
Rend. Istit. Mat. Univ. Trieste
Volume 48 (2016), 189–207

DOI: 10.13137/2464-8728/13156

Quantitative uniqueness for zero-order
perturbations of generalized
Baouendi-Grushin operators

Agnid Banerjee and Nicola Garofalo

Dedicated to Giovanni Alessandrini, on his 60-th birthday,
with great affection and admiration
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1. Introduction

In this note we study quantitative uniqueness for zero-order perturbations of
variable coefficient subelliptic equations whose “constant coefficient” model is
the so called Baouendi-Grushin operator. Precisely, in RN , with N = m + k,
we analyze equations of the form

N∑
i=1

Xi(aij(z, t)Xju) = V (z, t)u, (1)

where z ∈ Rm, t ∈ Rk, and the vector fields X1, ..., XN are given by

Xi = ∂zi , i = 1, ...m, Xm+j = |z|β∂tj , j = 1, ...k, β > 0. (2)

Besides ellipticity, the N × N matrix-valued function A(z, t) = [aij(z, t)] is
requested to satisfy certain structural hypothesis that will be specified in (20),
(21) in Section 2 below. These assumptions reduce to the standard Lipschitz
continuity when the dimension k = 0, or the parameter β → 0. The as-
sumptions on the potential function V (z, t) are specified in (22) below. They
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represent the counterpart, with respect to the non-isotropic dilations associated
with the vector fields X1, ..., XN , of the requirements

|V (x)| ≤M, | < x,DV (x) > | ≤M, (3)

for the classical Schrödinger equation ∆u = V u in Rn. To put this paper in
the proper historical perspective we recall that for this operator, and under
the hypothesis (3), quantitative unique continuation results akin to our have
been recently obtained in [2], by Carleman estimates, and in [18], by means of
a variant of Almgren’s frequency function introduced in [17]. In these papers
the authors established sharp estimates on the order of vanishing of solution to
Schrödinger equations which generalized those in [6] and [7] for eigenvalues of
the Laplacian on a compact manifold. Our results should be seen as a gener-
alization of those in [2] and [18] to subelliptic equations such as (1) above. As
the reader will realize such generalization is made possible by the combination
of several quite non-trivial geometric facts that beautifully combine. Some of
these facts are based on the previous work [13]. We also mention that the
frequency approach in [17] and [18] has been recently extended in [3] to obtain
sharp quantitative estimates at the boundary of Dini domains for more general
elliptic equations with Lipschitz principal part.

When in (1) we take [aij ] = IN , the identity matrix in RN , then the oper-
ator in the left-hand side of (1) reduces to the well known Baouendi-Grushin
operator

Bβu =

N∑
i=1

X2
i u = ∆zu+ |z|2β∆tu, (4)

which is degenerate elliptic along the k-dimensional subspace M = {0} × Rk.
We observe that Bβ is not translation invariant in RN . However, it is invariant
with respect to the translations along M . When β = 1 the operator Bβ is
intimately connected to the sub-Laplacians in groups of Heisenberg type. In
such Lie groups, in fact, in the exponential coordinates with respect to a fixed
orthonormal basis of the Lie algebra the sub-Laplacian is given by

∆H = ∆z +
|z|2

4
∆t +

k∑
`=1

∂t`
∑
i<j

b`ij(zi∂zj − zj∂zi), (5)

where b`ij indicate the group constants. If u is a solution of ∆H that further

annihilates the symplectic vector field
∑k
`=1 ∂t`

∑
i<j b

`
ij(zi∂zj−zj∂zi), then we

see that, in particular, u solves (up to a normalization factor of 4) the operator
Bβ obtained by letting β = 1 in (4) above.

We recall that a more general class of operators modeled on Bβ was first
introduced by Baouendi, who studied the Dirichlet problem in weighted Sobolev
spaces in [4]. Subsequently, Grushin in [14, 15] studied the hypoelliptcity of the
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operator Bβ when β ∈ N, and showed that this property is drastically affected
by addition of lower order terms.

In the paper [10] the second named author introduced a frequency function
associated with Bβ , and proved that such frequency is monotone nondecreasing
on solutions of Bβu = 0. Such result, which generalized Almgren’s in [1],
was used to establish the strong unique continuation property for Bβ . The
results in [10] were extended to more general equations of the form (1) by the
second named author and Vassilev in [13], following the circle of ideas in the
works [11, 12]. We mention that a version of the Almgren type monotonicity
formula for Bβ played an extensive role also in the recent work [5] on the
obstacle problem for the fractional Laplacian. Remarkably, the operator Bβ
also played an important role in the recent work [16] on the higher regularity
of the free boundary in the classical Signorini problem.

