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1. Introduction

We recall here some concepts of convexity that are well known in the literature.
Let I be an interval in R.

DEFINITION 1.1 ([38]). We say that f : I — R is a Godunova-Levin function
or that f belongs to the class Q (I) if f is non-negative and for all z,y € I and
t € (0,1) we have

Flte+ (1= 109) < £ () + ). 1)
Some further properties of this class of functions can be found in [28, 29, 31,
44, 47, 48]. Among others, its has been noted that non-negative monotone and
non-negative convex functions belong to this class of functions.

The above concept can be extended for functions f : C C X — [0,00)
where C is a convex subset of the real or complex linear space X and the
inequality (1) is satisfied for any vectors z,y € C and t € (0,1). If the function
f:C C X — R is non-negative and convex, then is of Godunova-Levin type.

DEFINITION 1.2 ([31]). We say that a function f : I — R belongs to the class
P (I) if it is nonnegative and for all z,y € I and t € [0,1] we have

flr+ (1 —t)y) < f(2)+ f(y). (2)

Obviously @ (I) contains P (I) and for applications it is important to note
that also P (I) contains all nonnegative monotone, convex and quasi convex
functions, i. e. nonnegative functions satisfying
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[tz + (1 =1)y) <max{f(z),f(y)} (3)

for all z,y € I and ¢ € [0,1].

For some results on P-functions see [31, 45] while for quasi convex functions,
the reader can consult [30].

If f:C C X — [0,00), where C is a convex subset of the real or com-
plex linear space X, then we say that it is of P-type (or quasi-convex) if the
inequality (2) (or (3)) holds true for z,y € C' and t € [0, 1].

DEFINITION 1.3 ([7]). Let s be a real number, s € (0,1]. A function f : [0,00) —
[0,00) is said to be s-convex (in the second sense) or Breckner s-convex if

flte+(1—=t)y) <t°f(z) +(1—1) f(y)
for all z,y € [0,00) and t € [0,1].

For some properties of this class of functions see [1, 2, 7, 8, 26, 27, 39, 41, 50].

The concept of Breckner s-convexity can be similarly extended for functions
defined on convex subsets of linear spaces.

It is well known that if (X, |-||) is a normed linear space, then the func-
tion f(z) = ||z||”,p > 1 is convex on X. Utilising the elementary inequality
(a+b)° < a® + b° that holds for any a,b > 0 and s € (0,1], we have for the
function g (z) = ||z||* that

g(tr+(1—=t)y) = [tz + (1= t)y|> < (]l + (1 =) [Jyl)®
< (=) + [ =)yl
=t°g(z)+(1-1)g(y)

for any z,y € X and ¢ € [0,1], which shows that ¢ is Breckner s-convex on X.
In order to unify the above concepts for functions of real variable, S. VaroSanec
introduced the concept of h-convex functions as follows.
Assume that I and J are intervals in R, (0,1) C J and functions h and f
are real non-negative functions defined in J and I, respectively.

DEFINITION 1.4 ([53]). Let h : J — [0, 00) with h not identical to 0. We say
that f: I — [0,00) is an h-convex function if for all z,y € I we have

[+ A=ty <h(@)f(z)+h(1-1)f(y) (4)
for allt € (0,1).

For some results concerning this class of functions see [53, 6, 42, 51, 49, 52].
This concept can be extended for functions defined on convex subsets of
linear spaces in the same way as above replacing the interval I be the corre-
sponding convex subset C' of the linear space X.
We can introduce now another class of functions.
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DEFINITION 1.5. We say that the function f : C C X — [0,00) is of s-
Godunova-Levin type, with s € [0,1], if

a4 (1= < f @)+ e f ). o)

for allt € (0,1) and z,y € C.

We observe that for s = 0 we obtain the class of P-functions while for s = 1
we obtain the class of Godunova-Levin. If we denote by @, (C') the class of
s-Godunova-Levin functions defined on C, then we obviously have

P(C)=Qo(C) C Qs (C) Qs (C)CQ1(C)=Q(C)

for 0 < s1 <s9 < 1.

For different inequalities related to these classes of functions, see [1]-[4], [6],
[9]-[37], [40]-[42] and [45]-][52].

