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Abstract. We deal with a dynamical system

utt −∆u+ qu = 0 in Ω× (0, T )

u
∣∣
t=0

= ut
∣∣
t=0

= 0 in Ω

∂νu = f in ∂Ω× [0, T ] ,

where Ω ⊂ Rn is a bounded domain, q ∈ L∞(Ω) is a real-valued
function, ν is the outward normal to ∂Ω, u = uf (x, t) is a solu-
tion. The input/output correspondence is realized by a response op-
erator RT : f 7→ uf

∣∣
∂Ω×[0,T ]

and its relevant extension by hyperbolicity

R2T . The operator R2T is determined by q
∣∣
ΩT

, where ΩT := {x ∈
Ω | dist (x, ∂Ω) < T}. The inverse problem is: Given R2T to recover
q in ΩT . We solve this problem by the boundary control method and
describe the necessary and sufficient conditions on R2T , which provide
its solvability.

Keywords: determination of potential via time-domain boundary measurements, char-
acterization of inverse data.
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1. Introduction

Motivation

The problem, which the paper is devoted to, was solved about 20 years ago by
the BC-method, which is an approach to inverse problems (IPs) based on their
relations to control and system theory [1, 3, 5]. However, in the IP-community,
there are a few versions of what ’to solve an inverse problem’ means. The
versions may be ordered by levels as follows:

1. to establish the injectivity of the correspondence ‘parameters under re-
construction→ inverse data’, what allows one to claim that the data determine
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the parameters
2. to prove the relevant continuity of this correspondence, and thus to show

that the determination is stable
3. to elaborate an efficient (preferably, realizable numerically) procedure,

which determines the parameters from the data 1

4. to provide a data characterization, i.e., describe the necessary and suf-
ficient conditions on the data, which ensure solvability of the given inverse
problem.
Typically, {i + 1}-th level is stronger and richer in content than i-th one.
Respectively, to reach the next level (especially, in multidimensional IPs) is
more difficult. The BC-method firmly keeps level 3 (see [3, 6]). In the mean
time, it provides data characterization in important one-dimensional problems:
see [7, 8].

Regarding level 4 in multidimensional IPs, there is substantial gap between
the frequency-domain and time-domain problems. In the first ones, the results
on the data characterization are much more promoted and successful (see [14,
17, 20, 21] and other). In time-domain problems, such results also do exist
(see, e.g., [22]) but are not so deep and systematic. Our paper is an attempt
to reduce the above-mentioned gap by the use of the BC-method.

Contents and results

• We develop a general approach proposed in [2] and apply it to a concrete
time-domain inverse problem for the wave equation with a potential. The ap-
proach elaborates the well-known and deep relations between inverse problems
and triangular factorization of operators in the Hilbert space [1, 2, 9, 14].

• In sections 2 and 3, a forward problem is considered. With the problem
one associates a relevant dynamical system. The system is endowed with stan-
dard control theory attributes: spaces and operators. In particular, a so-called
extended response operator R2T is introduced. It realizes the input/state corre-
spondence and later on plays a role of the data in the inverse problem. The key
property of the system is a local boundary controllability, which is relayed upon
the fundamental Holmgren-John-Tataru uniqueness theorem [23]. It plays a
crucial role in all versions of the BC-method.

Geometrical Optics (GO) describes propagation of wave field jumps in the
system. A noticeable fact is that the GO-formulas are well interpreted in
operator theory terms: they provide existence of a diagonal of the control
operator and time derivative composition.

• In section 4, we present a BC-procedure, which recovers the potential from
the given R2T . Then we prove Theorem 4.2, which is the main result. It

1surely, we mean the mathematically rigorous approaches
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provides a list of necessary and sufficient conditions on an operator R2T to be
an extended response operator.

The necessity is simple: the proof just summarizes the properties of R2T

stated in the forward problem. The sufficiency is richer in content. The proof
is constructive: we start with an operator R2T obeying all the conditions, and
construct a system with the response operator R2T = R2T . In construction we
follow the BC-procedure, which solves the IP.

In conclusion (section 5), a self-critical discussion of the obtained results is
provided.

2. Geometry

All functions, function classes and spaces are real.

Domain and subdomains

Let Ω ⊂ Rn be a bounded domain with the boundary Γ ∈ C∞. By d(a, b) we
denote an intrinsic distance in Ω, which is defined via the length of smooth
curves lying in Ω and connecting a with b.

For a subset A ⊂ Ω, we denote its metric neighborhoods by

ΩrA := {x ∈ Ω | d(x,A) < r}, r > 0.

For A = Γ, we set Ωr := ΩrΓ. Later on, in dynamics, the value

T∗ := max
Ω

τ(·) = inf{r > 0 | Ωr = Ω}

is interpreted as a time needed for the waves moving from Γ with the unit speed
to fill Ω.

A function τ(·) := d(·,Γ) on Ω is called an eikonal. By the definitions, we
have Ωr = {x ∈ Ω | τ(x) < r}. In dynamics, the eikonal level sets

Γs := {x ∈ Ω | τ(x) = s}, s ≥ 0

play the role of the forward fronts of waves moving from Γ.

Semi-geodesic coordinates

• Here we introduce a separation set (cut locus) of Ω with respect to Γ (see,
e.g, [16]) and use one of its equivalent definitions.

A point in Ω is said to be multiple if it is connected with Γ through more
than one shortest geodesics (straight lines in Rn). Denote by c0 the set of
multiple points and define

c := c0.
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The set c is called a cut locus. It is ’small’:

vol c = 0 , (1)

and separated from the boundary:

0 < Tc := d(c,Γ) ≤ T∗ .

In addition, note that Γs\c is a smooth (may be, disconnected) hyper-
surface in Ω. If s < Tc then Γs is smooth and diffeomorphic to Γ.

• For any x ∈ Ω \c, there is a unique point γ(x) ∈ Γ nearest to x. For such
an x, a pair (γ(x), τ(x)) determines its position in Ω and is said to be the
semi-geodesic coordinates (sgc). By x(γ, τ) we denote a point in Ω \c with the
given sgc (γ, τ).

In sgc, Rn-volume element in Ω takes the well-known form

dx = β(γ, τ) dΓdτ , (2)

where dΓ is Euclidean surface element on the boundary. Factor β is a Jacobian
of the passage from Cartesian coordinates to sgc.

• Denote ΣT := Γ× [0, T ). A set

Θ := {(γ(x), τ(x)) | x ∈ [Ω ∪ Γ] \c} ⊂ ΣT∗

is called a pattern of Ω. Also, we use its parts

ΘT :=
{

(γ(x), τ(x)) | x ∈
[
ΩT ∪ Γ

]
\c
}

= Θ ∩ ΣT , T > 0 .

For T < Tc, one has ΘT = ΣT .

Images

Fix a positive T ≤ T∗; let y be a function on ΩT ∪ Γ. A function on ΣT of the
form

ỹT (γ, τ) :=

{
β

1
2 (γ, τ)y (x(γ, τ)) , (γ, τ) ∈ ΘT

0, (γ, τ) ∈ ΣT \ΘT

is said to be an image of y. So, up to the factor β
1
2 , image is just a function

written in sgc.
An image operator IT : L2(ΩT ) → L2(ΣT ), IT y := ỹT is isometric. In-

deed, for y, v ∈ L2(ΩT ) one has

(y, v)L2(ΩT ) =

∫
ΩT

y(x) v(x) dx
(1),(2)

=

∫
ΘT

y(x(γ, τ)) v(x(γ, τ))β(γ, τ)dΓ dτ

=
(
ỹT , ṽT

)
L2(ΣT )

=
(
IT y, IT v

)
L2(ΣT )

.
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As an isometry, IT obeys Ran IT = {g ∈ L2(ΣT ) | supp g ⊂ ΘT } and(
IT
)∗
IT = 1 , IT

(
IT
)∗

= GΘT , (3)

where GΘT cuts off functions in ΣT onto ΘT .

