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Expressing forms as a sum of pfaffians
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The author is very glad for this opportunity to leave a tribute in honor of
Emilia. We met at the beginning of our careers and I always had the feeling

that we share the same global view of Mathematics and its applications.

Abstract. Let A = (aij) be a symmetric non-negative integer 2k×2k
matrix. A is homogeneous if aij + akl = ail + akj for any choice of the
four indexes. Let A be a homogeneous matrix and let F be a general
form in C[x1, . . . xn] with 2 deg(F ) = trace(A). We look for the least
integer, s(A), so that F = pfaff(M1) + · · · + pfaff(Ms(A)), where the
Mi = (F i

lm) are 2k× 2k skew-symmetric matrices of forms with degree
matrix A. We consider this problem for n = 4 and we prove that
s(A) ≤ k for all A.
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1. Introduction

Let F ∈ C[x1, . . . , xn] be a general form and A = (aij) a 2k × 2k integer
homogeneous symmetric matrix, whose trace (tr(A) in the sequel) is equal to
twice the degree of F (degF ). In this paper we study representations of F
as a sum of pfaffians of skew-symmetric matrices of type M = (Fij) where
degFij = aij .

In case the number of variables is two then forms F in C[x1, x2] decompose
as a product of linear forms. It follows that if A is a matrix as above, with
no negative entries and with tr(A) = 2 deg(F ), then F is the pfaffian of a
subdiagonal matrix whose degree matrix is A (i.e. a matrix of type

0 p1 0 0 0 . . . 0
−p1 0 0 0 0 . . . 0

0 0 0 p2 0 . . . 0
0 0 −p2 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 0 pk
0 0 0 0 0 −pk 0
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with each pi equal to a suitable product of linear forms).

For 3 variables, the problem was considered by Beauville who observed, in
section 5 of [2], that a general form of degree d is the pfaffian of a 2d × 2d
skew-symmetric matrix of linear forms. Indeed Beauville’s argument applies
to any symmetric integer homogeneous matrix with non-negative entries. We
give below a proof of the result, in a more geometric setting (see section 3).

When the number of variables grows, then a similar property fails as soon
as k becomes big. In Proposition 7.6 of [2] Beauville noticed that one cannot
expect that a general form of degree ≥ 16 in four variables is the pfaffian of
a matrix of linear forms, just by a count of parameters. We refer to [9] for a
similar result for matrices of quadratic forms, and to [5] for an extension to
other constant or almost constant matrices. In any setting, except for partic-
ular numerical cases (which become suddenly unbalanced when the size of the
matrix grows), one expects that a general form is not the pfaffian of a skew-
symmetric matrix of forms with fixed degrees. Indeed, even in the case of 4×4
matrices and 4 variables, we do not know a complete description of matrices
A = (aij), with trace 2d, such that the general form of degree d is the pfaffian
of a skew-symmetric matrix of forms (Fij) with deg(Fij) = aij . The problem
seems rather laborious, and we refer to [4] for a discussion.

The problem is indeed related to the existence of indecomposable rank 2
bundles E without intermediate cohomology (aCM bundles) on the hypersur-
face defined by F = 0 (which we will indicate, by abuse, with the same letter
F ). In turn, this is equivalent to the existence of some arithmetical Gorenstein
subscheme of codimension 2 in F (thus codimension 3 in the projective space),
via the algebraic characterization of codimension 3 Gorenstein ideals, given
in [3]. For instance, F is a pfaffian of a 4× 4 skew-symmetric matrix of forms
if and only if there exists a subscheme of F which is complete intersection of 3
forms, whose degrees are related with the degrees of the entries of the matrix.
This is the point of view under which the problem is attached in [4], and see
also [14] for a similar discussion.

In the present note, we make one step further. Since in most cases one can-
not hope to express a general form as the pfaffian of a skew-symmetric matrix
of forms with pre-assigned degree matrix A, then we ask for the minimum s(A)
such that a general form is a sum of s(A) pfaffians of skew-symmetric matrices,
with degree matrix A.