A function h : J — R is said to be supermultiplicative if

h(ts) > h(t)h(s) for any t,s € J. (6)

If the inequality (6) is reversed, then h is said to be submultiplicative. If the
equality holds in (6) then A is said to be a multiplicative function on J.

In [53] it has been noted that if h : [0, 00) — [0, 00) with A (£) = (z 4 ¢)" ™",
then for ¢ = 0 the function h is multiplicative. If ¢ > 1, then for p € (0, 1) the
function A is supermultiplicative and for p > 1 the function is submultiplicative.
We observe that, if h, g are nonnegative and supermultiplicative, the same is
their product. In particular, if h is supermultiplicative then its product with
a power function £, (t) = ¢" is also supermultiplicative. The case of h-convex
function with h supermultiplicative is of interest due to several Jensen type
inequalities one can derive.

The following results were obtained in [53] for functions of a real variable.
However, with similar proofs they can be extended to h-convex function defined
on convex subsets in linear spaces.

THEOREM 1.6. Let h : J — [0,00) be a supermultiplicative function on J. If the
function f: C C X — [0,00) is h-convex on the conver subset C of the linear
space X, then for any w; > 0, i € {1,..,n}, n > 2 with W, := > w; >0

we have
1 n n w;
— w;x; | < h
1 ) < S0

n

) f ). (7)

In particular, we have the unweighted inequality

f(i;z> @(i)if(xi). (®)
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COROLLARY 1.7 ([27]). If the function f : C C X — [0,00) is Breckner s-
convex on the convex subset C of the linear space X with s € (0,1), then for
any z; € C, w; > 0,7 € {1,....,n}, n>2 with W,, := > 1", w; >0 we have

1 — I .
f(m;wzmz> < W ;wff(%) 9)

S
n

If (X,||]) is a normed linear space, then for s € (0,1), z; € X, w; > 0,
ie{l,..,n},n>2with W, := 3" w; >0 we have the norm inequality

n
E Wiy
i=1

COROLLARY 1.8. If the function f : C C X — [0,00) is of s-Godunova-Levin
type, with s € [0,1], on the convex subset C' of the linear space X, then for any
x, €C,w; >0,i€{l,...,n}, n>2 we have

" i=1 i=1 ¢

This result generalizes the Jensen type inequality obtained in [44] for s = 1.
Let K be a finite non-empty set of positive integers. We can define the
index set function, see also [53],

s n
<> wd (10)
=1

J(E) =3 h(w) f (2) — h (W) f (le wa> )

€K €K

where Wx := 3>, cpw; >0, 2, € C,i € K.

We notice that if h : [0,00) — [0,00) is a supermultiplicative function on
[0,00) and the function f: C C X — [0,00) is h-convex on the convex subset
C of the linear space X, then

1EK €K

THEOREM 1.9. Assume that h : [0,00) — [0,00) is a supermultiplicative func-
tion on [0,00) and the function f:C C X — [0,00) is h-convex on the convex
subset C' of the linear space X. Let M and K be finite non-empty sets of positive
integers, w; >0, x; € C, 1 € KUM. Then

J(KUM) > J(K)+J(M) >0, (14)

i.e., J is a superadditive index set functional.
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This results was proved in an equivalent form in [53] for functions of a real
variable. The proof is similar for functions defined on convex sets in linear
spaces.

COROLLARY 1.10. With the assumptions of Theorem 1.9 and if we note My, :=
{1,....,k}, then

T(My) > J (Mp_1)> ... > J(Ms) >0 (15)
and
7 O,) (16)
> e L) )+ ) £ (a5) = o) (200 )
> 0.

If we consider the functional

s (K) =Y wf |lail|” —

€K

S

E W; Ty

iceK

for s € (0,1), then we have the norm inequalities

n n S n—1 n—1 s
> ows il = | Y S wiw|| =Y wf [T = | wizs (17)
i=1 i=1 i=1 i=1
2 2 s
> .. > wa l|lz:||° — Zwﬂi >0
i=1 i=1
and
n n S
wa lil* = Zwiiﬁi (18)
i=1 i=1
>

S S S
e {4+ w5 o | = iz 4w} 2 0

where w; >0, 2, € X,i€{l,...,n},n>2.