3. Dynamics

3.1. IBV problem

By ∂ν we denote a derivative with respect to outward normal at the boundary
Γ. Hs(. . . ) are the standard Sobolev spaces.

Consider an initial boundary-value problem

utt −∆u+ qu = 0 in Ω× (0, T ) (4)

u
∣∣
t=0

= ut
∣∣
t=0

= 0 in Ω (5)

∂νu = f on ΣT , (6)

where q ∈ L∞(Ω) is a function (potential), f is a Neumann boundary control,
u = uf (x, t) is a solution (wave). It is a well-posed problem; its solution
possesses the following properties.

• Regularity. The map f 7→uf is continuous from L2(ΣT ) to C([0,T ];H
3
5−ε(Ω)),

whereas f 7→ uf
∣∣
ΣT

acts continuously from L2(ΣT ) to H
1
5−2ε(ΣT ) (∀ε > 0).

Introduce a ‘smooth’ class of controls

MT :=
{
f ∈ H2(ΣT ) | supp f ⊂ Γ× (0,T]

}
and note that each f ∈ MT vanishes near t = 0. For f ∈ MT one has
uf ∈ H2(Ω× [0, T ]). These facts are taken from [19] (Theorem A).

• Locality. For the hyperbolic equation (4), the finiteness of the domain of
influence principle holds and implies the following.

Let σ ⊂ Γ be an open set. Take a control acting from σ, i.e., provided
supp f ⊂ σ × [0, T ]. Then the relation

suppuf (·, t) ⊂ Ωtσ, t ≥ 0 (7)

holds and shows that the waves propagate with the unit speed and fill the
proper metric neighborhood of σ in Ω.

By the latter, solution uf depends on the potential locally that enables one
to restate the problem (4)–(6) as follows:

utt −∆u+ qu = 0 in ΩT × (0, T ) (8)

u
∣∣
t<τ(x)

= 0 in ΩT × [0, T ] (9)

∂νu = f on ΣT . (10)
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Such a form emphasizes that uf is determined by behavior of potential q in ΩT

only (does not depend on q
∣∣
Ω\ΩT ) that enables one to analyze wave propagation

without leaving ΩT .

• Steady-state property. Introduce a delay operator T TT−ξ acting on controls by
the rule(

T TT−ξf
)

(·, t) :=

{
0 , 0 ≤ t < T − ξ
f(·, t− (T − ξ)) , T − ξ ≤ t ≤ T

0 ≤ t ≤ T .

Since the operator −∆ + q, which governs the evolution of waves, does not
depend on time, one has

uT
T
T−ξf (·, T ) = uf (·, ξ) , 0 ≤ ξ ≤ T ;

uft = uft , u
ftt = uftt

(4)
= (∆− q)uf for f ∈MT , (11)

where the first relation implies the others.

3.2. System αT

Here we consider problem (8)–(10) as a dynamical system, name it by αT ,
and endow with standard attributes of control and system theory: spaces and
operators.

Spaces and subspaces

A space of controls FT := L2(ΣT ) is called an outer space of the system. It
contains an increasing family of subspaces, which consist of the delayed controls:

FT, ξ :=
{
f ∈ FT | supp f ⊂ Γ× [T − ξ, T ]

}
= T TT−ξFT , 0 ≤ ξ ≤ T .

With an open σ ⊂ Γ one associates the subspaces of controls

FT, ξσ :=
{
f ∈ FT | supp f ⊂ σ × [T − ξ, T ]

}
, 0 ≤ ξ ≤ T ,

which act from σ.
A space HT = L2(ΩT ) is said to be inner; waves uf (·, t) are regarded as

its elements (states) depending on time. It contains an increasing family of
subspaces

Hξ := {y ∈ HT | supp y ⊂ ΩT } , 0 ≤ ξ ≤ T .
Also, with σ ⊂ Γ we associate the subspaces

Hξσ := {y ∈ HT | supp y ⊂ ΩTσ } , 0 ≤ ξ ≤ T .

By locality property (7) and the first relation in (11), if f ∈ FT, ξσ then
uf (·, T ) ∈ Hξσ.
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Control operator

• In system αT , an input/state correspondence is realized by a control operator
WT : FT → HT

WT f := uf (·, T ) .

By the above mentioned regularity properties of solutions to (4)–(6), it acts

continuously from FT to H
3
5−ε(Ω). Hence, for any T > 0, WT is a compact

operator.

Lemma 3.1. For T < T∗, the control operator is injective: KerWT = {0}.

Proof. Let T < T∗, so that Ω \ ΩT is an open set. Let f ∈ KerWT = {0}, so
that uf (·, T ) = 0. Define a function U in Ω×R by

U(·, t) :=


0 , −∞ < t < 0

uf (·, t) , 0 ≤ t ≤ T
−uf (·, 2T − t) , T ≤ t ≤ 2T

0 , −∞ < t < 0 .

Owing to uf (·, T ) = 0, such an extension of uf does not violate its regularity.
As a consequence, the extension satisfies

Utt −∆U + qU = 0 in Ω×R , U(·, t)
∣∣
Ω\ΩT = 0 .

Applying the Fourier transform U(·, t) 7→ Ǔ(·, ω), we get

−ω2Ǔ −∆Ǔ + qǓ = 0 in Ω , Ǔ(·, ω)
∣∣
Ω\ΩT = 0 .

Thus, for any ω ∈ R, Ǔ(·, ω) satisfies an elliptic equation and vanishes on an
open set. By the well-known uniqueness theorem, the latter implies Ǔ(·, ω) = 0
everywhere in Ω. Returning to the Fourier original, we get U(·, t) = 0 for
all t and arrive at f = ∂νu

f
∣∣
ΣT

= ∂νU
∣∣
ΣT

= 0. Thus, f ∈ KerWT implies
f = 0.

• The locality property (7) and delay relation (11) lead to the embedding

WTFT, ξσ ⊂ Hξσ , 0 ≤ ξ ≤ T , (12)

which is just a consequence of the finiteness of the wave propagation speed.
The fact, which plays a crucial role in the BC-method, is that this embedding
is dense: the relation

WTFT, ξσ = Hξσ , 0 ≤ ξ ≤ T (13)
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is valid for any T > 0 and open σ ⊆ Γ. In control theory this fact is referred to
as a local approximate boundary controllability of system αT ; it is derived from
the fundamental Holmgren-John-Tataru uniqueness theorem [1, 23].

• The following fact will be required in the data characterization. A multipli-
cation of functions by a bounded q is a self-adjoint bounded operator acting
in HT . The last relation in (11) can be written as ∆WT f −WT ftt = qWT f
that is just a form of writting the wave equation (8). Taking into account the
density of MT in FT , it is easy to conclude that a set of pairs{

〈∆WT f −WT ftt ,W
T f〉 | f ∈MT

}
(14)

determines the graph of the multiplication by q and, hence, determines the
potential q

∣∣
ΩT

.

Response operators

• In system αT , the input/output correspondence is realized by a response
operator RT : FT → FT ,

RT f := uf
∣∣
ΣT

.