We can now state our main result.

Theorem 1.1. Let u be a solution to (1) in B10 such that (aij) satisfy (20),
(21) and V satisfy (22) below. We furthermore assume that XiXju ∈ L2

loc(B10)
and |u| ≤ C0. Then, there exist universal R1 > 0, a ∈ (0, 1/3), depending only
on R,Λ in (20), (21), and constants C1, C2 depending on m, k, β, λ,Λ, C0 and∫
BR1

3

u2ψ, such that for all 0 < r < aR1 one has

||u||L∞(Br) ≥ C1

(
r

R1

)C2

√
K

. (6)

It is worth emphasizing that, when k = 0, we have N = m and then (14)
below gives ψ ≡ 1. In such a case the constant K in (22) below can be taken
to be ||V ||W 1,∞ + 1. We thus see that Theorem 1.1, when A ≡ IN , reduces
to the cited Euclidean result in [2] and [18]. Therefore, Theorem 1.1 can be
thought of as a subelliptic generalization of this sharp quantitative uniqueness
result for the standard Laplacian. We also would like to mention that, to the
best of our knowledge, Theorem 1.1 is new even for Bβu = V u where Bβ is as
in (4).

The present paper is organized as follows. In Section 2 we introduce the
basic notations and gather some crucial preliminary results from [10] and [13].
In Section 3 we establish a monotonicity theorem for a generalized frequency.
Such result plays a central role in this paper. In Section 4, we finally prove our
main result, Theorem 1.1 above.

2. Notations and preliminary results

Henceforth in this paper we follow the notations adopted in [10] and [13], with
one notable proviso: the parameter β > 0 in (2), (4), etc. in this paper plays
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the role of α > 0 in [10] and [13]. The reason for this is that we have reserved
the greek letter α for the powers of the weight (r2 − ρ)α in definitions (30),
(31) and (32) below. Let {Xi} for i = 1, ...N be defined as in (2). We denote
an arbitrary point in RN as (z, t) ∈ Rm × Rk. Given a function f , we denote

Xf = (X1f, .....XNf), |Xf |2 =

N∑
i=1

(Xif)2, (7)

respectively the intrinsic gradient and the square of its length. We recall
from [10] that the following family of anisotropic dilations are associated with
the vector fields in (2)

δa(z, t) = (az, aβ+1t), a > 0. (8)

Let
Q = m+ (β + 1)k. (9)

Since denoting by dzdt Lebesgue measure in RN we have d(δa(z, t)) = aQdzdt,
the number Q plays the role of a dimension in the analysis of the operator Bβ .
For instance, one has the following remarkable fact (see [10]) that the funda-
mental solution Γ of Bβ with pole at the origin is given by the formula

Γ(z, t) =
C

ρ(z, t)Q−2
, (z, t) 6= (0, 0),

where ρ is the pseudo-gauge

ρ(z, t) = (|z|2(β+1) + (β + 1)2|t|2)
1

2(β+1) . (10)

We respectively denote by

Br = {(z, t) ∈ RN | ρ(z, t) < r}, Sr = {(z, t) ∈ RN | ρ(z, t) = r},

the gauge pseudo-ball and sphere centered at 0 with radius r. The infinitesimal
generator of the family of dilations (8) is given by the vector field

Z =

m∑
i=1

zi∂zi + (β + 1)

k∑
j=1

tj∂yj . (11)

We note the important facts that

divZ = Q, [Xi, Z] = Xi, i = 1, ..., N. (12)

A function v is δa-homogeneous of degree κ if and only if Zv = κv. Since ρ
in (10) is homogeneous of degree one, we have

Zρ = ρ. (13)
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We also need the angle function ψ introduced in [10]

ψ = |Xρ|2 =
|z|2β

ρ2β
. (14)

The function ψ vanishes on the characteristic manifold M = Rn × {0} and
clearly satisfies 0 ≤ ψ ≤ 1. Since ψ is homogeneous of degree zero with respect
to (8), one has

Zψ = 0. (15)

A first basic assumption on the matrix-valued function A = [aij ] is that it
be symmetric and uniformly elliptic. I.e., aij = aji, i, j = 1, ..., N , and there
exists λ > 0 such that for every (z, t) ∈ RN and η ∈ RN one has

λ|η|2 ≤< A(z, t)η, η >≤ λ−1|η|2. (16)

On the potential V we preliminarily assume that V ∈ L∞loc(RN ). With these
hypothesis in place we can introduce the notion of weak solution of (1).