2. MA-convex functions

We start with the following definition (see also [24]):

DEFINITION 2.1. Let A : [0,00) — [0,00) be a function with the property that
A(t) >0 for all t > 0. A mapping f : C — R defined on convex subset C' of a
linear space X is called \-convex on C if

f(ax+,6y) - Ma) f(@)+X(B) f(y)

a+f Ao+ pB) (19)
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forall a, >0 witha+ B >0 and z,y € C.

We observe that if f : C — R is A-convex on C, then f is h-convex on C
with h(t) = 34}, t € [0,1]. If f: C = [0,00) is h-convex function with /
supermultiplicative on [0, 00), then f is A-convex with A\ = h.

Indeed, if o, 8 > 0 with a4+ 3 > 0 and z,y € C then

(52 20 (55) s ()

_h(@f @) +h(5) W)
- h(a+B) '

The following proposition contain some properties of A-convex functions [24].

PROPOSITION 2.2. Let f: C — R be a A-convex function on C.
(i) If A(0) > 0, then we have f (x) >0 for all x € C;
(1) If there exists zg € C so that f (xo) > 0, then

Aa+B) < A(a)+A(B)

for all a, 8 > 0, i.e. the mapping X\ is subadditive on (0, 00).
(iti) If there exists xo,yo € C with f (xg) > 0 and f (yo) <0, then

Ao+ B) =A(a) +A(B)
for all a, 8 > 0, i.e. the mapping A is additive on (0,00) .

We have the following result providing many examples of subadditive func-
tions A : [0,00) — [0, 00) .

THEOREM 2.3 ([24]). Let h(z) = > 07, an2™ a power series with nonnegative

coefficients a,, > 0 for all n € N and convergent on the open disk D (0, R) with
R >0 or R=o0c. If r € (0, R) then the function A, : [0,00) — [0,00) given by

Ar (t) :=1In {h(h(r)} (20)

rexp (—t))
is nonnegative, increasing and subadditive on [0, 00) .

We have the following fundamental examples of power series with positive
coefficients:
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h(z):Zznzl_ , 2e€ D(0,1) (21)
n=0

h(z) :Z%z":exp(z) z €C,
n=0 "

— 1
h(z)zz 22" = cosh z, z € C;

o0
1 ” .
h(z)= Z sz 1 —sinhz, z € C;

n=0

1 1
h(z) = =1 D(0,1).
(2) Z;“Z ny—. %€ (0,1)

Other important examples of functions as power series representations with
positive coefficients are:

oo
1 on—1 1 142z
= "t =—1 D(0,1); 22

he =Y g =g (). cepO); (22)

= T'(n+3)
h(z) = Z — 20 2l —gint (2), z2€D(0,1);

VT (2n+1)n!
h(z)= Z 2n1— 122”*1 = tanh ™! (2), z2€D(0,1);

n=1

T r r
(n+aTM+HTG) , o

h(z) =2 Fi (a, 8,7, 2) :;0 nl () T (B)T (n+7)

z€ D(0,1);
where I' is Gamma function.

REMARK 2.4. Now, if we take h(z) = flzv z2€ D(0,1), then

1 —rexp(—t)
A(t)=In|———= 23
(0 = | 2= ED) (23)
is nonnegative, increasing and subadditive on [0,00) for any r € (0,1).
If we take h (z) =exp(z), z € C then
A () = [1— exp (—1)] (24)

is nonnegative, increasing and subadditive on [0,00) for any r > 0.
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COROLLARY 2.5 ([24]). Let h(z) = Y7 qanz" be a power series with nonneg-
ative coefficients a, > 0 for alln € N and convergent on the open disk D (0, R)
with R > 0 or R = oo and r € (0, R). For a mapping f : C — R defined on
convez subset C' of a linear space X, the following statements are equivalent:

(i) The function f is \.-convex with A, : [0,00) — [0,00),

0= e )