By the above-mentioned regularity of uf , it acts continuously from FT to
H

1
5−2ε(ΣT ) and, hence, is a compact operator. The following is some of its

basic properties. We use the auxiliary operators Y T , JT : FT → FT ,

(
Y T f

)
(·, t) := f(·, T − t) ,

(
JT f

)
(·, t) :=

∫ t

0

f(·, s) ds , 0 ≤ t ≤ T .

Note that (Y T )∗ = (Y T )−1 = Y T and (Y T )2 = 1 holds.

Lemma 3.2. For T > 0 and 0 ≤ ξ ≤ T , the relations

RTT TT−ξ = T TT−ξRT ; RTJT = JTRT ; (Y TRT )∗ = Y TRT (15)

are valid.

Proof. The first relation follows from (11). The second is a simple consequence
of the first. Prove the third one.

Let controls f, g belong to the smooth class MT , which is dense in FT .
Cauchy conditions (9) imply

uf (·, t)
∣∣
t=0

= uft (·, t)
∣∣
t=0

= ug(·, T − t)
∣∣
t=T

= ugt (·, T − t)
∣∣
t=T

= 0 .

Also, since each f ∈ MT vanishes near t = 0, the wave uf (·, T ) vanishes
near ΓT by locality (7).
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Integrating by parts, one has

0 =

∫
ΩT×[0,T ]

[uftt −∆uf + quf ](x, t)ug(x, T − t) dx dt =

=

∫
ΣT

[uf (γ, t) ∂νu
g(γ, T − t)− ∂νuf (γ, t)ug(γ, T − t)] dΓ dt+

+

∫
ΩT×[0,T ]

uf (x, t)[ugtt −∆ug + qug](x, T − t) dx dt =

(10)
=

∫
ΣT

[uf (γ, t) g(γ, T − t)− f(γ, t)ug(γ, T − t)] dΓ dt =

= (RT f, Y T g)FT − (f, Y TRT g)FT = (Y TRT f, g)FT − (f, Y TRT g)FT .

Thus, we have (Y TRT f, g)FT = (f, Y TRT g)FT . Since MT is dense in FT , we
get the last equality in (15).

• There is one more object of system αT related with the input/output corre-
spondence.

Denote D2T := in {(x, t) | x ∈ ΩT , t < 2T − τ(x)}. The problem

utt −∆u+ qu = 0 in D2T (16)

u
∣∣
t<τ(x)

= 0 in D2T (17)

∂νu = f on Σ2T , (18)

can be regarded as a natural extension of problem (8)–(10). Such an extension
does exist and is well posed owing to the finiteness of the domains of influence
(hyperbolicity). Its solution uf is determined by q

∣∣
ΩT

.

With problem (16)–(18) one associates an extended response operator R2T :
F2T → F2T ,

R2T f := uf
∣∣
Σ2T .

It is a compact operator with the properties quite analogous to (15):

R2TT 2T
2T−ξ = T 2T

2T−ξR
2T , 0 ≤ ξ ≤ 2T ; R2TJ2T = J2TR2T ;

(Y 2TR2T )∗ = Y 2TR2T . (19)

Along with the solution uf , operator R2T is determined by q
∣∣
ΩT

. By the latter,

this operator must be regarded as an intrinsic object of system αT (but not
α2T ). Note in addition that R2T is meaningful at a very general level: see [2].

Connecting operator

• A key object of the BC-method is a connecting operator CT : FT → FT ,

CT := (WT )∗WT . (20)
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By the definition, we have

(CT f, g)FT = (WT f,WT g)HT =
(
uf (·, T ), ug(·, T )

)
HT ,

i.e., CT connects the Hilbert metrics of the outer and inner spaces. It is a
compact (because WT is) and nonnegative operator: (CT f, f)FT ≥ 0 holds
for all f ∈ FT . Moreover, since KerCT = KerWT , Lemma 3.1 provides its
positivity:

(CT f, f)FT > 0 for 0 6= f ∈ FT , T < T∗.

• Recall that the image operator IT introduced in section 1 acts from L2(ΩT ) to
L2(ΣT ). In what follows we identify these spaces with HT and FT respectively,
and regard IT as a map from HT to FT .

The definition of images easily implies Y T ITHξ ⊂ FT, ξ, whereas (12) (for
σ = Γ) provides Y T ITWTFT, ξ ⊂ FT, ξ. The latter means that an oper-
ator Y T ITWT is triangular with respect to the family of subspaces (nest)
{FT, ξ}0≤ξ≤T [13].

For the connecting operator, the relations

CT
(20)
= (WT )∗WT (3)

= (Y T ITWT )∗(Y T ITWT ) (21)

hold and show that operator Y T ITWT provides a triangular factorization of
the connecting operator with respect to the nest {FT, ξ}0≤ξ≤T [13, 15].

• A significant fact is that the connecting operator is determined by the ex-
tended response operator via an explicit formula:

CT = − 1

2
(ST )∗R2TJ2TST , (22)

where the map ST : FT → F2T extends the controls from ΣT to Σ2T by
oddness: (

ST f
)

(·, t) =

{
f(·, t) , 0 ≤ t < T

−f(·, 2T − t) , T ≤ t ≤ 2T .

In [1, 3], a relevant analog of this representation is proved for the case of the
Dirichlet boundary controls. To modify the proof for obtaining (22) needs just
a minor correction.

3.3. System αT
∗

A dynamical system associated with the problem

vtt −∆v + qv = 0 in {(x, t) | x ∈ ΩT , t > τ(x)} (23)

v
∣∣
t=T

= 0 , vt
∣∣
t=T

= y ∈ HT (24)

∂νv = 0 on ΣT (25)
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is denoted by αT∗ and said to be dual to system αT . Its solution v = vy(x, t)
describes a wave, which is initiated by the velocity perturbation y and prop-
agates (in the reversed time) in Ω. The problem is well posed owing to the
finiteness of the domain of influence property.

Integration by parts provides the well-known relation

(uf (·, T ), y)HT = (f, vy)FT , f ∈ FT , y ∈ HT .

It is the relation, which motivates the term ‘dual’ [1, 3].
In the dual system, the state/observation correspondence is realized by an

observation operator OT : HT → FT ,

OT y := vy
∣∣
ΣT

.

Being written in the form (WT f, y)HT = (f,OT y)FT , the duality relation
leads to the equality

OT = (WT )∗ . (26)

It implies KerOT = HT 	 RanWT , whereas (13) (for σ = Γ) follows to the
equality KerOT = {0}. The latter is interpreted as a boundary observability of
the dual system.

4. Visualization of waves

4.1. Devices

Propagation of jumps in αT∗

A very general fact of the propagation of singularities theory for the hyperbolic
equations is that discontinuous data produce discontinuous solutions, the dis-
continuities propagating along bicharacteristics and being supported on char-
acteristic surfaces. Here we deal with the Cauchy problem (23)–(25) with a y
having jumps of special kind. Our goal is to describe the corresponding jumps
of the image OT y. The description is provided by the proper Geometrical
Optics formulae. Since the GO-technique is rather cumbersome, we have to
restrict ourselves to heuristic considerations and references to our papers [1, 5],
where the rigorous analysis is developed.

We start with a simpler case T < Tc: the simplification is that the surfaces
Γξ are smooth as ξ ≤ T . A characteristic function (indicator) of a set A is
denoted by χA:

χA(p) :=

{
1 , p ∈ A
0 , p 6∈ A

.