We consider the case of forms in four variables and show that the complete
answer s(A) ≤ 2 follows soon for 4× 4 matrices A, while for 2k × 2k matrices
with k > 2, we provide a bound for the number s(A), i.e. s(A) ≤ 2k. The
(weak) sharpness of this bound is discussed in the last section. As showed in [2]
and [5], at least for small values of the entries of the integer matrix A (e.g. for
matrices of linear forms), the number of pfaffians needed to write a general
form can be smaller than our bound. The problem of finding a sharp bound
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for the number s(A) is open.

The procedure is a mixture of algebraic and geometric arguments, involving
computations of the dimension of secant varieties and Terracini’s Lemma, as
well as the description of tangent spaces to the varieties of forms that can be
expressed as pfaffians, given in [13], [12] or [1].

We mention that, of course, one could ask a similar question for the de-
terminant of a general matrix of forms. In other words, fixing a homogeneous
integer matrix A, one could ask for the minimum s′(A) such that the general
form of degree d = tr(A) is the sum of the determinants of s′(A) matrices of
forms, with degree matrix A. This is indeed the target of a series of papers [8],
[6], [7], where it is proved that, in n ≥ 3 variables, s′(A) ≤ kn−3 for a k × k
matrix A.

Let us end by noticing that the problem addressed in this note, of clear
algebraic and geometric flavor, turns out to also have a connection with some
applications in control theory. Indeed, if the algebraic boundary of a region Θ
in the plane or in space is described by the pfaffian of a matrix of linear forms,
then the study of systems of matrix inequalities, whose domain is Θ, can be
considerably simplified. We refer to the papers [15] and [11], for an account of
this theory. We believe that expressing Θ as a sum of determinants or pfaffians
can have some application for similar problems.

2. The geometric construction

We work in the ring R = C[x0, . . . , xn], i.e. the polynomial ring in n + 1
variables with coefficients in the complex field. By Rd we indicate the vector
space of homogeneous forms of degree d in R.

For any degree d, the space Rd has an associated projective space PN with

N := N(d) =

(
n+ d

n

)
− 1.

For any choice of integers aij , 1 ≤ i, j ≤ 2k, consider the numerical 2k× 2k
matrix A = (aij).

We will say that a 2k×2k matrix M = (Fij), whose entries are homogeneous
forms in R, has degree matrix A if for all i, j we have deg(Fij) = aij . In this
case, we will also write that A = ∂M .

Notice that when for some i, j we have Fij = 0, then there are several
possible degree matrices for M , since the degree of the zero polynomial is
indeterminate.

We will focus on the case where A is symmetric and M is skew-symmetric.

The set of all skew-symmetric matrices of forms, whose degree matrix is a
fixed A, defines a vector space whose dimension is

∑
i<j dim(Raij ). From the
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geometrical point of view, however, we will consider this set as the product of
projective spaces

V(A) = Pr12 × · · · × Pr2k−1 2k

where rij = −1 + dim(Raij
).

We say that the numerical matrix A is homogeneous when, for any choice
of the indexes i, j, l,m, we have

aij + alm = aim + alj .

All submatrices of a homogeneous matrix are homogeneous.
If a skew-symmetric 2k× 2k matrix of forms M has a homogeneous degree

matrix, then the pfaffian of M is a homogeneous form. The degree of the
pfaffian is one half of the sum of the numbers on the main diagonal of A = ∂M ,
i.e. tr(A)/2. It is indeed immediate to see that when A is symmetric and
homogeneous of even size, then the trace tr(A) is even.

Let us recall a geometric interpretation of the problem, based on the study
of secant varieties, which uses the classical Terracini’s Lemma. This a standard
construction was already used in [4].

In the projective space PN , which parametrizes all forms of degree d, we
have the subset U of all the forms which are the pfaffian of a skew-symmetric
matrix of forms whose degree matrix is a given A. This set is a quasi-projective
variety, since it corresponds to the image of the (rational) map V(A) → PN ,
which sends every matrix to its pfaffian (it is undefined when the pfaffian is
the zero polynomial). We will denote by V the closure of U . It is clear that V
is irreducible, by construction.