(ii) We have the inequality

h(r) J(ety) h(r) f(z) h(r) f(y)
e ) =M= -
for any o, 8 >0 with a4+ 3 >0 and z,y € C.
(i1i) We have the inequality
[ (rexp (—a))// ) [h (rexp ()Y _ () @O o)

aa:+{1‘y) —
a+pB

[ (rexp (—a — )1
for any o, 8 >0 with a4+ 3 >0 and z,y € C.
REMARK 2.6. We observe that, in the case when
Ar(t) =7 [l —exp(=t)], =0,

then the function f is A.-convex on convex subset C' of a linear space X iff

ar+ Py _ [1—exp(=a)]f(z)+[1—exp(=H)] f(y)
(557 I—exp(—a— ) 0
for any o, 8 >0 with a4+ 3 >0 and z,y € C.
We observe that this definition is independent of r > 0.
The inequality (27) is equivalent with
P (aa: + 5y> <& B)lexp(e) =1 f(z) +exp(a)fexp (5) = US W) o
atp )= oxp (ot f) -1

for any o, 8 >0 with a4+ 3 >0 and z,y € C.

We can give now more examples of subadditive functions that can be used
to define A-convex mappings on linear spaces.

Let I = (0,00) or [0,00). A function h : I — R is called superadditive
(subadditive) on I if

(iii) h(t+s) > (L)h(t)+h(s) for any t,s € T
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and nonnegative (strictly positive) on I if, obviously, it satisfies
(iv) h(t) > (>)0for each t € I.
The following result holds:

THEOREM 2.7. If h : I — [0,00) is a superadditive (subadditive) function on I
andp>1 (0 <p < 1) then the function

U, 1 —[0,00), 0, () =t " vh(t) (29)
is superadditive (subadditive) on I.

Proof. First of all we observe that the following elementary inequality holds:
(a4 B)’ > (<)o + 87 (30)
forany a,f >0andp>1(0<p<1).

Indeed, if we consider the function f, : [0,00) = R, f, (t) = (t+ 1) — 7
we have f) (t) = p [(t—l— 1Pt —tp_l} . Observe that for p > 1 and ¢t > 0
we have that le> (t) > 0 showing that f, is strictly increasing on the interval
[0,00). Now for ¢t = 3 (8>0,a>0) we have f,(t) > f,(0) giving that

P P
(9 + 1) - <9) > 1, i.e., the desired inequality (30).

B B
For p € (0,1) we have that f, is strictly decreasing on [0, c0) which proves

the second case in (30).
Now, if h is superadditive (subadditive) and p > 1 (0 < p < 1) then we have
by (30) that

RP (t+5) > () [h () + k()P > (K)hP () + hP (s) (31)

for all ¢, s € I. Utilising (31) we have for any ¢, s € I that

hP (t hP (t) + hP ¢ B0 5. K)
t(::) (=) (iis SR HZ ) (82)
h(t) 1" h(s) 1P
epel el
B t+s S

Since for p > 1 (0 < p < 1) the power function g (t) = t¥ is convex (concave),
then

(33)

(<) t- :Ll(/t[)) +s- 2741(;92 p B h(t)tlil/p‘i’h(s) 51,1/17 P
- t+s - s

for any t,s € I.
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By combining (32) with (23) we get

hP (t + s)
t+s

h(t)t'=YP 4 h(s)s'—1/P P
t+s

> (<

)

which is equivalent with

h(t+s)
(t+s)"/P

h(t)t'=YP £ h(s)s'—1/P
t+s

> (2)

i.e., by multiplying with ¢ + s,
Uy (t+s) 2 () Uy () + ¥y (s)
for any ¢, s € I and the proof is complete. O

COROLLARY 2.8. If h: I — [0,00) is a superadditive (subadditive) function on
I andp,q>1(0<p,q<1) then the two parameter function

Vg i 1= [0,00), W, (1) = t70:75) R (1) (34)
is superadditive (subadditive) on I.