• Fix a ξ and (small) ∆ξ provided 0 < ξ < ξ + ∆ξ < T . A subdomain

∆Ωξ := Ωξ+∆ξ \ Ωξ ⊂ ΩT
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is a thin layer between the smooth surfaces Γξ+∆ξ and Γξ.

Take a y ∈ C∞(ΩT ). A ‘slice’ χ∆Ωξy is a piece-wise smooth function sup-

ported in ∆Ωξ. Generically, it has the jumps at Γξ and Γξ+∆ξ. In what follows,
the jump at Γξ is of our main interest, whereas the jump at Γξ+∆ξ is introduced
just for technical convenience.

Return to system (23)–(25). Putting vt
∣∣
t=T

= χ∆Ωξy in (24), we get a
Cauchy problem with discontinuous data. In particular, the data have a jump
at Γξ:

vt (x(γ, τ), T )

∣∣∣∣τ=ξ+0

τ=ξ−0

= y(x(γ, ξ)) − 0 = y(x(γ, ξ)) . (27)

As a consequence, the solution vχ∆Ωξ
y turns out to be non-smooth. The fol-

lowing is some details specific for problem (23)–(25).

• A velocity perturbation χ∆Ωξy, which initiates the wave process, is separated
from the boundary with the distance ξ. Therefore, by the finiteness of domain
of influence principle, the solution vχ∆Ωξ

y vanishes for t > T − ξ − τ(x), i.e.,

over a characteristic surface ST, ξ := {(x, t) ∈ ΩT × [0, T ]} (see Fig 4.1).

Figure 1: Propagation of jump

• Jumps of vt(·, T ) initiate jumps of the velocity v
χ

∆Ωξ
y

t . One of the velocity
jumps is located at the characteristic ST, ξ 2. This jump propagates along the

2another jumps also do occur but are beyond our interest
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space-time rays rT, ξγ , which constitute the characteristic:

rT, ξγ := {(x, t) ∈ ΩT × [0, T ] | x = x(γ, ξ − τ), t = T − τ : 0 ≤ ξ ≤ T} ,

ST, ξ =
⋃
γ∈Γ

rT, ξγ .

The jump, which moves along rT, ξγ , starts from the point a = (x(γ, ξ), T ) and
reaches the boundary at b = (x(γ, 0), T −ξ). By (27), at the ‘input’ a the value
(amplitude) of the jump is y(x(γ, ξ)). At the endpoint b, its amplitude is found
by the GO-technique, which provides

v
χ

∆Ωξ
y

t ((x(γ, 0), t)

∣∣∣∣t=T−ξ+0

t=T−ξ−0

= 0− β 1
2 (γ, ξ)y(x(γ, ξ))

= −β 1
2 (γ, ξ)y(x(γ, ξ)) . (28)

This relation corresponds to the well-known GO-law: the ratio of the input
and output jump amplitudes is governed by the factor β, which is determined
by the spreading of rays rT, ξγ [1, 5, 18].

• By the aforesaid, a trace v
χ

∆Ωξ
y

t

∣∣
ΣT

vanishes on Γ × (T − ξ, T ] and has a

jump at the cross-section ΣT ∩ ST, ξ = Γ× {t = T − ξ}. In the mean time, by

the regularity results, this trace is continuous as an H
1
2 (Γ)-valued function of

t ∈ [0, T − ξ] 3. The following considerations specify the behavior of v
χ

∆Ωξ
y

t

∣∣
ΣT

near (and below) this cross-section.
Let

∆ΣT, ξ := {(γ, t) ∈ ΣT | γ ∈ Γ, T − ξ −∆ξ ≤ t ≤ T − ξ}

be a thin ‘belt’ near the cross-section (see Fig. 4.1), χ∆ΣT, ξ its indicator. A
function on ΣT of the form χ∆ΣT, ξ

[
v
χ

∆Ωξ
y

t

∣∣
ΣT

]
is a ‘slice’ of the boundary

trace of the velocity. By (28), one can represented it as(
χ∆ΣT, ξ

[
v
χ

∆Ωξ
y

t

∣∣
ΣT

])
(γ, t) =

=

{
−β 1

2 (γ, ξ)y(x(γ, ξ)) + wξ,∆ξ(γ, t) , (γ, t) ∈ ∆ΣT, ξ

0 , (γ, t) ∈ ΣT \∆ΣT, ξ
, (29)

where the first summand in the first line does not depend on t and, hence, obeys
‖β 1

2 y‖2L2(∆ΣT, ξ) ∼ ∆ξ, whereas the second summand satisfies

‖wξ,∆ξ‖2L2(∆ΣT, ξ) ∼ o(∆ξ) uniformly with respect to ξ ∈ [0, T ] and (small

enough) ∆ξ > 0 [1, 5]. So, the first summand is dominating.

3this property can be derived from Theorem 3.3 of [19].
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Amplitude integral

• Choose a partition Ξ = {ξi}Ni=0 : 0 = ξ0 < ξ1 < · · · < ξN = T of the
segment [0, T ] and denote

∆ξi = ξi−ξi−1 , ∆ΣT, ξi = Γ× [T−ξi−∆ξi , T−ξi] , ∆Ωξi = Ωξi \ Ωξi−1 ,

i = 1, 2, . . . N (Ω0 := ∅); rΞ = max
i=1,...,N

∆ξi .

Summing up the terms of the form (29) and recalling the definition of images,
we get(

N∑
i=1

χ∆ΣT, ξi

[
v
χ

∆Ωξi
y

t

∣∣
ΣT

])
(γ, T − t) =

= −
(
IT y

)
(γ, t) + δy,Ξ(γ, t), (γ, t) ∈ ΣT , (30)

where ‖δy,Ξ‖L2(ΣT ) → 0 as rΞ → 0. Substituting t by T−t, we see that, for the

given smooth y ∈ HT , the sums converge to −Y T IT y by the norm in FT . The
smallness of δy,Ξ is justified by perfect analogy with the case of the problem
with Dirichlet boundary controls [1, 5].

• Here we interpret (30) in operator terms.
Let XT, ξ be a projection in FT onto FT, ξ, which cuts off controls onto

Γ× [T − ξ, T ]. The difference ∆XT, ξi = XT, ξi −XT, ξi−1 is also the projection
cutting off controls onto the belt ∆Σξi, T : ∆XT, ξif = χ∆ΣT, ξi f .

By Gξ we denote a projection in HT onto Hξ, which cuts off functions
onto Ωξ. The difference ∆Gξi = Gξi − Gξi−1 cuts off functions onto the layer
∆Ωξi : ∆Gξiy = χ∆Ωξi y.

Recalling the definition of the observation operator, one can represent the
summands in (30) as

χ∆ΣT, ξi

[
v
χ

∆Ωξi
y

t

∣∣
ΣT

]
= ∆XT, ξi∂tO

T∆Gξiy

and then write (30) in the form

lim
rΞ→0

[
N∑
i=1

∆XT, ξi∂tO
T∆Gξi

]
y =:

[∫
[0,T ]

dXT, ξ ∂tO
T dGξ

]
y = Y T IT y . (31)

An operator construction in the square brackets is said to be an amplitude inte-
gral (AI). It represents the image of y as a collection of the wave jumps, which
pass through ΩT and are detected by the external observer at the boundary.

• Recall that (31) is derived under the assumption T < Tc. The case T > Tc
is more complicated since the equidistant surfaces Γξ can be non-smooth and
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disconnected. However, a remarkable fact is that representation (31) does
survive: it is valid for any T < T∗. For the system αT with Dirichlet boundary
controls, this result is stated in [1, 5]. To modify it for the case of Neumann
controls requires just a minor technical changes. So, the following does occur.