Our main question can be rephrased by asking: what is the minimal s such
that a general point of PN is spanned by s points of V ? In classical Algebraic
Geometry, (the closure of) the set of points spanned by s points of V is called
the s-th secant variety σs(V ) of V . Thus, we look for the minimal s such that
σs(V ) = PN . Of course, this is equivalent to ask that the dimension of σs(V )
is N .

Usually, when dealing with similar problems on secant varieties, one can
hope to compute the dimension of σs(V ) as the dimension of a general tangent
space to σs(V ). Indeed one can invoke the celebrated Terracini’s Lemma:

Lemma 2.1. (Terracini) At a general point F ∈ σs(V ), expressed as a sum
F = F1 + · · ·+Fs, Fi ∈ V for all i, the tangent space to σs(V ) equals the span
of the tangent spaces to V at F1, . . . , Fs.

Thus, for our purposes, it is crucial to obtain a characterization of the
tangent space to V at a general point F . This has been obtained (see e.g. [13])
via the submaximal pfaffians of matrices.
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Indeed, for a skew-symmetric matrix of forms M of even size 2k × 2k,
let us denote as submaximal pfaffians the pfaffians of the (skew-symmetric)
submatrices of M obtained by erasing two rows and the two columns with the
same indexes.

Then we have the following.

Proposition 2.2. With the previous notation, let F be a general element in
V , F = pfaff(M), where M = (Fij) is a 2k × 2k skew-symmetric matrix of
forms, whose degree matrix is A.

Then the tangent space to V at F coincides with the subspace of Rd/〈F 〉,
generated by the classes of the forms of degree d in the ideal J = 〈F,Mij〉,
where the Mij’s are the submaximal pfaffians of the matrix M .

Proof. See [1] or section 2 of [13] or [12]. It can be obtained also by a direct
computation over the ring of dual numbers.

For instance, when the degree matrix A of M has all entries equal to a,
then J is generated by

(
2k
2

)
forms of degree a(k − 1).

It follows immediately from the previous propositions and Terracini’s lem-
ma, that:

Remark 2.3. We have the following equivalences:
- a general form of degree d is the sum of s pfaffians of 2k × 2k matrices,

all having degree matrix A
if and only if
- the span of s general tangent spaces to the variety V of pfaffians is the

whole space PN

if and only if
- for a general choice of s matrices of forms M1, . . .Ms, of type 2k × 2k,

with ∂Mi = A for all i, the ideal generated by the submaximal pfaffians of all
the Mi’s coincides, in degree d, with the whole space Rd.

Thus, what we are looking for is the minimal s such that, for general skew-
symmetric matrices G1, . . . , Gs with degree matrix A, the ideal I generated by
their submaximal pfaffians coincides with the whole polynomial ring in degree
d = tr(A)/2.

Remark 2.4. If M is a 2k × 2k skew-symmetric matrix of forms with ho-
mogeneous degree matrix A, then the pfaffian of M is essentially invariant if
we permute rows and the corresponding columns of M . Consequently, we can
arrange A = (aij) so that

a11 ≥ a21 ≥ · · · ≥ a2k 1.

We will say that A is ordered if it satisfies the previous inequalities.
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Notice that A is symmetric, thus if A is ordered then a11 ≥ a12 ≥ · · · ≥ a1 2k.
Since A is homogeneous, when A is ordered aij ≥ ai′j for some j implies

that aij′ ≥ ai′j′ for any j′. It follows that a homogeneous symmetric ordered
matrix A has a11 as its maximal entry and a2k 2k as its minimal one. Moreover
columns are non-increasing going downward, while rows are non-increasing go-
ing rightward.

Notice also that when A is symmetric and homogeneous, then the entries of
the diagonal of A are either all odd or all even. Indeed for any i, j one has

aii + ajj = aij + aji = 2aij .

3. The case of ternary forms

As mentioned in the introduction, the fact that any form of degree d in 2 vari-
ables is the pfaffian of a skew-symmetric matrix with prescribed degree matrix
A is trivial. Thus the first relevant case concerns forms in three variables.