Proof. Observe that U, , (t) = [¥, (¢)]? for t € I. Therefore, by Theorem 2.7
and the inequality (30) for ¢ > 1 (0 < ¢ < 1) we have that

Upqt+s)=[V,(t+ )] > (<) [Py () + ¥y (s)]*
> (<) [T, ()7 + [Ty (8)]7 = Tpg (1) + Ty q ()

for any t,s € I and the statement is proved. O

REMARK 2.9. If we consider the function ), (t) := tP~ hP (t) then for p > 1
(0<p<1)andh:I—[0,00) a superadditive (subadditive) function on I, the
function 1, is also superadditive (subadditive) on I.

The following result also holds:

THEOREM 2.10. If h : I — (0,00) is a superadditive function on I and 0 <
m < 1, then the function

=

h(t)

®,: 1 [0,00), P, (t) (35)

1s subadditive on I.
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Proof. Let m := —p € [—1,0). For m < 0 we have the following inequality
(a+p8)" <a™+pm (36)

for any a, 8 > 0. Indeed, by the convexity of the function f, (¢) = "™ on (0, c0)
with m < 0 we have that

(a+B)" <2m7 (o™ + ™)

for any a, 3 > 0 and since, obviously, 2~ ! (o™ + ™) < o™ + 8™, then (36)
holds true.
Taking into account that h is superadditive, then by (36) we have

R™ (t+45) < [h(t) +h(s)]™ <A™ (t) + K™ (s) (37)
for any ¢, s € I. By (36) we have that
h™ (t 4+ s) < h™ () + h™ (s)
t+s t+s
[ ]
t+s
i) e[
t+s
By the concavity of the function g (¢) = ¢t~ with m € [—1,0) we also have

(38)

tl/nz Sl/m -m

S | TS e

- t+s (39)

Making use of (38) and (39) we get

$1/m sl/m -m

hr(tts) |t Rm TS Re)
t+s t+s

for any ¢, s € I, which is equivalent to

$l+1/m glt1/m

hilt+s) o 7@ © 56
(t+s) V™™ tts

and, with
(t+ S)1+1/m t1+1/m 81+1/m

hi+s) = R T h(s)

for any t,s € I.
This completes the proof. O
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The following result may be stated as well:

COROLLARY 2.11. If h : I — [0,00) is a superadditive function on I and 0 <
p,q < 1 then the two parameter function

D, .1 —[0,00),P,,(t) =

(40)

1s subadditive on I.

Proof. Observe that @, , (t) = [®, (¢)]? for ¢ € I. Therefore, by Theorem 2.10
and the inequality (30) for 0 < ¢ < 1 we have that

Dy (t+5) =[Py (t+ 5)]q <[P, (t) + P, (3)]q
<[ )] + (@), ()] = Py (1) + Pp g (5)

for any t,s € I and the statement is proved. O

P!

REMARK 2.12. If we consider the function ¢, (t) := oy then for0<p<1

and h : I — [0,00) a superadditive function on I, the function 1, is subadditive
on I.

3. Jensen’s type inequalities

The following inequality of Jensen’s type holds:

THEOREM 3.1. Let A : [0,00) — [0,00) be a function with the property that
A(t) > 0 for allt > 0 and a mapping f : C — R defined on convex subset C of
a linear space X. The following statements are equivalent:

(i) f is A-convex on C;

(i) For all x; € C and p; > 0 with i € {1,...,n}, n > 2 so that P,, > 0 we
have the inequality

1 — 1
f <Pn ;mm) < NPy

Proof. 7 (it) = (i)”. Follows for n = 2.

”(i) = (i4)”. For n = 2 the inequality (30) follows by the Definition 2.1.

Assume that the inequality (41) is true for 2,...,n—1 (n > 3) and let prove
it for n.

Let p; > 0 with ¢ € {1,...,n}, n > 3 so that P, > 0. If P,_; = 0, then
p1 = ...=pp—1 =0 and p, > 0 and the inequality (41) becomes

AO) (f (1) + oo+ f (@a1)) + A (n) [ (2n)
A (pn) ’

M:

A(pi) f (i) - (41)

i=1

f(zn) <
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which is equivalent to

AO)(f (1) + o + f (Tn-1)) 2 0.

