
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We choose and fix large v (depending on C only) to absorb three other terms
with f by the first term on the left side. Then we choose and fix 7 (depending
on C) so large that Ce?™? < €27 to absorb the term with V on the right by the
term with V on the left and arrive at

/ ]2 < c/ |U*(,0)\2+C/ B2,
G G Q

Using the bound (50), Trace theorems and the definition of F*, we complete
the proof of Theorem 1.4. O

5. Conclusion

One can use Carleman estimates of Theorem 1.1 for coefficients identification
as in [7, 11]. However, for systems in divergent form (like the elasticity system)
most precise results need a weak form of Carleman estimate which is expected
to follow from Theorem 1.1 by using smoothing operators similar to A L. At
present, the condition (7) is essential for our proofs. Geometrical or mechani-
cal meaning of this condition is not clear. A challenge is to obtain Carleman
estimates and identification results for the system of transversely isotropic elas-
ticity, without (or with relaxed) condition (7).

Acknowledgments

This work was supported in part by the Emylou Keith and Betty Dutcher
Distinguished Professorship and the NSF grant DMS 15-14886.

REFERENCES

[1] R. CoOIFMAN AND Y. MEYER, Commutateurs d’intégrales singuliéres et
opérateurs multilinéaires, Ann. Inst. Fourier (Grenoble) 28 (1978), 177-202.

[2] H. DING, W. CHEN, AND L. ZHANG, Elasticity of transversely isotropic materi-
als, Solid mechanics and its applications, no. 126, Springer, Dordrecht, 2006.

[3] G. DUvVAUT AND J.-L. LIONS, Inequalities in mechanics and physics, Grundlagen
der mathematischen Wissenschaften, no. 219, Springer, Berlin-Heidelberg-New
York, 1976.

[4] M. ELLER AND V. Isakov, Carleman estimates with two large parameters and
applications, Contemp. Math., AMS 268 (2000), 117-137.

[6] M. ELLER, V. Isakov, G. NAKAMURA, AND D. TATARU, Uniqueness and sta-
bility in the Cauchy problem for Mazwell’s and the elasticity system, ” Nonlinear
Partial Differential Equations”, College de France Seminar 14 (2002), 329-349.

[6] L. HORMANDER, Linear partial differential operators, Grundlagen der mathema-
tischen Wissenschaften, no. 116, Springer, Berlin-Heidelberg-New York, 1963.



CARLEMAN ESTIMATES 283

[7] O. ImaNuvILOV, V. ISAKOV, AND M. YAMAMOTO, An inverse problem for the
dynamical Lamé system with two sets of boundary data, Comm. Pure Appl.
Math. 56 (2003), 117-137.

[8] V. Isakov, A nonhyperbolic Cauchy problem for Oy Ol and its applications to
elasticity theory, Comm. Pure Appl. Math. 39 (1986), 747-767.

[9] V. Isakov, Inverse problems for partial differential equations, Applied Mathe-
matical Sciences, no. 127, Springer, New York, 2006.

[10] V. Isakov, Carleman estimates for some anisotropic elasticity systems and ap-
plications, Evolution Equations and Control Theory 1 (2012), 141-154.

[11] V. Isakov AND N. KiM, Carleman estimates with two large parameters for
second order operators and applications to elasticity with residual stress, Discr.
Cont. Dyn. Syst. A 27 (2010), 799-827.

[12] V. Isakov, J.-N. WANG, AND M. YAMAMOTO, Uniqueness and stability of de-
termining the residual stress by one measurement, Comm. Part. Diff. Equat. 23
(2007), 833-848.

[13] A. KHAIDAROV, Carleman estimates and inverse problems for second order hy-
perbolic equations, Math. USSR, Sbornik 58 (1987), 267-277.

[14] C.-S. LiN, G. NAKAMURA, AND M. SINI, Unique continuation for the elastic
transversely isotropic dynamical systems and its application, J. Diff. Equat. 245
(2008), 3008-3024.

[15] C.-S. MAN, Hartig’s law and linear elasticity with initial stress, Inverse Problems
14 (1998), 313-320.

Author’s address:

Victor Isakov

Department of Mathematics, Statistics and Physics
Wichita State University

Wichita, KS 67260, USA

E-mail: victor.isakov@wichita.edu

Received January 6, 2016
Revised May 6, 2016
Accepted May 12, 2016



