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Abstract. The De Giorgi classes [DG]p(E; γ), defined in (1)± below
encompass, solutions of quasilinear elliptic equations with measurable
coefficients as well as minima and Q-minima of variational integrals.
For these classes we present some new results (§ 2 and § 3.1), and some
known facts scattered in the literature (§ 3–§ 5), and formulate some
open issues (§ 6).
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1. Introduction

Let E be open subset of RN and for y ∈ RN , let Kρ(y) denote a cube of edge 2ρ
centered at y. The De Giorgi classes [DG]±p (E; γ) in E are the collection of

functions u ∈W 1,p
loc (E), for some p > 1, satisfying∫

Kρ(y)

|D(u− k)±|pdx ≤
γ

(R− ρ)p

∫
KR(y)

|(u− k)±|pdx (1)±

for all cubes Kρ(y) ⊂ KR(y) ⊂ E, and all k ∈ R, for a given positive constant γ.
We further define

[DG]p(E; γ) = [DG]+p (E; γ) ∩ [DG]−p (E; γ). (2)

A celebrated theorem of De Giorgi [2] states that functions u ∈ [DG]p(E; γ) are
locally bounded and locally Hölder continuous in E. Moreover, non-negative
functions u ∈ [DG]p(E; γ) satisfy the Harnack inequality [7].

Local sub(super)-solutions, in W 1,p
loc (E), of quasi-linear elliptic equations

in divergence form belong to [DG]
+(−)
p (E; γ) ([12]), with γ proportional to

the ratio of upper and lower modulus of ellipticity. Local minima and/or Q-
minima of variational integrals with p-growth with respect to |Du| belong to
these classes ([10]). Thus the [DG]p-classes include local solutions of elliptic
equations with merely bounded and measurable coefficients, only subject to
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some upper and lower ellipticity condition. They also include local minima or
Q-minima of rather general functionals, even if not admitting a Euler equation.

The interest in the De Giorgi classes stems from the large class of, seem-
ingly unrelated functions they encompass, and from properties, such as local
Hölder continuity ([2]), and the Harnack inequality ([7]), typically regarded as
properties of solutions of elliptic partial differential equations ([12, 14]).

The purpose of this note is to present some new results on De Giorgi classes
(§ 2 and § 3.1), as well as collecting some known facts scattered in the literature
(§ 3–§ 5), and formulate some open issues (§ 6) to serve as a basis for further
investigations.

2. De Giorgi Classes and Sub(Super)-Harmonic Functions

The generalized De Giorgi classes [GDG]±p (E; γ), are the collection of functions

u ∈W 1,p
loc (E), for some p > 1, satisfying∫

Kρ(y)

|D(u− k)±|pdx ≤
γ

(R− ρ)p

(
R

R− ρ

)Np ∫
KR(y)

|(u− k)±|pdx (3)±

for all cubes Kρ(y) ⊂ KR(y) ⊂ E, and all k ∈ R, for a given positive constant γ.
Convex, monotone, non-decreasing functions of sub-harmonic functions are
sub-harmonic. Similarly, concave, non-decreasing, functions of super-harmonic
functions are super-harmonic. Similar statements hold for weak, sub(super)-
solutions of linear elliptic equations with measurable coefficients ([14]). The
next lemma establishes analogous properties for functions u ∈ [DG]±p (E; γ).
Given any such class, we refer to the set of parameters {p, γ,N} as the data
and say that a constant C = C(data) depends only on the data if it can be
quantitatively determined a-priori only in terms of the indicated set of param-
eters.

Lemma 2.1. Let ϕ : R → R be convex and non-decreasing, and let u ∈
[DG]+p (E; γ). There exists a positive constant γ depending only on the data,
and independent of u, such that ϕ(u) ∈ [GDG]+p (E; γ).

Likewise let ψ : R → R be concave and non-decreasing, and let u ∈
[DG]−p (E; γ). There exist a positive constant γ depending only on the data,
and independent of u, such that ψ(u) ∈ [GDG]−p (E; γ).