Since f is A-convex on C' then for 8 > 0 and x € C we have

0z + By AO) f(z)+X(B) f(y)
f( 0T 3 )< NG

from where we get 0 @)
A0) f(x
O

253

(42)

and since A (8) > 0 we get A (0) f (x) > 0. This implies that the inequality (42)

is true for any x1,...,z,-1 € C.
Now, let assume that P, 1 > 0. Then we have

Pn i—1 o Pnfl"’_pn

IN

NPact) f (7 X0 i) + A () £ (20)

A(Pn)

By the induction hypothesis we have

and thus, by the above inequality, we can state that

A1) 5y S AP £ (@) + A (n) £ ()

1 n
/ (Pn ;m%) = )\(Pn)

and the theorem is thus proved.

O

COROLLARY 3.2. Let f : C — R be a A-convez function on C and o; € [0,1],
i € {1,...,n} with .1, o; = 1. Then for any x; € C with i € {1,...,n} we

have the inequality

n

f <; Oéil'i) < ﬁ ;)‘(ai)f(xi),

(43)
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In particular, we have

f (Il ks n +In) <c(n) flo)+ n *J (@) (44)
where .
c(n) = n:((fs), n>2

We have the following version of Jensen’s inequality:

COROLLARY 3.3. Let f : C — R be a A\-convez function on C and z; € C and
p; > 0 withi € {1,...,n}, n > 2 so that P, > 0. Then we have the inequality

f <]_-1,n ;pz%) < ﬁ > A (}];;) f (). (45)

i=1

The proof follows by (43) for o;; = &

COROLLARY 3.4. Let h(z) = Y7 janz" a power series with nonnegative co-
efficients a,, > 0 for all m € N and convergent on the open disk D (0, R) with
R >0 or R = oco. For a mapping f : C' — R defined on convex subset C' of a
linear space X, the following statements are equivalent:

(i) The function f is \r-convex with A, : [0,00) — [0, 00)

Ar (f) :=1n [Wfﬁﬁ_m}

on C;
(i) We have the inequality

[fz(reilla(?)—l%))r(l’lnzylpu ﬁ[rexp)pi))r(m (46)

for any x; € C and p; > 0 with i € {1,...,n}, n > 2 so that P, > 0.
Now, let define the mapping:

Jrlrpvx f j{:A pz z ( jz:lhxz>a

i€l zEI

where p := (p;);ey > 0, I € F(N) := {I C N| I is finite}, z := (2;),cy C C
and Pr:= ), .;pi > 0.
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THEOREM 3.5. Assume that f : C — R is a A-convex function on C and p, x
are as above. Then
(i) For all I, K € F (N)\ {0} with I N K =0 we have the inequality

JUUK,p,x, f) > J(,px f)+J(Kpzf) >0, (47)

i.e. the mapping J (-,p,x, f) is superadditive as an index set map on F (N);
(ii) For all I, K € F (N) \ {0} with K G I one has the inequality

J(Ipx, f) = J(K,pzf) =0, (48)

i.e. the mapping J (-, p,x, ) is monotonic nondecreasing as an index set map

on F(N).
Proof. (i) Let I, K € F(N)\ {0} with I N K = (, then

JUIUK,p,z, f)
=D Xpi) f (@) + D Mpy) f ()
el JEK
1
—ANPr+Pr)f Pr+ Pr (;Pz% +§ijj)]

=D Api) f @)+ D Mpy) f ()

iel jEK
Py > ic1 DiTi Py > jeK Pitj
— AP+ P, ic J :
(P + K)f[PI+PK( P B P P

As f is A-convex function on C, then

f{ P; (Ziejpil‘i)+ Py (Zjexpj%')]

Pr+Pg \  Pr Pr+Pc \ Px
_ A(Pr) f (ZP%) + A\ (Pg) f (ZP#)
N )\(P] JrPK) ’
Therefore
el jeK
Zi 1 Pi%; Z‘erjIj
= A(Pr) f (%) -\ (Pg) f (JPK)

=J(I,px f)+J(K,p,z, f)
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and the inequality (47) is proved.
(ii) By the use of the inequality (47) we have

J(I,pa f) = JEUI\K),px, f)>J(Kpazf)+J(I\Kpz,f)
> J(K.puzf)
since J (I \ K,p,x, f) > 0, and the inequality (48) is proved. O

With the above assumptions, and if p := (p;),cyy > 0 we can consider the
sequence

i=1 =1

COROLLARY 3.6. Assume that f : C' — R is a A-convex function on C, then

Jn(p,a:,f)ZJn_1(p,a:,f)Z...ZJQ(p,x,f)ZO (49)

and we have the inequality

Jn (D, f) (50)
> | Jnax {A(pi) f@i) +A(p;) f(x5) = XN(pi +pj) f (W)}
>0

for alln > 2.