Definition 2.1. A weak solution to (1) in an open set Ω ⊂ RN is a function
u ∈ L2

loc(Ω) such that the distributional horizontal gradient Xu ∈ L2
loc(Ω), and

for which the following equality holds for all ϕ ∈ C∞0 (Ω)∫
Ω

< AXu,Xϕ >=

∫
Ω

V uϕ. (17)

We note that when A ≡ IN , and for a class of vector fields which are
modeled on (2) above, in the pioneering paper [9] it was proved that a weak
solution u to (1) is locally Hölder continuous in Ω with respect to the control
metric associated with the vector fields (2). In particular, it is continuous with
respect to the Euclidean topology of RN . For the general situation of (17) the
local Hölder continuity of weak solutions can be proved essentially following [9],
but see also [8] where such result is discussed for more general equations in the
case in which V = 0 in (17) above. In this paper, however, all we need is the
local boundedness of weak solutions of (17), and we do assume it a priori in
Theorem 1.1 above, so we do not need to derive it.

Throughout the paper we assume that

A(0, 0) = IN , (18)

where IN indicates the identity matrix in RN . In order to state our main
assumptions (H) on the matrix A it will be useful to represent the latter in the
following block form

A =

(
A11 A12

A21 A22

)
,
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Here, the entries are respectively m ×m, m × k, k ×m and k × k matrices,
and we assume that At12 = A21. We shall denote by B the matrix

B = A− IN ,

and thus
B(0, 0) = ON , (19)

thanks to (18). The proof of Theorem 1.1 relies crucially on the following
assumptions on the matrix A. These will be our main hypothesis and, without
further mention, will be assumed to hold throughout the paper.

HYPOTHESIS. There exists a positive constant Λ such that, for some R > 0,
one has in BR the following estimates

|bij | = |aij − δij | ≤


Λρ, for 1 ≤ i, j ≤ m,

Λψ
1
2 + 1

2β ρ = Λ |z|
β+1

ρβ
, otherwise,

(20)

|Xkbij | = |Xkaij | ≤


Λ, for 1 ≤ k ≤ m, and 1 ≤ i, j ≤ m,

Λψ
1
2 = Λ |z|

β

ρβ
, otherwise.

(21)

Remark 2.2. We note that in the situation when k = 0 the above hypothesis
coincide with the usual Lipschitz continuity at the origin of the coefficients aij .

Now we assume that V in (1) satisfy the following hypothesis for some
K ≥ 0

|V | ≤ Kψ, |ZV | ≤ Kψ, (22)

where ψ indicates the function introduced in (14) above. Without loss of gen-
erality we assume henceforth that K ≥ 1.

We next collect several preliminary results established in [13] that will be
important in the proof of Theorem 1.1. We consider the quantity

µ =< AXρ,Xρ > . (23)

We note that, by the uniform ellipticity (16) of A, the function µ is comparable
to ψ defined in (14), in the sense that

λψ ≤ µ ≤ λ−1ψ. (24)

By (24) it is clear that, similarly to ψ, the function µ vanishes on the char-
acteristic manifold M = {(0, t) ∈ RN | t ∈ Rk}. The following vector field F
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introduced in [13] will play an important role in this paper:

F =
ρ

µ

N∑
i,j=1

aijXiρXj . (25)

It is clear that F is singular on M . However, using (29) below and the assump-
tions (20), (21) on the matrix A, it was shown in [13] that F can be extended
to all of RN to a continuous vector field that, near the characteristic manifold
M , gives a small perturbation of the Euler vector field Z in (11) above, but see
also the Remark 2.3 below. We note from (25) that

Fρ = ρ. (26)

More in general, the action of F on a function u is given by

Fu =
ρ

µ
< AXρ,Xu > . (27)

We also let
σ =< BXρ,Xρ >= µ− ψ. (28)

As in (2.13) in [13], F can be represented in the following way

F = Z − σ

µ
Z +

ρ

µ

N∑
i,j=1

bijXiρXj . (29)

Remark 2.3. We emphasize that when A(z, t) ≡ IN , then B(z, t) ≡ 0N . In
such case we immediately see from (29) that F ≡ Z.

Henceforth, for any two vector fields U and W , [U,W ] = UW−WU denotes
their commutator. In the next theorem we collect several important estimates
that have been established in [10] and [13].