Proof. By De Giorgi’s theorem ([2, 12]), there exists a constant C = C(data),
such that for any u ∈ [DG]±p (E; γ), there holds

‖(u− k)±‖∞,Kρ(y) ≤
C

(R− ρ)N

∫
KR(y)

(u− k)±dx (4)



SOME PROPERTIES OF DE GIORGI CLASSES 247

for every pair of cubes Kρ(y) ⊂ KR(y) ⊂ E and all k ∈ R. It suffices to prove
the first statement for ϕ ∈ C2(R), and verify that ϕ(u) satisfies (3)+ for cubes
Kρ ⊂ KR centered at the origin of RN . For any such ϕ and all h ≤ k

(
ϕ(u)− ϕ(h)

)
+
− ϕ′(h)(u− h)+ =

∫
R+

(u− k)+χ[k>h]ϕ
′′(k)dk (5)

From this, a.e. in E∣∣∣D[(ϕ(u)− ϕ(h)
)
+
− ϕ′(h)(u− h)+

]∣∣∣p ≤ (∫
R
|D(u− k)+|χ[k>h]ϕ

′′(k)dk

)p
.

Integrate over Kρ, take the p root of both sides, and majorize the resulting
term on the right-hand first by the continuous version of Minkowski inequality,
then by applying the definition (1)+ of the [DG]+p (E; γ)-classes, and finally by
using (4). This gives∥∥∥D[(ϕ(u)− ϕ(h)

)
+
− ϕ′(h)(u− h)+

]∥∥∥
p,Kρ

≤
∫
R
‖D(u− k)+‖p,Kρχ[k>h]ϕ

′′(k)dk

≤ C

R− ρ

∫
R
‖(u− k)+‖p,KR+ρ

2

χ[k>h]ϕ
′′(k)dk

≤ CR
N
p

R− ρ

∫
R
‖(u− k)+‖∞,KR+ρ

2

χ[k>h]ϕ
′′(k)dk

≤ CR
N
p

(R− ρ)N+1

∫
R

(∫
KR

(u− k)+dx

)
χ[k>h]ϕ

′′(k)dk

=
CR

N
p

(R− ρ)N+1

∫
KR

(∫
R

(u− k)+χ[k>h]ϕ
′′(k)dk

)
dx

=
CR

N
p

(R− ρ)N+1

∫
KR

[(
ϕ(u)− ϕ(h)

)
+
− ϕ′(h)(u− h)+

]
dx

≤ C

R− ρ

(
R

R− ρ

)N ∥∥(ϕ(u)− ϕ(h)
)
+
− ϕ′(h)(u− h)+

∥∥
p,KR

.

In these calculations, we have denoted by C = C(p,N, γ) a generic constant
depending only upon the data, and that might be different from line to line. In
the last two steps we have interchanged the order of integration with the help
of Fubini’s Theorem and have applied Hölder’s inequality. By the convexity
and monotonicity of ϕ,(

ϕ(u)− ϕ(h)
)
+
≥ ϕ′(h)(u− h)+ ≥ 0. (6)
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Therefore,

∥∥D(ϕ(u)− ϕ(h)
)
+

∥∥
p,Kρ

≤ C

R− ρ

(
R

R− ρ

)N ∥∥(ϕ(u)− ϕ(h)
)
+

∥∥
p,KR

+
∥∥ϕ′(h)D(u− h)+

∥∥
p,Kρ

Upon applying the definition of (1)+ of [DG]+p (E; γ), and then (6), the last
term on the right-hand side is majorized by

C

R− ρ
∥∥(ϕ(u)− ϕ(h))+

∥∥
p,KR

.

Combining these estimates yields∫
Kρ(y)

∣∣D(ϕ(u)− k
)
+

∣∣pdx ≤ γ

(R− ρ)p

(
R

R− ρ

)N ∫
KR(y)

(
ϕ(u)− k

)p
+
dx (7)

for all k ∈ R and all Kρ(y) ⊂ KR(y) ⊂ E, for a constant γ = γ(data).

If u ∈ [DG]−p (E; γ) and ϕ is convex, there is no guarantee, in general, that
ϕ(u) ∈ [GDG]+p (E; γ) for some γ = γ(p,N, γ). The next lemma provides some
sufficient conditions on ϕ for this to occur.