Proposition 4.1. For any positive T < T∗, the sums in (31) converge to the
limit

lim
rΞ→0

N∑
i=1

∆XT, ξi∂tO
T∆Gξi =:

∫
[0,T ]

dXT, ξ ∂tO
T dGξ = Y T IT (32)

in the weak operator topology.

WT via amplitude integral

• Multiplying (32) by WT from the right, we get an operator V T : FT → FT ,

V T := Y T ITWT =

[∫
[0,T ]

dXT, ξ ∂tO
T dGξ

]
WT , (33)

which satisfies

V TFT, ξ ⊂ FT, ξ , (V T )∗V T
(21)
= CT . (34)

Thus, V T provides triangular factorization of the connecting operator with
respect to the nest {FT, ξ}0≤ξ≤T .

• Any densely defined closable linear operator acting from a Hilbert space to
a Hilbert space can be represented in the form of a polar decomposition (see,
e.g., [10]). For the control operator, such a decomposition is

WT = UT |WT | := UT
[
(WT )∗WT

] 1
2 (21)

= UT
[
CT
] 1

2 , (35)

where |WT | : FT → FT is a modulo of WT , and UT : FT → HT is an isometry,
which maps Ran |WT | ⊂ FT onto RanWT ⊂ HT by the rule

UT |WT |f = WT f , f ∈ FT . (36)

By (13) with σ = Γ, for any T > 0 one has RanWT = HT . In the mean time,
for T < T∗, we have

Ran |WT | = FT 	Ker |WT | = FT 	KerWT Lemma 3.1
= FT .

As a result, if T < T∗ then UT can be extended by continuity from Ran |WT |
to FT , the extension being a unitary operator, which maps FT onto HT . In
what follows, we assume that such an extension is done; it satisfies

(UT )∗UT = 1FT , UT (UT )∗ = 1HT . (37)
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• Recall that Gξ projects in HT onto Hξ. We say a projection P ξ in HT onto
the subspace WTFT, ξ (formed by waves) to be a wave projection. A crucial
point of our approach is the equality

P ξ
(13)
= Gξ , 0 ≤ ξ ≤ T , (38)

which corresponds to the controllability of system αT .
Let P̃T, ξ be a projection in FT onto the subspace |WT |FT, ξ. By (36), one

has

UT P̃T, ξ = P ξUT , 0 ≤ ξ ≤ T (39)

that implies

OTGξWT (26),(38)
= (WT )∗P ξWT (35)

= |WT |(UT )∗P ξUT |WT | =
(39)
= |WT | P̃T, ξ |WT | (40)

for 0 ≤ ξ ≤ T .

• Multiplying equality (33) by the isometry (IT )∗Y T from the left, and taking
into account (40), we get

WT = UT |WT |, UT = (IT )∗Y T

[∫
[0,T ]

dXT, ξ ∂t|WT | dP̃T, ξ
]
. (41)

Here the operators IT , Y T , XT, ξ are standard (do not depend on potential q),
whereas projections P̃T, ξ are obviously determined by |WT |. Operator WT is
triangular with respect to the pair of the nests {FT, ξ} and {Hξ} that means
WTFT, ξ ⊂ Hξ, 0 ≤ ξ ≤ T (see (13)). From the operator theory viewpoint,
representation (41) enables one to recover a triangular operator WT via its
modulo |WT |, the ‘phase’ part UT being expressed via a relevant operator
integral. The integral into the square brackets is referred to as a diagonal of
operator ∂tW

T with respect to the nests {FT, ξ} and {Hξ} [9, 13].

• Introduce an operator AT : FT → FT by

AT := Y T
∫

[0,T ]

dXT, ξ ∂t[C
T ]

1
2 dP̃T, ξ . (42)

With regard to (38) and (39), one can write (32) in the form AT (UT )∗ = IT

that enables one to represent the phase operator in the form

UT
(41)
= (IT )∗AT .
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By (37) and (3), this representation implies

(AT )∗AT = 1, AT (AT )∗ = GΘT . (43)

Now, writing (41) in the form

WT = (IT )∗AT [CT ]
1
2 , (44)

we obtain the representation of the control operator, which plays a basic role
in solving inverse problems. The reason is the following.

Operator R2T formalizes information, which the external observer gets from
measurements at the boundary Γ. The waves uf propagate into Ω and are
invisible for him. However, the observer can determine CT via (22), find [CT ]

1
2 ,

construct the integral (42), determine WT via (44), and eventually recover
invisible waves uf (·, T ) = WT f . In the BC-method, such a remarkable option
is referred to as a visualization of waves.

4.2. Solving the inverse problem

Setup

As is mentioned in section 3.2, the extended response operator R2T depends
on the potential locally: it is determined by q

∣∣
ΩT

. Such a locality motivates
the following setup of the inverse problem.

(IP) Given operator R2T , to recover potential q in the subdomain ΩT .

The IP will be solved for an arbitrary fixed T < T∗. Surely, such an option
enables one to determine q in the whole Ω if R2T is given for a T ≥ T∗.

Procedure

Preparatory to solving the IP, recall that geometry of the wave propagation in
system αT is governed by the leading part ∂2

t − ∆ of the wave equation (4).
Since this part does not depend on the potential, the geometry is Euclidean [18].
Therefore, we have the right to regard all the geometric objects and parameters
(Ωξ, sgc, ΘT , β, T∗, etc) as known and use them for determination of q. In
particular, we can use the image operator IT .

Let T < T∗ be fixed. Given R2T one can recover q in ΩT by the following
procedure.

Step 1. Find CT by (22). Determine [CT ]
1
2 .

Step 2. Determine the subspaces [CT ]
1
2FT, ξ and the corresponding projections

P̃T, ξ for 0 ≤ ξ ≤ T .

Step 3. Construct the integral (42) and, then, recover WT via (44).

Step 4. Determine q
∣∣
ΩT

from the graph (14).

The IP is solved.
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4.3. Characterization of data

Main result

In addition to the procedure, which solves the IP, we provide the necessary and
sufficient conditions for its solvability.

Theorem 4.2. Let 0 < T < T∗. An operator R2T : F2T → F2T is the extended
response operator of a system αT with potential of the class L∞(ΩT ) if and only
if it satisfies the following conditions:

1. R2T is a compact operator obeying

Y 2TR2T = (R2TY 2T )∗; R2TT 2T
2T−ξ = T 2T

2T−ξR2T , 0 ≤ ξ ≤ 2T . (45)

2. An operator CT : FT → FT ,

CT := − 1

2
(ST )∗R2TJ2TST (46)

is symmetric and positive: (CT f, f)FT > 0 for 0 6= f ∈ FT .

3. Let P̃T, ξ be a projection in FT onto [CT ]
1
2FT, ξ. An operator integral

AT : FT → FT ,

AT := Y T
∫

[0,T ]

dXT, ξ ∂t[CT ]
1
2 dP̃T, ξ (47)

converges in the weak operator topology to an isometry, which satisfies

(AT )∗AT = 1, AT (AT )∗ = GΘT . (48)

4. An operator WT : FT → HT

WT := (IT )∗AT [CT ]
1
2 (49)

satisfies WTMT ⊂ H2(ΩT ).

5. The relation
∂νWT f

∣∣
Γ

= f(·, T ) , f ∈MT (50)

is valid.

6. The relation
WTFT, ξσ = Hξσ , 0 ≤ ξ ≤ T (51)

holds for any open σ ⊆ Γ.