Theorem 2.4. There exists a constant C(β, λ,Λ, N) > 0 such that for any
function u one has:

(i) |Q− divF | ≤ Cρ;

(ii) |Fµ| ≤ Cρψ;

(iii) div(σZµ ) ≤ Cρ;

(iv) |Xiρ| ≤ ψ1+ 1
2β , i = 1, ...,m, |Xm+jρ| ≤ (β + 1)ρ1/2, j = 1, ..., k;

(v) |F − Z| ≤ Cρ2;

(vi) | < FAXu,Xu > | ≤ Cρ|Xu|2;



196 A. BANERJEE AND N. GAROFALO

(vii) |[Xi, F ]u−Xiu| ≤ Cρ|Xu|, i = 1, ..., N ;

(viii) |σ| ≤ Cρψ3/2+ 1
2β |Xσ| ≤ Cψ3/2;

(ix) | bijXjρXiµ | ≤ C|z|;

(x) |Xiψ| ≤ Cβψ
|z| , i = 1, ...,m, |Xn+jψ| ≤ Cβψ

ρ , j = 1, ..., k;

(xi) |σµ | ≤ Cρψ, |Zσ| ≤ Cρψ, |Xkσ| ≤ Cψ3/2;

(xii) |[Xi,−σZµ ]u| ≤ Cρ|Xu|, (Lemma 2.7 in [13]);

(xiii) |[X`,
ρ
µ

∑N
i,j=1

bijXjρ
X i

]u| ≤ Cρ|Xu|, ` = 1, ..., N .

The properties expressed in (i) and (vii) should be compared with (12)
above.

3. Monotonicity of a generalized frequency

Henceforth, we denote by u a weak solution to (1) inB10. For the sake of brevity
in all the integrals involved we will routinely omit the variable of integration
(z, t) ∈ RN , as well as Lebesgue measure dzdt. When we say that a constant
is universal, we mean that it depends exclusively on m, k, β, on the ellipticity
bound λ on A(z, t), see (16) above, and on the Lipschitz bound Λ in (20),
(21). Likewise, we will say that O(1), O(r), etc. are universal if |O(1)| ≤ C,
|O(r)| ≤ Cr, etc., with C ≥ 0 universal.

For 0 < r < R, where R is as in the hypotheses (20), (21) above, we define
the generalized height function of u in Br as follows

H(r) =

∫
Br

u2(r2 − ρ2)αµ, (30)

where ρ is the pseudo-gauge in (10) above, the function µ is defined in (23),
and α > −1 is going to be fixed later (precisely, in passing from (55) to (56)
below). We also introduce the generalized energy of u in Br

I(r) =

∫
Br

< AXu,Xu > (r2 − ρ2)α+1 +

∫
Br

V u2(r2 − ρ2)α+1, (31)

where, besides (16), theN×N matrix-valued functionA(z, t) fulfills the require-
ments (20), (21) above, whereas the potential V (z, t) satisfies the hypothesis
(22) above. We define the generalized frequency of u as follows

N(r) =
I(r)

H(r)
. (32)
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The central result of this section is the following monotonicity result for the
frequency N(r).

Theorem 3.1. There exists R1 > 0, depending only on R and Λ in (20), (21),
such that the function

r → eC1r(N(r) + C2Kr
2),

is monotone non-decreasing on the interval (0, R1). Here, C1 and C2 are two
universal nonnegative numbers.

The proof of Theorem 3.1 will be divided into several steps. We begin by
noting that although the gauge ρ in (10) above is not smooth at the origin,
nevertheless all subsequent calculations can be justified by integrating over the
set Br − Bε, and then let ε → 0. Moreover, by standard approximation type
arguments as in [13] which crucially use the estimates in Theorem 2.4, we can
assume that all the computations hereafter are classical. The initial step in the
proof of Theorem 3.1 is the following result that provides a crucial alternative
representation of the generalized energy (31).

Lemma 3.2. For every 0 < r < R one has

I(r) = 2(α+ 1)

∫
Br

uFu(r2 − ρ2)αµ. (33)

Proof. Using the definition of F , the divergence theorem and (1), we find

2(α+ 1)

∫
Br

uFu(r2 − ρ2)αµ = −
∫
Br

u < AXu,X(r2 − ρ2)α+1 >

=

∫
Br

< AXu,Xu > (r2 − ρ2)α+1 +

∫
Br

V u2(r2 − ρ2)α+1,

which proves (33) above.