Lemma 2.2. Let ϕ : (a,+∞)→ R, for some a <∞ be convex, non-increasing,
and such that

lim
t→+∞

ϕ(t) = lim
t→+∞

tϕ′(t) = 0, (8)

and let u ∈ [DG]−p (E; γ), with range in (a,+∞). There exists a positive con-
stant γ depending only on the data, such that ϕ(u) ∈ [GDG]+p (E; γ).

Likewise let ψ : (−∞, a) → R, for some a > −∞, be concave, non-
increasing, and satisfying

lim
t→−∞

ψ(t) = lim
t→−∞

tψ′(t) = 0, (9)

and let u ∈ [DG]+p (E; γ), with range in (−∞, a). There exists a positive con-
stant γ depending only on the data, such that ψ(u) ∈ [GDG]−p (E; γ).

Proof. It suffices to prove the first statement for ϕ ∈ C2(R) over congruent
cubes Kρ ⊂ KR centered at the origin. The starting point is the analog of (5),
i.e.,

ϕ(u) =

∫
R
(u− k)−ϕ

′′(k)dk. (10)

Since u ∈ [DG]−p (E; γ), by (4) the function u is locally bounded below in E, and
without loss of generality we may assume u ≥ 0. Hence, the representation (10)
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is well defined by virtue of the assumption (8) on ϕ. From this, by taking the
gradient of both sides, then taking the p-power, and finally integrating over Kρ

gives ∫
Kρ

|Dϕ(u)|pdx =

∫
Kρ

∣∣∣∣∫
R+

D(u− k)−ϕ
′′(k)dk

∣∣∣∣p dx.
The proof now parallels that of Lemma 2.1. Specifically, apply sequentially the
continuous version of Minkowski’s inequality, the definition (1)− of the classes
[DG]−p (E; γ), the sup-bound (4), interchange the order of integration, and use
Hölder’s inequality. This gives

‖Dϕ(u)‖p,Kρ ≤
∫
R+

‖D(u− k)−‖p,Kρϕ′′(k)dk

≤ C

R− ρ

∫
R+

‖(u− k)−‖p,KR+ρ
2

ϕ′′(k)dk

≤ CR
N
p

R− ρ

∫
R+

‖(u− k)−‖∞,KR+ρ
2

ϕ′′(k)dk

≤ CR
N
p

(R− ρ)N+1

∫
R+

∫
KR

(u− k)−ϕ
′′(k)dk

=
CR

N
p

(R− ρ)N+1

∫
KR

ϕ(u)dx

=
C

(R− ρ)

(
R

R− ρ

)N
‖ϕ(u)‖p,KR .

Now if ϕ is convex, non-increasing and satisfying (8), the function (ϕ− `)+, for
all ` in the range of ϕ, shares the same properties. Hence,∫

Kρ(y)

∣∣D(ϕ(u)− `
)
+

∣∣pdx ≤ C

(R− ρ)p

(
R

R− ρ

)Np ∫
KR(y)

(
ϕ(u)− `

)p
+
dx

for all cubes Kρ(y) ⊂ KR(y) ⊂ E and all ` ∈ R.

2.1. Some Consequences

The sup-bound in (4) can be given the following sharper form ([7]).

Lemma 2.3. Let u ∈ [DG]±p (E; γ). Then for all σ > 0 there exists a constant
Cσ depending only upon the data and σ, such that

sup
Kρ(y)

(u− k)± ≤ Cσ
(

R

R− ρ

)N
σ

( ∫
KR(y)

(u− k)σ±dx

) 1
σ

. (11)
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If u ∈ [DG]−p (E; γ) is non-negative, then Lemma 2.2 with ϕ(u) = u−1 and
a = 0, implies that u−1 ∈ [GDG]+p (E; γ). Therefore Lemma 2.3, with k = 0,
implies that for all τ > 0,

1

inf
Kρ(y)

u
≤ Cτ

(
R

R− ρ

)N
τ

(∫
KR(y)

1

uτ
dx

) 1
τ

. (12)

Proposition 2.4. Let u be a non-negative function in the De Giorgi classes
[DG]p(E; γ). Then for any pair of positive numbers σ and τ

sup
Kρ(y)

u

inf
Kρ(y)

u
≤ CσCτ

(
R

R− ρ

)N( 1
σ+

1
τ )
( ∫

KR(y)

uσdx

) 1
σ
( ∫

KR(y)

1

uτ
dx

) 1
τ

. (13)

Inequalities of the form (11) are at the basis of Moser’s approach to the
Harnack inequality for non-negative weak solutions to quasilinear elliptic equa-
tions with bounded and measurable coefficients ([14]). The Harnack inequality
will follow from (13) if lnu ∈ BMO(E). This fact is established by Moser for
non-negative weak solutions of elliptic equations. We will establish that for
non-negative functions u ∈ [DG]−p (E; γ), one has lnu ∈ BMO(E) by using the
Harnack inequality established in ([7]).