7. The relation

sup
06=f∈MT

‖∆WT f −WT ftt‖HT
‖WT f‖HT

< ∞ (52)

holds.

The proof consists of two parts.
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Part I (necessity)

Proof. Let R2T = R2T , where R2T is the extended response operator of a
system αT with potential q ∈ L∞(ΩT ). The system possesses the connecting,
control, and phase operators CT , WT and UT respectively.

1. Relations (45) hold by (19).

2 . In view of (22), operator CT defined by (46) coincides with CT , which is a
compact positive operator.

3 . The equality CT = CT implies P̃T, ξ = P̃T, ξ. Comparing (42) with (47), we
conclude that AT = AT . Hence, (48) follows from (43).

4 . Comparing (49) with (44), we see that WT coincides with WT . Hence,
WTMT ⊂ H2(ΩT ) holds by the regularity results on the problem (4)–(6) (see
section 3.1).

5 . Since WT = WT , the equality (50) is just a form of writing (10).

6 . (51) holds by (13).

7 . Since WT f = WT f = uf (·, T ), we have

−∆WT f +WT ftt = −∆uf (·, T ) + uftt(·, T )
(11)
=

= −∆uf (·, T ) + uftt(·, T )
(8)
= quf (·, T ) .

The inequality (52) is a consequence of q ∈ L∞(ΩT ).

Part II (sufficiency)

The proof of sufficiency is constructive: given R2T we provide a system αT

with the response operator R2T = R2T . In fact, the construction follows the
procedure Step 1-4, which solves the IP.

Proof. Assume that R2T obeys 1 -5 .

• Determine operator CT by (46) and find [CT ]
1
2 . The latter is also positive

and injective.
Construct the operator integral in (47) and get operator AT . By (48), AT

is an isometry in FT with the range GΘTFT . Hence, it satisfies GΘTAT = AT .
Introduce operator WT : FT → HT in accordance with (49). Obviously, it

is injective. By (51) (for ξ = T and σ = Γ), its range WTFT is dense in HT .
Also, it satisfies

(WT )∗WT = [CT ]
1
2 (AT )∗IT (IT )∗AT [CT ]

1
2

(3)
= [CT ]

1
2 (AT )∗GΘTAT [CT ]

1
2 =

= [CT ]
1
2 (AT )∗AT [CT ]

1
2

(48)
= CT . (53)
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• SinceWT is injective, the set of pairs
{
〈WT f, WT ftt〉 | f ∈MT

}
constitutes

the graph of a linear operator acting in HT . This operator is denoted by
LT :WT f 7→ WT ftt. It acts in HT and is densely defined (on WTFT ).

Recall that the class of smooth controls MT is dense in FT , its elements
vanishing near t = 0. The subclass

MT
0 := {f ∈MT | f vanishes near t = T}

is also dense in FT . Hence, WTMT
0 is dense in HT by (51) for σ = Γ, ξ = T .

As a result, an operator LT0 := LT
∣∣
WTMT

0
is densely defined in HT . Show that

it is symmetric.
Take f, g ∈ MT

0 . Note that ST f and ST g are twice differentiable with
respect to t and vanish near t = 0 and t = 2T . Also, note that the second
relation in (45) implies the commutation R2T∂2

t = ∂2
tR2T . Then, we have

(LT0WT f,WT g)HT = (LTWT f,WT g)HT = (WT ftt,WT g)HT
(53)
=

= (CT ftt, g)FT
(46)
= − 1

2
([R2TJ2TST ]ftt, S

T g)F2T =

= − 1

2
([R2TJ2TST f ]tt, S

T g)F2T
?
= − 1

2
(R2TJ2TST f, [ST g]tt)F2T =

= − 1

2
(R2TJ2TST f, ST gtt)F2T = − 1

2
((ST )∗R2TJ2TST f, gtt)FT =

= (CT f, gtt)FT
(53)
= (WT f,WT gtt)HT = (WT f, LTWT g)HT =

= (WT f, LT0WT g)HT .

In (?) we integrate by part with respect to time in FT = L2(ΣT ). So, LT0 is
symmetric.

• Owing to (52), operator QT := ∆− LT defined on the dense set WTFT ⊂
HT , is bounded. By this, we assume that QT is extended to HT by continuity.

Operator QT is self-adjoint. Indeed, in view of (50), for f ∈ MT
0 one has

∂νWT f
∣∣
Γ

= f
∣∣
t=T

= 0, i.e., elements ofWTMT
0 satisfy the homogeneous Neu-

mann boundary condition on Γ. By the latter, the Laplacian ∆ is symmetric
on WTMT

0 . Hence, QT
∣∣
WTMT

0
= ∆

∣∣
WTMT

0
− LT0 is symmetric on a dense set.

Since it is bounded, we conclude that (QT )∗ = QT .

• For f ∈MT ⊂ FT , define a function

uf (x, t) :=
(
WTT TT−tf

)
(x) in ΩT × [0, T ] . (54)

The definitions of the operators imply[
∆−QT

]
uf (·, t) = LTuf (·, t) = LTWTT TT−tf =WT

[
T TT−tf

]
tt

=

= [WTT TT−tf ]tt = uftt(·, t) .
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Thus, uf satisfies the equation

utt −∆u+QTu = 0 in ΩT × (0, T ) , (55)

By (51) for σ = Γ, we have supp uf(·, t) ⊂ Ωt, i.e., uf satisfies the Cauchy
condition

u
∣∣
t<τ(x)

= 0 in ΩT × [0, T ] . (56)

In the mean time, (50) easily implies that uf obeys

∂νu = f on ΣT . (57)

• Show that QT is a multiplication by a bounded function. The proof follows
the idea of [4].

Lemma 4.3. There is a (real) function q ∈ L∞(ΩT ) such that QT y = qy holds
for y ∈ HT .

Proof. 1. Choose a σ ⊂ Γ and f ∈ FT, ξσ ∩MT . By condition 4 and (51), we have
uf (·, T ) ∈ Hξσ ∩H2(ΩT ). Hence, ∆uf (·, T ) ∈ Hξσ. In the mean time, we have

ftt ∈ FT, ξσ ∩MT that implies uftt = LTuf (·, T ) = WT ftt
(51)
∈ Hξσ. Therefore,

QTuf (·, T )
(55)
= ∆uf (·, T ) − uftt ∈ Hξσ. Thus, QTWTFT, ξσ ⊂ Hξσ holds. Since

WTFT, ξσ is dense in Hξσ (see (51)), we conclude that QTHξσ ⊂ Hξσ. The latter
leads to QT [HT 	Hξσ] ⊂ [HT 	Hξσ] by virtue of the symmetry (QT )∗ = QT .
Hence, the subspaces Hξσ reduce QT that is equivalent to the commutation

QTGξσ = GξσQ
T , σ ⊂ Γ, 0 ≤ ξ ≤ T , (58)

where Gξσ projects in HT onto Hξσ, i.e., cuts off functions on Ωξσ.

2. As is easy to verify, an operator τTσ : HT → HT ,

τTσ y :=

[∫
[0,T ]

ξ dGξσ

]
y =

[
lim
rΞ→0

N∑
i=1

ξi [Gξiσ −Gξi−1
σ ]

]
y (59)

(the sums converge by the operator norm) acts by the rule

τTσ y =

{
d(·, σ)y in ΩTσ
0 in ΩT \ ΩTσ

,

i.e., multiplies functions by the distance to σ and, then, cuts off on ΩTσ [4]. As
a consequence, an operator

τ̂Tσ := τTσ y + T (1HT −GTσ )y
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multiplies functions by the continuous function dTσ (·) := max{d(·, σ), T}. In
the mean time, (58) implies

QT τ̂Tσ = τ̂Tσ Q
T , σ ⊂ Γ, 0 ≤ ξ ≤ T , (60)

because the sums in (59) do commute with all Gξσ.