Lemma 3.3 (First variation formula for H(r)). There exists a universal O(1)
such that for every r ∈ (0, R) one has

H ′(r) =
2α+Q

r
H(r) +O(1)H(r) +

1

(α+ 1)r
I(r). (34)

Proof. Differentiating (30), and using the fact that (r2 − ρ2)α vanishes on Sr,
we find that

H ′(r) = 2αr

∫
Br

u2(r2 − ρ2)α−1µ.
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Using the identity

(r2 − ρ2)α−1 =
1

r2
(r2 − ρ2)α +

ρ2

r2
(r2 − ρ2)α−1,

the latter equation can be rewritten as

H ′(r) =
2α

r
H(r) +

2α

r

∫
Br

u2(r2 − ρ2)α−1ρ2µ.

Recalling (26), we have

H ′(r) =
2α

r
H(r)− 1

r

∫
Br

u2F (r2 − ρ2)αµ.

Integrating by parts, we obtain

H ′(r) =
2α

r
H(r) +

1

r

∫
Br

div(µu2F )(r2 − ρ2)α

=
2α

r
H(r) +

2

r

∫
Br

uFu(r2 − ρ2)αµ

+
1

r

∫
Br

u2 div(F )(r2 − ρ2)αµ+
1

r

∫
Br

u2(r2 − ρ2)αFµ.

Using (i) in Theorem 2.4 to estimate the third term in the right-hand side,
and (ii) to estimate the forth one, we obtain

H ′(r) =
2α+Q

r
H(r) +O(1)H(r) +

2

r

∫
Br

uFu(r2 − ρ2)αµ. (35)

Using (33) in (35) we conclude that (34) holds.

Our next result is a basic first variation formula of the generalized energy
I(r). Its proof will be quite laborious, and it displays many of the beautiful
geometric properties of the Baouendi-Grushin vector fields (2).

Lemma 3.4 (First variation formula for I(r)). There exists a universal O(1)
and R1 depending on R,Λ as in (20), (21) such that for every r ∈ (0, R1) one
has

I ′(r) =
2α+Q

r
I(r)

+
4(α+ 1)

r

∫
Br

(Fu)2(r2 − ρ2)αµ+O(1)I(r) +O(1)KrH(r), (36)

where K ≥ 1 is the constant in (22).
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Proof. Differentiating the expression (31) of I(r) we obtain,

I ′(r) = 2(α+ 1)r

∫
Br

< AXu,Xu > (r2 − ρ2)α

+ 2(α+ 1)r

∫
Br

V u2(r2 − ρ2)α.

Using the identity

(r2 − ρ2)α =
1

r2
(r2 − ρ2)α+1 +

ρ2

r2
(r2 − ρ2)α,

we find

I ′(r) =
2(α+ 1)

r

∫
Br

< AXu,Xu > (r2 − ρ2)α+1

+
2(α+ 1)

r

∫
Br

< AXu,Xu > (r2 − ρ2)αρ2

+ 2(α+ 1)r

∫
Br

V u2(r2 − ρ2)α. (37)

The second term in the right-hand side of (37) is dealt with as follows

2(α+ 1)

r

∫
Br

< AXu,Xu > (r2 − ρ2)αρ2

= −1

r

∫
Br

< AXu,Xu > F (r2 − ρ2)α+1. (38)

To compute the integral in the right-hand side of (38) we now use the
following Rellich type identity in Lemma 2.11 in [13]:∫

∂Br

< AXu,Xu >< G, ν >= 2

∫
∂Br

aijXiu < Xj , ν > Gu

− 2

∫
Br

aij(divXi)XjuGu− 2

∫
Br

aijXiu[Xj , G]u+

∫
Br

divG < AXu,Xu >

+

∫
Br

< (GA)Xu,Xu > −2

∫
Br

GuXi(aijXju), (39)

where G is a vector field, GA is the matrix with coefficients Gaij , ν denotes the
outer unit normal to Br, and the summation convention over repeated indices
has been adopted. Since for the vector fields X1, ..., XN in (2) above we have
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divXi = 0, if in (39) we take a vector field such that G ≡ 0 on ∂Br, we obtain∫
Br

divG < AXu,Xu >= 2

∫
Br

aijXiu[Xj , G]u

−
∫
Br

< (GA)Xu,Xu > +2

∫
Br

GuXi(aijXju). (40)