3. De Giorgi Classes, BMO(E) and Logarithmic Estimates

The proof of the following lemma is in [7].

Lemma 3.1. Let u ∈ [DG]−p (E; γ) be non-negative. There exist positive con-
stants C and σ, depending only upon the data, such that∫

Kρ(y)

uσdx ≤ C inf
Kρ(y)

uσ, (14)

for any cube Kρ(y) such that K2ρ(y) ⊂ E.

Such an inequality, referred to as the weak Harnack inequality, was es-
tablished by Moser for non-negative super-solutions of elliptic equations with
bounded and measurable coefficients ([14]). It is noteworthy that it continues
to hold for non-negative functions in [DG]−p (E; γ), with no further reference to
equations.

Lemma 3.2. Let u ∈ [DG]−p (E; γ) be non-negative. Then lnu ∈ BMO.
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Proof. By Lemma 3.1∫
Kρ(y)

uσdx

∫
Kρ(y)

1

uσ
dx ≤

∫
Kρ(y)

uσdx sup
Kρ(y)

1

uσ

=

∫
Kρ(y)

uσdx
1

inf
Kρ(y)

uσ
≤ C

(15)

for any cube Kρ(y) such that K2ρ(y) ⊂ E. Set

(lnuσ)ρ =

∫
Kρ(y)

lnuσdx,

and estimate∫
Kρ(y)

e| lnu
σ−(lnuσ)ρ|dx ≤ e−(lnu

σ)ρ

∫
Kρ(y)

elnu
σ

dx

+ e(lnu
σ)ρ

∫
Kρ(y)

e− lnuσdx.

The second term on the right-hand side is estimated by Jensen’s inequality
and (15) and yields

e(lnu
σ)ρ

∫
Kρ(y)

e− lnuσdx ≤
∫
Kρ(y)

elnu
σ

dx

∫
Kρ(y)

1

uσ
dx

≤
∫
Kρ(y)

uσdx

∫
Kρ(y)

1

uσ
dx ≤ C.

The first term is estimated analogously. Hence, there exists a constant C̄,
depending only upon the data, such that∫

Kρ(y)

e| lnu
σ−(lnuσ)ρ|dx ≤ C̄

for any cube Kρ(y) such that K2ρ(y) ⊂ E. Thus lnu ∈ BMO(E).

3.1. Logarithmic Estimates Revisited

Let u ∈W 1,p
loc (E) be a non-negative weak super-solution of an elliptic equation

in divergence form, and with only bounded and measurable coefficients. Then
there exists a constant C, depending only on p, N , and the modulus of ellipticity
of the equation, such that∫

Kρ(y)

|D lnu|pdx ≤ C

(R− ρ)p
(16)
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for any pair of cubes Kρ(y) ⊂ KR(y) ⊂ E. Such an estimate, established by
Moser, permits one to prove that lnu ∈ BMO(E), which in turn yields the
Harnack inequality. Our approach for functions in the [DG]−p (E; γ) classes is
somewhat different. For non-negative functions in such classes we first establish
the weak Harnack estimate (14), and then the latter is used to prove Lemma 3.2.
It is not known, whether non-negative functions in [DG]−p (E; γ) satisfy (16).
The next proposition is a partial result in this direction.

Proposition 3.3. Let u ∈ [DG]−p (E; γ) be non-negative and bounded above by
some positive constant M . Then

∫
Kρ(y)

|D lnu|pdx ≤ γp

(R− ρ)p

∫
KR(y)

ln
M

u
dx (17)

for any pair of cubes Kρ(y) ⊂ KR(y) ⊂ E.

Proof. The arguments being local may assume that y = {0}. By the defini-
tion (1)− of classes, for all 0 < t < M ,

∫
Kρ

|D(u− t)−|pdx ≤
γ

(R− ρ)p

∫
KR

(u− t)p−dx.