For a function f that is A,-convex on C' with A, : [0,00) — [0, 00) and

M= | e )

we can consider the functional

T [reeiie]
h(rexp(—p;))

QUp.a f)=—"5 :
[ h(r) ]f(ri Cierpici)
h(rexp(—Pr))

where p := (pi);cy > 0, I € F(N) := {I CNJ| I is finite}, z := (), C C
and Pr:= ), ;pi > 0.

COROLLARY 3.7. Assume that f : C — R is a A\.-convex function on C and p,
x are as above. Then
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(i) For all I, K € F (N)\ {0} with I N K =0 we have the inequality

Q(IUK7p7x7f)ZQ(Iﬂp7x7f)Q(K7p7‘r7f)7 (51)
i.e. the mapping Q (-,p,x, f) is supermultiplicative as an index set map on
F(N);
(i1) For all I, K € F (N)\ {0} with K & I one has the inequality
QU,px f)=2Q(K . pa f)=1 (52)

The proof follows by Theorem 3.5 on observing that
QI px f)=J(pzf)

for A = A,.. In particular, if we consider the sequence

. I(xs)
H [h(T eXp( pJ)}

Qn (p,, f) = —= > 2
( ) { h(r) } f(ﬁ ST pizi)
h(rexp(—Py))

then by Corollary 3.6 we have that
Qn (2, f) 2 Qu-1(p2, f) 2 .. 2 Q2(p,z, f) 21 (53)

and

{h( h(r) }f(ri) [ h(r) }f(ﬂ?j)

7 exp(—pi)) h(r exp(—p;))

Qn (p, 7, f) >  max > 1. (54)

1<i<j<n [M}f(piiw(mwﬁpﬂj))
h(rexp(—pi—p;))

REMARK 3.8. If the function f: C' — R is a A-convex function on C with
>\T(t) = 1—exp(—t), t207

then for any x; € C and p; > 0 with i € {1,...,n}, n > 2 so that P, > 0 we
have the Jensen’s type inequality

n

( e me) < e (B Z [ —exp (=p)] f (). (55)

i=1

If a; €10,1], 4 € {1,...,n} with Y;_, a; = 1, then for any z; € C with
i €{1,...,n} we also have the inequality

f (Z ai%‘) < efel Z [1—exp(—ay)] f(z:). (56)
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Finally, if p; > 0 with i € {1,...,n}, n > 2 so that P, > 0, then for any xz; € C
with i € {1,...,n} we have the inequality:

f (; lex> < Z_nl {1 — exp (ﬁ)] fay. 6

4. Inequalities for double sums
We have the following result:
THEOREM 4.1. Let f : C' — R be a \-convez function on C and x; € C and

p; > 0 with i € {1,...,n}, n > 2 so that P, > 0. For a, 8 > 0 with a4+ 5 >0
we have the inequalities

Ale) A(B) 1 < 1 &
[A(aw) * )\(a-*-ﬁ)} X(P) PIRYCARACH NG ;A(pi) (58)

i=1

1 AL az; + fx;
mZZMPi)/\(pﬂf (O¢+5>

i=1 j=1

1 < azi + Bp YI 1 i 1 ¢
/\(Pn)ZA(pi)f< a+ﬂj >2f<Pn§pi$i>-

=1

Proof. From the A-convexity of the function f on C' we have

MO () AL 5, (05 ) )
for any 4, € {1, ..,n}. If we multiply (59) by
W >0, i,j € {1,..,n}
and sum over i and j from 1 to 1 we get
ZZ ey MR e
3
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Since

n on (o) A(B) A(pi) A (p))