For three variables, the construction of pfaffian representations of forms via
the existence of aCM rank 2 bundles, given by Beauville in section 5 of [2],
proves that the following holds:

Theorem 3.1. Let A = (aij) be a non-negative symmetric homogeneous integer
matrix of even size, with trace 2d. Then a general homogeneous form of degree
d in three variables is the pfaffian of a skew-symmetric matrix of forms G with
∂G = A.

Indeed, Beauville states the theorem only for matrices of linear forms. For
completeness, we show and inductive method which, starting with Beauville’s
claim, proves the statement for any non-negative matrix A.

We have the chance, in this way, to introduce our inductive method for the
study of pfaffian representations of forms in more variables.

Let us consider a (2k − 1) × (2k − 1) integer matrix A′ = (a′ij), which is
moreover symmetric, non-negative, ordered and homogeneous. Notice that the
trace of A′ is equal to

tr(A′) = a12 + a23 + · · ·+ a2k−2 2k−1 + a2k 1.

Let G′ be a skew-symmetric matrix of general forms, with degree matrix A′.
The submaximal pfaffians of G′, i.e. the pfaffians of the (2k−2)×(2k−2) matri-
ces obtained by erasing one row and the corresponding column of G′,determine
an ideal I(G′) whose zero-locus is an arithmetically Gorenstein subscheme of
codimension 3, by the celebrated structure theorem of Buchsbaum and Eisen-
bud ([3]). Moreover, we have a resolution of I(G′) of type

0→ R′(−m)→ ⊕R′(−rj)→ ⊕R′(−si)→ I(G′)→ 0
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where R′ is the polynomial ring R′ := C[x, y, z], and m is the trace of A′. Since
we are working in dimension 2, the ideal I(G′) defines the empty set in P2, and
the resolution shows that I(G′) coincides with the whole polynomial ring in all
degrees d ≥ tr(A′)− 2.

Lemma 3.2. Let G be a general skew-symmetric matrix of forms in three vari-
ables, of odd size (2k − 1) × (2k − 1), whose degree-matrix A is non-negative
and homogeneous. Call I the ideal generated by the submaximal pfaffians of
G, i.e. the pfaffian of the submatrices obtained by erasing one row and the
corresponding column of G. Then the multiplication map by a general linear
form L defines a surjection (R′/I)d−1 → (R′/I)d for all d ≥ tr(A)/2− 1.

Proof. Since G is general, by [10] R′/I is artinian and arithmetically Gorenstein
and enjoys the weak Lefschetz property. The conclusion follows since the socle
degree of R′/I is at most tr(A)− 2.

Proof of Theorem 3.1. We may assume that A is ordered and we will make
induction on the trace of A. As explained in Remark 2.4, the entries of the
diagonal of A are either all even or all odd. If the entries are even, we use as
basis for the induction the null matrix, for which the statement is trivial. If
the entries are odd, we use the matrix with all the entries equal to 1, for which
the statement holds by [2] Proposition 5.1.

For the inductive step, let B be the matrix obtained by A by subtracting 1
to the first row and the first column (hence subtracting 2 from a11). We have
tr(B) = tr(A) − 2 and by induction the theorem holds for B. Thus if H
is a general matrix of forms with degree matrix B, then by Remark 2.3 the
submaximal pfaffians of H generate an ideal I(H) which coincides with R′ in
degree ≥ tr(A)/2− 1.

Consider the symmetric matrix G′ obtained from H by erasing the first row
and the first column. Then G′ is a general skew-symmetric (2k − 1) × (2k −
1) matrix of forms, whose degree matrix A′ corresponds to A mnus the first
row and the first column. Call I(G′) the ideal generated by the submaximal
pfaffians of the G′. As observed in Lemma 3.2, the multiplication map by a
general linear form L determines a surjection (R′/I(G′))d−1 → (R′/I(G′))d for
all d ≥ tr(A′)/2 − 1. In particular, we get that LI(H) + I(G′) coincides with
R′ in all degrees tr(B)/2 + 1.