3. Fix a (small) δ > 0. A simple geometric fact is that the functions
{dTσ | σ ⊂ Γ} separate points in ΩT−δ and vanish simultaneously in no point

x0 ∈ ΩT−δ. Hence, a family {dTσ | σ ⊂ Γ, 0 ≤ ξ ≤ T} generates the continuous

function algebra C(ΩT−δ) [4].
Correspondingly, an operator family {τ̂Tσ | σ ⊂ Γ, 0 ≤ ξ ≤ T} generates

the operator (sub)algebra C(ΩT−δ) ⊂ B(HT ) of multiplications by continuous

functions. As a consequence of (60), we have QTC(ΩT−δ) = C(ΩT−δ)QT that
is possible if and only if QT is also a multiplication by a function q.

Since QT is bounded, we have q ∈ L∞(ΩT−δ). By arbitrariness of δ, we get
q ∈ L∞(ΩT ).

• With the above determined function q one associates the system αT of the
form (8)–(10). Such a system possesses its own operators WT and CT . Show
that WT =WT and CT = CT .

Since the problems (8)–(10) and (55)–(57) (with QT = q) are identical and
uniquely solvable, their solutions (for the same f ’s) coincide. Writing the first
relation of (11) in the form uf (·, t) = WTT TT−tf and comparing with (54), we
see that WT =WT holds.

By the latter equality and (53), we have

CT = (WT )∗WT = (WT )∗WT = CT . (61)

• System (55)–(57) (with QT = q) possesses the extended response operator
R2T . Here we prove the equality R2T = R2T that completes the proof of the
Theorem.

Begin with two lemmas of general character. The lemmas deal with a
Hilbert space F = L2([0, 2T ]; E) (with the Lebesgue measure dt), where E is
an auxiliary Hilbert space. By F± we denote the subspaces of functions, which
are even and odd with respect to t = T . So, the decompositions F = F+⊕F−
holds. Let

F [a,b] := {f ∈ F | supp f ⊂ [a, b]} , 0 ≤ a < b ≤ 2T .

Lemma 4.4. If a bounded operator N : F → F satisfies

NF± ⊂ F± ; NF [a,2T ] ⊂ F [a,2T ] , 0 ≤ a ≤ 2T (62)

then it is local, i.e., preserves the support of functions:

NF [a,b] ⊂ F [a,b] , 0 ≤ a < b ≤ 2T . (63)
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Proof. 1. Representing F = F [0,T ] ⊕ F [T,2T ] and f = f1 + f2 with f1 ∈
F [0,T ], f2 ∈ F [T,2T ], we identify f ≡ 〈f1, f2〉.

Introduce an isometry Y : F [0,T ] → F [T,2T ] by

(Y f)(t) := f(2T − t) , T ≤ t ≤ 2T .

Obviously, one has F± = {〈f,±Y f〉} | f ∈ F [0,T ]}. Since N preserves the
evenness/oddness, there are two operators k, l : F [0,T ] → F [0,T ] such that

N〈f, Y f〉 = 〈kf, Y kf〉 and N〈f,−Y f〉 = 〈lf,−Y lf〉 . (64)

Show that k = l. For a g ∈ F [0,T ], one has

2N〈0, Y g〉 = N [〈g, Y g〉 − 〈g,−Y g〉] (64)
= 〈kg, Y kg〉 − 〈lg,−Y lg〉 =

= 〈[k − l]g, Y [k + l]g〉 . (65)

In the mean time, we have 〈0, Y g〉 ∈ F [T,2T ] and, hence, N〈0, Y g〉 ∈ F [T,2T ]

holds by (62). By the latter, 2N〈0, Y g〉must be of the form 〈0, ...〉, i.e., [k−l]g =
0 is valid and implies k = l =: m.

2. Putting g = Y −1h in (65), we get

N〈0, h〉 = 〈0, Y mY −1h〉 . (66)

In the mean time, we have

2N〈g, 0〉 = N [〈g, Y g〉+ 〈g,−Y g〉] (64)
= 〈mg, Y g〉+〈mg,−Y mg〉 = 2〈mg, 0〉 .

Combining the latter with (66), we arrive at the representation

N〈g, h〉 = 〈mg, Y mY −1h〉 . (67)

3. Such a representation easily provides the following fact: operator N acts
locally in [0, 2T ] if and only if operator m is local in [0, T ]. Show that the
latter does occur.

Let supp f ⊂ [a, b] ⊂ [0, T ], so that f
∣∣
0≤t<a = 0 and f

∣∣
b<t≤2T

= 0

holds. The first equality means that f ∈ F [a,2T ], implies Nf ∈ F [a,2T ] by (62)
and, thus, provides Nf

∣∣
0≤t<a = 0. Hence, with regard to f ≡ 〈f, 0〉, we have

0 = Nf
∣∣
0≤t<a ≡ [N〈f, 0〉]

∣∣
0≤t<a

(67)
= 〈mf, 0〉

∣∣
0≤t<a ≡ mf

∣∣
0≤t<a ,

i.e., m does not extend support to the left.
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By the choice of f , one has suppY f ⊂ [2T − b, 2T − a], so that Y f ∈
F [2T−b,2T ]. The latter implies NY f ∈ F [2T−b,2T ] in accordance with (62).
Hence, we have

0 = NY f
∣∣
0≤t<2T−b ≡ [N〈0, Y f〉]

∣∣
0≤t<2T−b

(67)
= 〈0, Y mf〉

∣∣
0≤t<2T−b ≡

≡ Y mf
∣∣
0≤t<2T−b .

Therefore, mf
∣∣
t>2T−b = 0, i.e., m does not extend support to the right. Thus,

m acts locally and, eventually, N is local.

In fact, the boundedness of N is not substantial and the proof (mutatis
mutandis) is available for a wider class of operators.

Lemma 4.5. If an operator N satisfies (62) and is compact then N = 0.

Proof. A projection X [a,b] in F onto F [a,b] cuts off functions on [a, b]. The com-

plement projection X
[a,b]
⊥ = 1−X [a,b] cuts off on [0, a]∪ [b, 2T ]. By Lemma 4.4,

we have

NX [a,b] = X [a,b]NX [a,b] and NX
[a,b]
⊥ = X

[a,b]
⊥ NX

[a,b]
⊥ .

Summing up, we get N = X [a,b]NX [a,b] +X
[a,b]
⊥ NX

[a,b]
⊥ that leads to

NX [a,b] = X [a,b]N , N∗X [a,b] = X [a,b]N∗

and, eventually, implies

N∗NX [a,b] = X [a,b]N∗N . (68)

In the mean time, operator N∗N is self-adjoint and compact. Let λ ∈ R
be its eigenvalue, Dλ the corresponding eigensubspace. By (68), we have
X [a,b]Dλ ⊂ Dλ that leads to dimDλ = ∞. The latter is possible only for
D0 = KerN∗N . Thus, the spectrum of N∗N is exhausted by λ = 0. Hence,
N∗N = 0. Therefore, N = 0.