Multiply both sides by t−p−1 and integrate over (0,M). The left-hand side is
transformed as

∫ M

0

dt

tp+1

∫
Kρ

|D(u− t)−|pdx =

∫
Kρ

(∫ M

0

|D(u− t)−|p
1

tp+1
dt

)
dx

=

∫
Kρ

|Du|p
(∫ M

0

1

tp+1
χ[u<t]dt

)
dx

=

∫
Kρ

|Du|p
(∫ M

u

1

tp+1
dt

)
dx

=

∫
Kρ

(
−1

p

|Du|p

Mp
+

1

p

|Du|p

up

)
dx

=
1

p

∫
Kρ

|D lnu|pdx− 1

pMp

∫
Kρ

|Du|pdx.
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The integral on the right-hand side is transformed as∫ M

0

1

tp+1

(∫
KR

(u− t)p−dx
)
dt

=

∫
KR

(∫ M

u

(t− u)p

tp+1
dt

)
dx

=

∫
KR

[
−1

p

(t− u)p

tp

∣∣∣M
u

+

∫ M

u

(t− u)p−1

tp−1
dt

t

]
dx

= − 1

pMp

∫
KR

(M − u)pdx+

∫
KR

(∫ M

u

(
t− u
t

)p−1
dt

t

)
dx

≤ − 1

pMp

∫
KR

(M − u)pdx+

∫
KR

ln
M

u
dx.

Combining the previous estimates gives

∫
Kρ

|D lnu|pdx ≤ 1

Mp

(∫
Kρ

|Du|pdx− γ

(R− ρ)p

∫
KR

(M − u)pdx

)

+
γp

(R− ρ)p

∫
KR

ln
M

u
dx.

Since u ∈ [DG]−p (E; γ), the term in round brackets on the right-hand side is
non-positive and can be discarded.

Remark 3.4. Applying Lemma 2.2 to ϕ(u) = ln+(M/u), gives the weaker
estimate ∫

Kρ(y)

|D lnu|pdx ≤ γ

(R− ρ)p

∫
KR(y)

(
ln
M

u

)p
dx. (18)

4. Higher Integrability of the Gradient of Functions in
the De Giorgi Classes

Proposition 4.1. Let u ∈ [DG]±p (E). Then there exist constants C > 1 and
σ > 0, dependent only upon the data, such that, for any pair of cubes Kρ(y) ⊂
KR(y) ⊂ E, there holds

(∫
Kρ(y)

|Du|p(1+σ)dx

) 1
p(1+σ)

≤ C
(
R

ρ

)N
p
(

R

R− ρ

)(∫
KR(y)

|Du|pdx

) 1
p

. (19)
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Proof. Let u be in the classes [DG]p(E; γ) defined in (2). For any pair of cubes
Kρ(y) ⊂ KR(y) ⊂ E, write down (1)+ and (1)− for the choice

k = uR
def
=

∫
KR(y)

udx.

Adding the resulting inequalities gives∫
Kρ(y)

|Du|pdx ≤ γ

(R− ρ)p

∫
KR(y)

|u− uR|pdx.

By the Sobolev-Poincaré inequality

∫
KR(y)

|u− uR|pdx ≤ Cq Rp
(∫

KR(y)

|Du|qdx

) p
q

, for all q ∈
[
Np

N + p
, p

]
for a constant Cq = Cq(N, q). Hence, for all such q

∫
Kρ(y)

|Du|pdx ≤ Cqγ
(

R

R− ρ

)p(
R

ρ

)N (∫
KR(y)

|Du|qdx

) p
q

for all pair of congruent cubes Kρ(y) ⊂ KR(y) ⊂ E. The conclusion follows
from this and the local version of Gehring’s lemma ([9]), as appearing in [11].