Let G be the matrix obtained from H by multiplying the first row and
column by L. We have ∂G = A and moreover the ideal I(G) generated by the
submaximal pfaffians of G contains LI(H) + I(G′). The claim follows from
Remark 2.3.

We will need in the next section a technical results on submaximal pfaffians
of skew-symmetric matrices of odd size. As above, the submaximal pfaffians of
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a skew-symmetric matrix G of type (2k− 1)× (2k− 1) are the pfaffians of the
submatrices obtained by erasing one row and the corresponding column of G.

Proposition 3.3. Let Let A = (aij) be a non-negative ordered symmetric ho-
mogeneous integer matrix of odd size (2k− 1)× (2k− 1), k > 1. For a general
choice of k matrices of ternary forms G1, . . . , Gk with ∂Gi = A, the submaxi-
mal pfaffians of all the Gi’s generate an ideal I which coincides with the ring
R′ in degree d ≥ (a11 + tr(A))/2.

Proof. Assume that all the entries of A are equal to a. Then start with a
general 2k × 2k skew-symmetric matrix G, with all entries of degree a, and
consider the matrices Gi obtained from G by erasing the i-th row and column.
Observe indeed that for such matrices G1, . . . , Gk the ideal I coincides with
the ideal generated by the submaximal pfaffians of G. Thus the claim follows
by Theorem 3.1, since the pfaffian of G has degree equal to (a11 + tr(A))/2.

In the general case, assume that A is ordered and let B be the matrix
obtained from A by decreasing the first row and column by 1. Assume the
claim holds from B. Notice that (b11 + tr(B))/2 = d − 2. Take k general
skew-symmetric matrices of forms H1, . . . ,Hk, with ∂Hi = B. Then the ideal
I ′ generated by the submaximal minors of the Hi’s coincides with R′ in de-
gree (b11 + tr(B))/2 = (a11 + tr(A))/2 − 2. Let I1 be the ideal generated
by the submaximal pfaffians of G1. By Lemma 3.2 the multiplication map
(R′/I1)d−2 → (R′/I1)d−1 surjects. Let G2, . . . , Gk be the matrices obtained
from the Hi’s by multiplying the first row and column by a general linear
form L. Then ∂Gi = A and the ideal I ′′ generated by the submaximal pfaf-
fians of H1, G2, . . . , Gk contains LI ′ + I1, thus it coincides with R′ in degree
d−1. Let now I2 be the ideal generated by the submaximal pfaffians of G2. By
Lemma 3.2 the multiplication map (R′/I2)d−1 → (R′/I2)d surjects. Let G1 the
matrix obtained from H1 by multiplying the first row and column by a general
linear form L. Then ∂G1 = A and the ideal generated by the submaximal
minors of G1, . . . , Gk contains I2 + LI ′′, thus it coincides with R in degree d.
Hence the claim holds for A.

The proof is concluded by observing that any symmetric, homogeneous
matrix A reduces to a matrix with constant entries by steps consisting in sub-
tracting 1 from one row and one column.

4. The four by four case

We move now to the case of quaternary forms (and surfaces in P3). For 4× 4
matrices a complete answer to the problem of the pfaffian representation of
forms is given by the following.

Theorem 4.1. Let A = (aij) be a 4 × 4 symmetric homogeneous matrix of
non-negative integers. Let d = tr(A)/2. Then a general form of degree d in
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C[x1, . . . , x4] is the sum of two pfaffians of skew-symmetric matrices, whose
degree matrix is A.

Proof. Let M = (Mij) be a general 4×4 skew-symmetric matrix of forms, with
∂M = A. If F is the pfaffian ofM , then Proposition 2.2 tells us that the tangent
space at F of the variety V (of forms which are pfaffians of matrices with
degree matrix A) is generated by the 2× 2 submaximal pfaffians of M . These
pfaffians correspond to the six entries M12,M13,M14,M23,M24,M34, thus they
are six general forms, of degrees (respectively) a12, a13, a14, a23, a24, a34, The
homogeneity of A implies that

a12 + a34 = a13 + a24 = a14 + a23

Thus, after Remark 2.3, the claim follows if we prove that 12 general forms, of
degrees respectively

a12, a13, a14, a23, a24, a34, a12, a13, a14, a23, a24, a34

generate the polynomial ring C[x1, . . . , x4] in degree a12 + a34 = tr(A)/2.
On the other hand, it is a consequence of Theorem 2.9 of [6] that already

8 general forms of degrees respectively a, b, c, e, a, b, c, e, with a + e = b + c,
generate C[x1, . . . , x4] in degree a + e. The claim thus follows by taking a =
a12, b = a13, c = a24, e = a34.