23 [savn! @ s’ @) R

L M) NSNSA@A®R) o A SRS AEIAD)

TNarA i w ) L ar g a e )
Al 1 n n

A (a(+)ﬁ) X2 (Py) ;A i) f (”"O;A ()

Ao+ B8) A2 (Py,) 2:: Aps) [ (25) ; A(pi)

A (@) (B) 1 n 1 n
_[A<a+6>+ (oz—l—ﬁ} ZA pi) ZA(P)ZA(M,

i=1 n/i=1

then by (60) we get the first inequality in (58).
By the Jensen inequality we have the inequality

S (5557) 21 (B (55557

_ f <Oé$i + ﬂﬁ Zj_lpjx])

a+

for all i € {1,...,n}.
If we multiply this inequality by ;‘((1';7‘)) and sum over ¢ from 1 to n we get

ax; + P
ZZA (p:) (a+ﬁj>

=1 j=1
(v0) f aw; + Bp- Y0 it
pi ot

and the second inequality in (58) is proved.
If we apply Jensen inequality again we get

ax; + ﬂp% Z;-Lzl DPjx;
a+f

1 — al‘H—ﬁp% S P 7 1 —
_f<Pn;Pi< oz-i—ﬁj ))f(PnZPzéEz)

and the last part of (58) is proved. O
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COROLLARY 4.2. Let f : C — R be a A-convex function on C and x; € C' and
p; > 0 with i € {1,...,n}, n > 2 so that P, > 0. We have the inequalities

) 2\ (o 1 <& R
in (W(ai) oy gx 01 ) 5y A9 (61)
> 5 z w1 ("5

| \%

T et () ((m5)

i=1
We have the following result as well:
THEOREM 4.3. Let f : C' — R be a A\-convez function on C and x; € C and

pi > 0 withi € {1,...n}, n > 2 so that P, > 0. For a,3 > 0 with a+ 3 > 0
we have the inequalities

A(a) A(B) L&
{)\(a+5)+ (a—f—ﬁ} (P2) ;Z:: (pip;) f (62)

RPN (axawx])”(m;pm)'

>

Proof. From the A-convexity of the function f on C' we have

M) f(z)+X(B) f(x;) az; + Bz,

Ve (M) o
for any 7,5 € {1,...,n}. If we multiply (63) by

A (pip;)

/\(P2)>0 i,7€{l,....,n}
and sum over ¢ and j from 1 to n we get

i) +A j
ZZA (oip;) [ )f(i()a‘: 6()5)]"(%)} (64)

d— oz + Bz
Zw,a;; (Piz;) (M)
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We have

" < M) f () +X(B) f (2
ZIZM[ ° &2;;)’ =

)\ 6 n n
+5 ZZ/\ plp] w;;A(png)f(z])

1=1 j=1

and since

n n n n

ZZ/\(Pipj)f(xi) = ZZ/\(pz‘pj)f(xj)

i=1 j=1 i=1 j=1

then we get from (64) the first inequality in (62).
By Jensen’s inequality we have

1 ax; + fx
A (pipj) ( j)
(Zz 123 1p1py) 121121 ’ a+f

Y S B o e Wﬁ%)
= P 123 1pzpjzzppj< a+p

i=1 j=1
1 n
=/ (Pn Eﬂ Zh‘%‘)

and the last part of (62) is thus proved. O

COROLLARY 4.4. Let f : C — R be a \-convez function on C and z; € C and
p; > 0 withi € {1,...,n}, n > 2 so that P,, > 0. We have the inequalities

. 2) (@)
() s B o
> ;;Mpipj)f (£ 2%) > 5 (Pzp)

=1 j= i=

It is known that if (X,|-||) is a normed linear space, then the function
f(x)=|=z|”, s € (0,1) is Breckner s-convex on X.

If , € X and p; > 0 with ¢ € {1,....,n}, n > 2 so that P, > 0, then
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from (61) we have

1]

Pi gpf;ﬁ pr G (66)
2 P29 ZZ xz—’—xj

=1 j=1

1 n
xi*‘}ﬁ’Ejj:1lﬁxj
2

1 & ’
F vaxz
=1

|~
' M

S
Pn -
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