Remark 4.2. Hence, the higher integrability of the gradient of solutions of
elliptic equations with measurable coefficients ([15]), and more generally of
Q-minima ([10]), continues to hold for function in the De Giorgi classes. If
u ∈ [DG]±p (E; γ), the conclusion is in general false, as one can verify starting
from sub(super)-harmonic functions. However, essentially the same arguments
give the inequality∫

Kρ(y)

|D(u− k)±|pdx ≤ Cqγ
(

R

R− ρ

)p(
R

ρ

)N (∫
KR

|Du|qdx
) p
q

for all q ∈
[
Np
N+p , p

]
, and

all k ≥
∫
KR(y)

udx if u ∈ [DG]+p (E; γ),

all k ≤
∫
KR(y)

udx if u ∈ [DG]−p (E; γ).
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5. Measure Theoretical Decay Estimates of Functions in
De Giorgi Classes

For a non-negative function f ∈ L1
loc(E) one estimates the measure of the set

[f > t] relative to a cube Kρ(y) ⊂ E, as µ
(
[f > t] ∩Kρ(y)

)
≤ t−1‖f‖1,Kρ(y).

Estimates of the measure of the set [f < t] relative to Kρ(y) are not, in general,
a consequence of the mere integrability of f . One of De Giorgi’s estimates of [2],
is that if u is a non-negative function in [DG]−p (E; γ), then∣∣[u < t] ∩Kρ(y)

∣∣
|Kρ|

≤ C(N, p, γ)

| ln t|1/p
asymptotically as t→ 0, (20)

provided
∣∣[u > t] ∩Kρ(y)

∣∣ ≥ 1
2 |Kρ|. Here |σ| denotes the Lebesgue measure of

a measurable set σ ⊂ RN . The next proposition improves on this estimate.

Proposition 5.1. Let u ∈ [DG]−p (E; γ) be non-negative, and assume that for
some to > 0 and α ∈ (0, 1), there holds∣∣[u > to] ∩Kρ(y)]

∣∣
|Kρ|

≥ α. (21)

There exist positive constants C, t∗, σ = C, t∗, σ(N, p, γ, to, α), depending only
on the indicated parameters and independent of u, such that∣∣[u < t] ∩Kρ(y)

∣∣
|Kρ|

≤ C

| ln t|σ| ln t|
1
2

, for t < t∗. (22)

Proof. In what follows we denote by C a generic positive constant that can
be determined a-priori only in terms of {N, p, γ, to, α} and that it may be
different in the same context. The arguments being local to concentric cubes
Kρ(y) ⊂ K2ρ(y) ⊂ E, may assume y = {0} and write Kρ(0) = Kρ. Let no be
the smallest positive integer such that 2−no ≤ to, and for n ≥ no set

An,ρ
def
=

[
u <

1

2n

]
∩Kρ, for n ≥ no.

The discrete isoperimetric inequality ([3, Chapter I, Lemma 2.2]), reads

(`− h)
∣∣[u < h] ∩Kρ

∣∣ ≤ C(N)
ρN+1∣∣[u > `] ∩Kρ

∣∣ ∫
[h<u<`]∩Kρ

|Du|dx

for any two levels 0 < h < `. Applying it with

` =
1

2n
, h =

1

2n+1
, so that [h < u < `] ∩Kρ = An,ρ −An+1,ρ,
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and taking into account (21), yields

1

2n+1

∣∣An+1,ρ

∣∣ ≤ C(N)

α
ρN
∫
An,ρ−An+1,ρ

|Du|dx.

Majorize the right-hand side by the Hölder inequality, then raise both terms
to the power p

p−1 , and majorize the right-hand side by (1)− in the definition

of the classes [DG]−p (E; γ). These sequential estimates yield

1

2n
p
p−1

|An+1,ρ|
p
p−1 ≤ Cρ

p
p−1

(∫
Kρ

∣∣D(u− 1
2n

)
−|
pdx

) 1
p−1 ∣∣An,ρ −An+1,ρ|

≤ C

(∫
Kρ

(
u− 1

2n

)p
−dx

) 1
p−1 ∣∣An,ρ −An+1,ρ|

≤ C

2n
p
p−1

|Ano,2ρ|
1
p−1

∣∣An,ρ −An+1,ρ|.

This in turn yields the recursive inequalities∣∣An+1,ρ

∣∣ p
p−1 ≤ C(N, p, γ, α)

∣∣Ano,2ρ∣∣ 1
p−1

∣∣An,ρ −An+1,ρ|.