In the identity (40) we now take G = (r2− ρ2)α+1F . We remark that, while in
our situation the vector fields Xi and G are not smooth, one can nonetheless
rigorously justify the implementation of (40) as in [13] by standard approxima-
tion arguments based on the key estimates in Theorem 2.4 above. Now we look
at each individual term in (40). We first note that from (1) the last integral in
the right-hand side of (40) equals −2

∫
Br
FuV u(r2− ρ2)α+1. For the left-hand

side of (40) we have instead∫
Br

divG < AXu,Xu >=

∫
Br

divF < AXu,Xu > (r2 − ρ2)α+1

+

∫
Br

< AXu,Xu > F (r2 − ρ2)α+1. (41)

Combining (40) and (41), we reach the conclusion

−
∫
Br

< AXu,Xu > F (r2 − ρ2)α+1 =

∫
Br

divF < AXu,Xu > (r2 − ρ2)α+1

+

∫
Br

< (FA)Xu,Xu > (r2 − ρ2)α+1 − 2

∫
Br

aijXiu[Xj , G]u

− 2

∫
Br

FuV u(r2 − ρ2)α+1. (42)

Using (i) in Theorem 2.4 we find∫
Br

divF < AXu,Xu > (r2 − ρ2)α+1 = Q

∫
Br

< AXu,Xu > (r2 − ρ2)α+1

+O(r)

∫
Br

< AXu,Xu > (r2 − ρ2)α+1. (43)

Using (vi) in Theorem 2.4 we have∫
Br

< (FA)Xu,Xu > (r2 − ρ2)α+1

= O(r)

∫
Br

< AXu,Xu > (r2 − ρ2)α+1. (44)



QUANTITATIVE UNIQUENESS 201

We next keep in mind that

[Xj , G] = −2(α+ 1)ρ(r2 − ρ2)αXjρF + (r2 − ρ2)α+1[Xj , F ].

This gives

aijXiu[Xj , G]u = −2(α+ 1)(r2 − ρ2)αρ < AXρ,Xu > Fu

+ (r2 − ρ2)α+1aijXiu[Xi, F ]u

= −2(α+ 1)(r2 − ρ2)α(Fu)2µ

+ (r2 − ρ2)α+1aijXiu ([Xj , F ]u−Xju)

+ (r2 − ρ2)α+1 < AXu,Xu >,

where we have used the fact that

ρ < AXρ,Xu >= µFu,

which follows from (27) above. We thus conclude that

− 2

∫
Br

aijXiu[Xj , G]u = −2

∫
Br

< AXu,Xu > (r2 − ρ2)α+1 (45)

+O(r)

∫
Br

< AXu,Xu > (r2 − ρ2)α+1 + 4(α+ 1)

∫
Br

(Fu)2(r2 − ρ2)αµ,

where we have used the crucial estimate (vii) in Theorem 2.4 to control the
integral ∫

Br

aijXiu ([Xj , F ]u−Xju) (r2 − ρ2)α+1.

Using (43), (44) and (45) in (42), we conclude

−
∫
Br

< AXu,Xu > F (r2−ρ2)α+1 = (Q−2)

∫
Br

< AXu,Xu > (r2−ρ2)α+1

+O(r)

∫
Br

< AXu,Xu > (r2 − ρ2)α+1 + 4(α+ 1)

∫
Br

(Fu)2(r2 − ρ2)αµ

− 2

∫
Br

FuV u(r2 − ρ2)α+1. (46)

With (46) in hands we now return to (38) to find

2(α+ 1)

r

∫
Br

< AXu,Xu > (r2 − ρ2)αρ2

=
Q− 2

r

∫
Br

<AXu,Xu> (r2 − ρ2)α+1 +O(1)

∫
Br

<AXu,Xu> (r2 − ρ2)α+1

+
4(α+ 1)

r

∫
Br

(Fu)2(r2 − ρ2)αµ− 2

r

∫
Br

FuV u(r2 − ρ2)α+1. (47)
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The equation (47) is the central one in the proof of the first variation of the
energy. Such equation allows us to unravel the second term in the right-hand
side of (38) above, to which we now return to find

I ′(r) =
2α+Q

r

∫
Br

< AXu,Xu > (r2 − ρ2)α+1

+
4(α+ 1)

r

∫
Br

(Fu)2(r2 − ρ2)αµ+O(1)

∫
Br

< AXu,Xu > (r2 − ρ2)α+1

− 2

r

∫
Br

FuV u(r2 − ρ2)α+1 + 2(α+ 1)r

∫
Br

V u2(r2 − ρ2)α.