After Beauville’s work (see e.g. Theorem 2.1 of [5]), a form F is the pfaffian
of a matrix with degree matrix A if and only if the surface F contains a complete
intersection set of points, of type a12, a13, a14.

Thus we just proved that:

Corollary 4.2. For any choice of numbers d, a, b, c with d > a, b, c, a general
form of degree d is the sum of two forms F1, F2 corresponding to two surfaces,
both containing a complete intersection set of points of type a, b, c.

Compare this statement with the results of [4].

Remark 4.3. We derived our statement from Theorem 2.9 of [6], which geo-
metrically proves that for any d, a, b with a, b < d a general form of degree d is
the sum of two forms F1, F2 corresponding to two surfaces, both containing a
complete intersection curve of type a, b.

From this point of view, a geometric reading of the proof of Theorem 4.1
seems straightforward.

5. General quaternary forms as sum of pfaffians

In this section, we want to extend the results for quaternary forms and general
degree matrices.
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Through the section, let we denote with R = C[x, y, z, t] the polynomial
ring in four variables and with R′ the quotient of R by a general linear form
(i.e. R′ is isomorphic to a polynomial ring in three variables).

We will need two results, derived directly from the previous sections.

Lemma 5.1. Let G be a general skew-symmetric 2k × 2k matrix of linear qua-
ternary forms. Call I the ideal generated by the submaximal (2k−2)× (2k−2)
pfaffians of G.

Then the multiplication by a general linear form L determines a surjection
(R/I)d−1 → (R/I)d for all d ≥ k.

Proof. Let I be the ideal generated by the submaximal pfaffians of G and let
L be a general linear form. Consider the exact sequence

(R/I)d−1
L−→ (R/I)d → (R/(I, L))d → 0.

By Theorem 3.1 and Remark 2.3, the module on the right side is 0, when
d ≥ k − 1. The claim follows.

Just with the same procedure, but using Proposition 3.3 instead of Theo-
rem 3.1, we get the following.

Lemma 5.2. Let Let A = (aij) be a non-negative ordered symmetric homoge-
neous integer matrix of odd size (2k−1)× (2k−1), k > 1. For a general choice
of k matrices of quaternary forms G1, . . . , Gk with ∂Gi = A, call I the ideal
generated by the submaximal pfaffians of all the Gi’s. Then the multiplication
by a general linear form L determines a surjection (R/I)d−1 → (R/I)d for all
d ≥ (a11 + tr(A))/2.

We consider first the case of matrices of linear forms.

Theorem 5.3. For a general choice of k matrices of linear forms H1, . . . ,Hk

of size 2k × 2k, the submaximal pfaffians of the Hi’s generate an ideal which
coincides with the polynomial ring R in all degrees d ≥ k.

Proof. Use induction on k. The case k = 2 holds trivially since the submaximal
pfaffians correspond to the choice of six general linear forms.

In the general case, by induction, all forms of degree k− 1 in four variables
sit in the ideal I ′ generated by the submaximal pfaffians of k− 1 general skew-
symmetric matrices of linear forms G1, . . . , Gk−1, of size (2k − 2) × (2k − 2).
Choose one general 2k × 2k skew-symmetric matrix of linear forms M . By
Lemma 5.1, if I is the ideal generated by the submaximal pfaffians of M ,
then the multiplication by a general linear form L determines a surjection
(R/I)d−1 → (R/I)d for all d ≥ k.