Let n∗ be a positive integer to be chosen. Adding them from no to n∗−1 gives∣∣An∗,ρ∣∣ ≤ C(N, p, γ, α)

(n∗ − no)
p−1
p

∣∣Ano,2ρ∣∣ 1
p
∣∣Ano,ρ| p−1

p . (23)

Return now to the assumption (21) and estimate∣∣[u > to] ∩K2ρ(y)]
∣∣

|K2ρ|
≥
∣∣[u > to] ∩Kρ(y)]

∣∣
2N |Kρ|

≥ α

2N
.

Therefore, the same arguments leading to (23) can be repeated over the cube
K2ρ and give ∣∣An∗,2ρ∣∣ ≤ C(N, p, γ, α)

(n∗ − no)
p−1
p

∣∣Ano,4ρ∣∣ 1
p
∣∣Ano,2ρ| p−1

p . (24)

While the constant C in (24) differs from the one in (23), we may take them
to be equal by taking the largest. The assumption (21) continue to hold with
to replaced by 2−n∗ . Hence, the previous arguments can be repeated and yield
the analogues of (23)–(24), i.e.,∣∣A2n∗,ρ

∣∣ ≤ C(N, p, γ, α)

(n∗ − no)
p−1
p

∣∣An∗,2ρ∣∣ 1
p
∣∣An∗,ρ| p−1

p

∣∣A2n∗,2ρ

∣∣ ≤ C(N, p, γ, α)

(n∗ − no)
p−1
p

∣∣An∗,4ρ∣∣ 1
p
∣∣An∗,2ρ| p−1

p
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for the same constant C. Combining them gives∣∣A2n∗,ρ

∣∣ ≤ C242N

(n∗ − no)2
p−1
p

|Kρ|.

Iteration of this procedure yields∣∣Ajn∗,ρ∣∣ ≤ Cj4jN

(n∗ − no)j
p−1
p

|Kρ| for all j ∈ N.

Choose n∗ so large that n∗ − no > 1
2n∗, and then take j = n∗. By possibly

modifying the various constants, the previous inequality yields∣∣Aj2,ρ∣∣ ≤ Cj4jN

jj
p−1
p

|Kρ| for all j ∈ N.

The constant C being fixed, for each 0 < ε < p−1
p there exists j∗ so large that

∣∣Aj2,ρ∣∣ ≤ 1

jjε
|Kρ| for all j ≥ j∗.

Fix now t ≤ 2−j
∗2

and let j be the largest integer such that 2−(j+1)2 ≤ t ≤ 2−j
2

.
For such choices ∣∣[u < t] ∩Kρ

∣∣
|Kρ|

≤
∣∣Aj2,ρ∣∣
|Kρ|

≤ C

| ln t| ε2 | ln t|
1
2

.

The parabolic version of this result has been used in [6].

6. Boundary Behavior of Functions in the De Giorgi
Classes

Let h ∈ W 1,p
loc (RN ) ∩ C(RN ). The De Giorgi classes [DG]

+(−)
p (Ē; γ, h), in the

closure of E are the collection of functions u ∈ W 1,p
loc (Ē), such that (u − h) ∈

W 1,p
o (E ∩KR(y)), for all cubes KR(y) centered at some y ∈ ∂E, and satisfying∫

Kρ(y)∩E
|D(u− k)+(−)|pdx ≤

γ

(R− ρ)p

∫
KR(y)∩E

(u− k)p+(−)dx (25)

for all pairs of congruent cubes Kρ(y) ⊂ KR(y), centered at some y ∈ ∂E and
all levels

k ≥ sup
KR(y)∩∂E

h,
(
k ≤ inf

KR(y)∩∂E
h
)
. (26)
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We let further

[DG]p(Ē; γ, h) = [DG]+p (Ē; γ, h) ∩ [DG]−p (Ē; γ, h).

Functions in [DG]p(Ē; γ, h) are continuous up to points y ∈ ∂E, provided E
satisfies a positive geometric density at y, i.e., there exist ρo and η ∈ (0, 1),
such that (see [12])∣∣Ec ∩Kρ(y)

∣∣ ≥ η|Kρ(y)|, for all ρ ≤ ρo.