Recalling the definition (31) of I(r) we see that we can rewrite the latter equa-
tion as follows

I ′(r) =
2α+Q

r
I(r)− 2α+Q

r

∫
Br

V u2(r2 − ρ2)α+1

+
4(α+ 1)

r

∫
Br

(Fu)2(r2 − ρ2)αµ+O(1)I(r)−O(1)

∫
Br

V u2(r2 − ρ2)α+1

− 2

r

∫
Br

FuV u(r2 − ρ2)α+1 + 2(α+ 1)r

∫
Br

V u2(r2 − ρ2)α. (48)

An integration by parts now gives

− 2

r

∫
Br

FuV u(r2 − ρ2)α+1 = −1

r

∫
Br

F (u2/2)V (r2 − ρ2)α+1

=
1

2r

∫
Br

u2 div((r2 − ρ2)α+1V F ) =
1

2r

∫
Br

V u2(r2 − ρ2)α+1 divF

+
1

2r

∫
Br

u2FV (r2 − ρ2)α+1 − α+ 1

r

∫
Br

V u2ρFρ(r2 − ρ2)α.

Since one has trivially (r2 − ρ2)α+1 ≤ r2(r2 − ρ2)α, from the assumptions (22)
above, from (16) and from (i) in Theorem 2.4, we find∣∣∣∣ 1

2r

∫
Br

V u2(r2 − ρ2)α+1 divF

∣∣∣∣ ≤ CKr ∫
Br

u2(r2 − ρ2)αµ = CKrH(r),

where C = C(β,m, k, λ) > 0 is universal. Similarly, one has∣∣∣∣ 1

2r

∫
Br

u2FV (r2 − ρ2)α+1

∣∣∣∣ ≤ CKrH(r).

Finally, since by (26) we have Fρ = ρ, we obtain∣∣∣∣−α+ 1

r

∫
Br

V u2ρFρ(r2 − ρ2)α
∣∣∣∣ ≤ CKrH(r).
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In conclusion, we have for a universal O(1)

−2

r

∫
Br

FuV u(r2 − ρ2)α+1 = O(1)KrH(r).

The other terms containing V in the right-hand side of (48) are estimated
similarly. We thus conclude

I ′(r) =
2α+Q

r
I(r)+

4(α+ 1)

r

∫
Br

(Fu)2(r2−ρ2)αµ+O(1)I(r)+O(1)KrH(r),

which is (36).

We are now in a position to provide the

Proof of Theorem 3.1. Using (32), and the equations (34) in Lemma 3.3 and
(36) in Lemma 3.4, we find for some universal C1, C3 ≥ 0,

N ′(r) =
I ′(r)

H(r)
− H ′(r)

H(r)
N(r) = O(1)N(r) +O(1)Kr

+

(
4(α+ 1)

∫
Br

(Fu)2(r2 − ρ2)αµ− 1

(α+ 1)

I(r)2

H(r)

)
1

rH(r)

≥ −C1N(r)− C3Kr, (49)

where in the last inequality, we have used the fact that, in view of (33) in
Lemma 3.2, the Cauchy-Schwarz inequality and the definition of H(r), we
have

I(r)2 = 4(α+ 1)2

(∫
Br

uFu(r2 − ρ2)αµ

)2

≤ 4(α+ 1)2H(r)

∫
Br

(Fu)2(r2 − ρ2)αµ.

The inequality (49) implies that, with C2 = C3/2, the function

r → eC1r(N(r) + C2Kr
2)

is nondecreasing.

4. Proof of Theorem 1.1

This final section is devoted to proving the main result in this paper, Theorem
1.1. We start from Theorem 3.1 which implies

eC1r(N(r) + C2Kr
2) ≤ eC1s(N(s) + C2Ks

2), for 0 < r < s < R1.
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Henceforth, without loss of generality we assume that R1 ≤ 1. The latter
monotonicity property implies, in particular, the existence of universal con-
stants C2 > 0 and C ≥ 1 such that

N(r) ≤ C(N(s) + C2K), for 0 < r < s < R1. (50)

Returning to (34) in Lemma 3.3, we rewrite it in the following form

d

dr
log

(
H(r)

r2α+Q

)
= O(1) +

1

(α+ 1)r
N(r), 0 < r < R1, (51)

where |O(1)| ≤ C, with C universal.
Suppose now that 0 < r1 < r2 < 2r2 < r3 < R1. Integrating (51) between

r1 and 2r2, and using (50), we find

log H(2r2)
H(r1) − C

log
(

2r2
r1

) − (2α+Q) ≤ C

α+ 1
(N(2r2) + C2K) . (52)