• Now, we are ready to complete the proof of Theorem 4.2. Return to our
system (55)–(57) (with QT = q). Recall that ST : FT → F2T extends controls
from [0, T ] to [0, 2T ] by oddness with respect to t = T . We regard F2T =
L2(Σ2T ) as the space L2([0, 2T ]; E) with E = L2(Γ). Let F2T

± be the subspaces
of the even and odd functions, so that the decomposition

F2T = F2T
+ ⊕F2T

−

occurs. The embedding J2TF2T
− ⊂ F2T

+ holds and is dense. Also, one has
Y 2TF2T

± = F2T
± .
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Denote N := R2T − R2T With regard to (22) and (46), the equality (61)
leads to

(NJ2TST f, ST g)F2T = 0

for all f, g ∈ FT . It shows that the embedding

NF2T
+ ⊂ F2T

+

holds and evidently implies Y 2TNF2T
+ ⊂ F2T

+ . In the mean time, opera-
tor Y 2TN is self-adjoint: see (19) and (45). Therefore, it is reduced by the
even/odd subspaces: Y 2TNF2T

± ⊂ F2T
± . The latter leads to

NF2T
± ⊂ F2T

± . (69)

On the other hand, the shift invariance (19) and (45) implies

NF2T, ξ ⊂ F2T, ξ , 0 ≤ ξ ≤ 2T .

Joining the latter relation with (69) and applying Lemma 4.5, we arrive at
N = O that is R2T = R2T . Theorem 4.2 is proved.

5. Comments, doubts, philosophy

• A characterization of data for an inverse problem is a list of conditions pro-
viding its solvability. The reasonable requirement to any characterization is to
be checkable and possibly simple. As we guess, the only reasonable understand-
ing of ‘a condition is checkable’ is that it can be verified before (without) solving
the inverse problem. Formally, the conditions 1–7 of Theorem 4.2 satisfy such
a requirement because they do not use the knowledge of the potential q. How-
ever, comparing these conditions with the procedure Step 1–4, it is easy to
recognize that to check 1–7 is almost the same as to recover q. Conditions 1–7
just provide the procedure to be realizable. In such a situation, can one claim
that 1–7 is an efficient characterization?

And what is ‘efficient’? For instance, the key step of the procedure, as well
as the characterization, is constructing the operator integral (47). If it is at
our disposal, we get WT , recover the waves uf , and are able to check 5–7. In
the mean time, having uf one doesn’t need to check anything more but can
just determine q from the wave equation. So, can one regard the required in 3
convergence as an efficiently checkable condition? We don’t have a convincible
answer.

Also, can one avoid so long list of conditions and invent something simpler
and better? 4 We are rather sceptical and the following is some reasons for
scepticism.

4Actually, a long list of the characterization conditions is not something unusual: see,
e.g., the conditions on a spectral triple corresponding to a Riemannian manifold in [12].
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• The evolution of system (8)–(10) is governed by the operator Lq = −∆+q
and Neumann controls f = ∂νu

∣∣
ΣT

. Both of them are of very specific type. We

mean, replacing them by LQ = −
∑
i,j ∂xia

ij∂xj + Q (with possibly nonlocal

and time dependent Q) and, let say, f = [∂νu + κu]
∣∣
ΣT

, we’d got a system

with the data R2T
Q of the properties quite analogous to R2T

q . Therefore, the

data characterization has to select R2T
q from a large reserve of the response

operators R2T
Q . It is such a selection, which the conditions 1–7 do implement.

Namely, the selection works as follows.

? Conditions 1, 2 appear at very general level of an abstract dynamical system
with boundary control (DSBC) associated with a time-independent boundary
triple [2]. Such a system necessarily satisfies (45) and (46).

? In 3, convergence of the operator integral to an isometric operator is a spe-
cific feature of hyperbolic DSBC’s obeying the finiteness of domain of influence
principle. System αT , which we deal with, is hyperbolic, and the characteriza-
tion must provide such a property.

Also, as was noticed in sections 3.2, 4.1 (see (21), (33)), the amplitude
integral is connected with a triangular factorization. One of the form of the
classical factorization problem is to recover a triangular operator via its imag-
inary (anti-Hermitian) part. It is solved by the use of the so-called triangular
truncation transformer [15], which is a kind of an operator integral. Its conver-
gence provides a solvability criterium to the factorization problem for a class
of Fredholm operators [15].

So, imposing condition 3, we follow the classicists. By the way, our con-
struction (32) is available for a wider class of operators [9].

? The characterization should specify a regularity class of potentials, which we
deal with. Condition 4, roughly speaking, rejects strongly singular potentials.

? Condition 5 excludes another types of boundary conditions like f = [∂νu +
κu]
∣∣
ΣT

. The Neumann condition is rather specific. In contrast to the Dirichlet
condition, which is connected with a Friedrichs operator extension, the Neu-
mann one is not of invariant meaning. The characterization has to take this
fact into account. Perhaps, one can specify the boundary condition right from
R2T , without constructing WT . It would be welcome.

? A discussable question is whether condition 6 may be efficiently checked.
However, (51) is also unavoidable: it is the condition, which provides a locality
of the potential.

? Assume for a while that q ∈ L2(Ω) \ L∞(Ω), so that the multiplication by
q is an unbounded operator. However, system αT with such a potential does
possess all the properties specified by conditions 1–6. In the mean time, the
characterization must reject such a case. We see no option to do it except of
imposing (52).
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So, all the conditions 1–7 are independent and, therefore, unavoidable. We
are forced to accept so long list of conditions just because we deal with a very
specific class of dynamical systems. The more specific is the class, the more
words is required for its description. The converse is also true: to be the
response operator of an abstract DSBC, it suffices for R2T to satisfy nothing
but (45) and (46) [2].

• A determination of q from R2T is conventionally regarded as an over-
determined problem. The reason is the following. One can represent(

R2T f
)

(γ, t) =

∫
Σt
r(t− s, γ, γ′) f(γ′, s) dΓγ′ ds

with a (generalized) kernel r(t, γ, γ′). The convolution form with respect to
time is a consequence of the shift invariance (19). Bearing in mind that
γ = {γ1, γ2, . . . , γn−1}, one regards r as a function of 1 + 2(n − 1) = 2n − 1
variables, whereas a local potential q = q(x1, x2, . . . , xn) depends on n variables
only. Thus, for n ≥ 2 the data array is of higher dimension than the array of
parameters under determination ‘that is not natural’ 5.

Actually, on our opinion, in multidimensional problems such a counting
parameters is not quite reasonable and reliable. Indeed, for instance, how to
count the parameters if we need to recover from R2T not a function (potential)
but a Riemannian manifold, as in [3]? Nevertheless, the question arises: Does
the characterization 1–7 ‘kill’ unnecessary parameters and, if yes, in which
way? The possible answer is the following.

There is a sharp necessary condition related with a locality of potential. Let

P̃T, ξσ be the projection in FT onto the subspace [CT ]
1
2FT, ξσ . Such a projection

is unitarily equivalent (via the isometry (IT )∗AT : see (49)) to the projection

onto WTFT, ξσ . By (51), the latter projection coincides with the ‘geometric’
projection Gξσ, which cuts off functions onto Ωξσ. The geometric projections for
all σ and ξ commute. As a result, we arrive at the following condition: the
projection family {P̃T, ξσ | σ ⊂ Γ, 0 ≤ ξ ≤ T} must be commutative. Analyzing
the proof of Theorem 4.2, we see that it is the condition, which forces the
‘potential’Q to be a multiplication by q and, thus, rejects unnecessary variables.
However, the rejection mechanism is not well understood yet and we hope to
clarify it in future.
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