For 1 < p < N , the p-capacity of the compact set Ec ∩ K̄ρ(y) is defined by

cp[E
c ∩ K̄ρ(y)] = inf

ψ∈W1,p
o (RN )∩C(RN )

Ec∩K̄ρ(y)⊂[ψ≥1]

∫
RN
|Dψ|pdx. (27)

For 1 < p < N , the relative p-capacity of Ec ∩ K̄ρ(y) with respect to Kρ(y) is

δy(ρ) =
cp[E

c ∩ K̄ρ(y)]

ρN−p
, (1 < p < N). (28)

If p = N , and for 0 < ρ < 1, the N -capacity of the compact set Ec ∩ K̄ρ(y),
with respect to the cube K2ρ(y), is defined by

cN [Ec ∩ K̄ρ(y)] = inf
ψ∈W1,N

o (K2ρ(y))∩Co(K2ρ(y))

Ec∩K̄ρ(y)⊂[ψ≥1]

∫
K2ρ(y)

|Dψ|Ndx. (29)

The relative capacity δy(ρ) can be formally defined by (28), for all 1 < p ≤ N .
For p = N , we let δy(ρ) ≡ cN [Ec ∩ K̄ρ(y)], as defined by (29). For a positive
parameter ε denote by Ip,ε(y, ρ) the Wiener integral of ∂E at y ∈ ∂E, i.e.,

Ip,ε(y, ρ) =

∫ 1

ρ

[δy(t)]
1
ε
dt

t
. (30)

The celebrated Wiener criterion states that a harmonic function in E is con-
tinuous up to y ∈ ∂E if and only if the Wiener integral I2,1(y, ρ) diverges as
ρ→ 0 ([16]).

It is known that weak solutions of quasilinear equations in divergence form,
and with principal part exhibiting a p-growth with respect to |Du|, when
given continuous boundary data h on ∂E, are continuous up to y ∈ ∂E if
Ip,(p−1)(y, ρ) diverges as ρ→ 0 ([8]). Since such solutions belong to the bound-
ary [DG]p(Ē; γ, h) classes ([10]), it is natural to ask whether the divergence of
the Wiener integral Ip,(p−1)(y, ρ), is sufficient to insure the boundary continuity
for functions u ∈ [DG]p(Ē; γ, h).
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The only result we are aware of in this direction is due to Ziemer ([17]). It
states that a function u ∈ [DG]p(Ē; γ, h) is continuous up to y ∈ ∂E if∫ 1

ρ

exp
(
− 1

δy(t)
1
p−1

)dt
t
→ ∞ as ρ→ 0. (31)

Ziemer’s proof follows from a standard De Giorgi iteration technique. It has
been recently established that local minima of variational integrals when given
continuous boundary data h are continuous up to y ∈ ∂E provided ([5])
Ip,ε(y, ρ) diverges as ρ → 0. Here ε is a number that can be determined a-
priori only in terms of the growth properties of the functional. While such
minima are in the classes [DG]p(Ē; γ, h), the result is not known to hold for
functions merely in such classes. Also the optimal parameter e = (p − 1) re-
mains elusive. A similar result has been recently obtained with a different
approach in [1].

The significance of a Wiener condition for Q-minima, is that the structure
of ∂E near a boundary point y ∈ ∂E, for u to be continuous up to y, hinges
on minimizing a functional, rather than solving an elliptic p.d.e.
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Linéaire 1 (1984), no. 2, 79–107.

[11] M. Giaquinta and G. Modica, Regularity results for some classes of higher
order nonlinear elliptic systems, J. Reine Angew. Math. 311/312 (1979), 145–
169.

[12] O. A. Ladyzhenskaya and N. N. Ural′tseva, Linear and quasilinear elliptic
equations, Translated from the Russian by Scripta Technica, Inc. Translation
editor: Leon Ehrenpreis, Academic Press, New York-London, 1968.

[13] V. G. Maz′ja, The continuity at a boundary point of the solutions of quasi-linear
elliptic equations, Vestnik Leningrad. Univ. 25 (1970), no. 13, 42–55 (Russian,
with English summary), Vestnik Leningrad Univ. Math. 3 (1976), 225–242 (En-
glish translation).

[14] J. Moser, A new proof of De Giorgi’s theorem concerning the regularity problem
for elliptic differential equations, Comm. Pure Appl. Math. 13 (1960), 457–468.

[15] E. W. Stredulinsky, Higher integrability from reverse Hölder inequalities, In-
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