Next, we integrate (51) between 2r2 and r3, and again using (50) we find

C

α+ 1

(
N(2r2)− CC2K

)
≤ C2

 log H(r3)
H(2r2) + C

log
(
r3
2r2

) − (2α+Q)

 . (53)

Combining (52) and (53) we conclude

log H(2r2)
H(r1) − C

C
2

log
(

2r2
r1

) ≤ log H(r3)
H(2r2) + C

log
(
r3
2r2

) + C ′
K

α+ 1
−
(

1− 1

C
2

)
(2α+Q),

where we have let C ′ = (C + 1)/C. Since C ≥ 1, if we now set

α0 = log

(
r3

2r2

)
, β0 = C

2
log

(
2r2

r1

)
,

then we obtain

α0 log
H(2r2)

H(r1)
≤ β0 log

H(r3)

H(2r2)
+ C(α0 + β0) + C ′

K

α+ 1
α0β0. (54)

Dividing both sides of the latter inequality by the quantity α0 + β0, we find

log

(
H(2r2)

H(r1)

) α0
α0+β0

≤ log

(
H(r3)

H(2r2)

) β0
α0+β0

+ C + C ′
K

α+ 1

αβ0

α0 + β0
.
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This gives

logH(2r2) ≤ log
[
H(r3)

β0
α0+β0 H(r1)

α0
α0+β0

]
+ C + C ′

K

α+ 1
α0, (55)

where we have used the trivial estimate β0

α0+β0
≤ 1. Exponentiating both sides

of (55) and choosing α =
√
K, we conclude

H(2r2) ≤ eC
(
r3

2r2

)C′√K

H(r3)
β0

α0+β0H(r1)
α0

α0+β0 . (56)

We now consider the quantity

h(r) =

∫
Br

u2µ. (57)

The following estimates are easily verified from (30) and (57)

H(r) ≤ r2αh(r), and h(r) ≤ H(s)

(s2 − r2)α
, 0 < r < s < R1.

From these estimates and (56) we obtain

h(r2) ≤ eC(
r3

2r2
)C

′′√K h(r3)
β0

α0+β0 h(r1)
α0

α0+β0 , (58)

for r1 < r2 < 2r2 < r3 < R1. At this point, we take r2 = R1

3 , r3 = R1. If

C0 = ||u||2L∞(BR1
)

∫
BR1

µ > 0,

then we clearly have h(R1) ≤ C0, and we conclude from (58) that

h(R1/3)1+
β0
α0 ≤ eC(1+

β0
α0

)

(
3

2

)C′′(1+
β0
α0

)
√
K

C
β0
α0
0 h(r), 0 < r < R1/3. (59)

If we set A = eC and γ = C
2

log(3/2) , then q = β0/α0 = − log(r/R1)γ − C2
, and

recalling that C ≥ 1 we obtain from (59) for 0 < r < R1/3

h(r) ≥ C0

(
h(R1/3)

AC0

)1+q (
3

2

)−C′′(1+q)
√
K

≥ C0M
1+q
0

(
r

R1

)B√K
,

where we have let M0 = h(R1/3)
AC0

, and B = γC ′′ log(3/2). If M0 ≥ 1 this
estimate implies in a trivial way for 0 < r < R1/3

h(r) ≥ C0

(
r

R1

)B√K
.
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If instead 0 < M0 ≤ 1, keeping in mind that C ≥ 1, with B′ = max{B,
γ log(1/M0)} we obtain for 0 < r < R1/3

h(r) ≥ C0

(
r

R1

)B√K+γ log(1/M0)

≥ C0

(
r

R1

)B′(1+
√
K)

≥ C0

(
r

R1

)2B′√K

,

where the last inequality follows by remembering that K ≥ 1. In either
case, the desired conclusion of Theorem 1.1 follows by noticing that h(r) ≤
||u||2L∞(Br)

∫
Br
µ, and that

∫
Br
µ ≤ λ−1

∫
Br
ψ = λ−1ωrQ, where we have let

ω =
∫
B1
ψ. In fact, we would find

||u||L∞(Br) ≥ C3

(
r

R1

)C4

√
K

,

with C3 = C0

√
λ

ωRQ1
and C4 = 2B′. This finishes the proof of Theorem 1.1.
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