Let H1, . . . ,Hk−1 be the matrices obtained by the Gi’s by adding the two
rows (0 L 0 . . . 0) and (−L 0 0 . . . 0) and the corresponding columns. Then
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the non-zero submaximal pfaffians of the Hi’s are the submaximal pfaffians
of the Gi’s multiplied by L. Thus the submaximal pfaffians of the matrices
H1, . . . ,Hk−1,M generate an ideal which contains I + LI ′, hence it coincides
with R in degree d ≥ k. The claim follows.

Theorem 5.4. Fix a 2k×2k symmetric homogeneous matrix A of non-negative
integers. Then for a general choice of k matrices of forms G1, . . . , Gk with
∂Gi = A for all i, the submaximal pfaffians of the Gi’s generate an ideal which
coincides with the polynomial ring R in degree d ≥ tr(A)/2.

Proof. We may assume k ≥ 2, the case k = 1 being trivial. We make induction
on the trace of A.

After Remark 2.4, we know that the entries in the diagonal of the matrix A
are either all even or all odd. In the first case, we use as basis for the induction
the null matrix A (for which the claim is obvious). In the latter case we use a
matrix with all entries equal to 1 (for which the claim follows by Theorem 5.3).

In the inductive step, let A be ordered and call B the matrix obtained by A
by subtracting 1 from the first row and the first column (thus subtracting 2 from
the upper-left element, so that tr(B) = tr(A) − 2). As the theorem holds for
B, for a general choice of skew-symmetric matrices G1, . . . , Gk with ∂Gi = B,
the ideal I generated by the submaximal pfaffians of the Gi’s coincides with
the ring R in degree d ≥ tr(A)/2− 1.

Let G′i be the matrix obtained from Gi by erasing the first row and column
and call I0 the ideal generated by the (2k − 2) × (2k − 2) pfaffians of all the
G′i’s. The degree matrix A′ = (a′ij) of the G′i’s is the matrix obtained from A
by cancelling the first row and column. Since A is ordered, we have tr(A) ≥
a′11 + tr(A′). Thus, by Lemma 5.2 the multiplication by a general linear form
L determines a surjection (R/I0)d−1 → (R/I0)d, for d ≥ tr(A′) + a′11), hence
also for d ≥ tr(A).

Let Hi be the matrix obtained from Gi by multiplying the first row and
column by a general linear form L. Then ∂Hi = A and the ideal I ′ generated
by the submaximal pfaffians of the Hi’s contains both I0 and LI.

The claim follows.

From Remark 2.3 it follows soon our main result.

Theorem 5.5. Fix a 2k×2k symmetric homogeneous matrix A of non-negative
integers, with trace 2d. Then a general form F of degree d in four variables
is the sum of the pfaffians of k skew-symmetric matrices of forms, with degree
matrix A.

In other words, we obtain s(A) ≤ k.
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6. Sharpness

It is very reasonable to ask how far is the bound for s(A) given in Theorem 5.5
to be sharp.

This can be answered by computing the dimension of the (projective) variety
V of forms which are the pfaffian of a single skew-symmetric matrix G.

Remark 6.1. When A is 4 × 4, then the bound s(A) = 2 is sharp for most
values of the entries of A, as explained in [4].

As the size 2k of A grows, however, the given bound is probably no longer
sharp.

For instance, when all the entries of A are 1’s (so we deal with skew-
symmetric matrices of linear forms), then formula 3.6 and the exact sequence
3.1 of [5] show that dimV = 4k2 + o(k). So one expects, at least for k � 0,
that the s-secant variety of V fills the space of all forms of degree k as soon as
s ≥ k/24 + o(k). In other words, we can state the following.

Conjecture 6.2. A general form of degree k � 0 can be expressed as a sum
of s pfaffians of skew-symmetric 2k × 2k matrices of linear forms, for

s =
k

24
+ o(k).

Notice that our bound s = k is already linear in k, but with a larger
coefficient.

The same phenomenon is expected to occur for other types of homogeneous
symmetric matrices A of large size.

For instance, if all the entries of A are equal to a constant b � k, then
formula 3.6 and the exact sequence 3.1 of [5] tell us that dim(V ) = k2b3/3+o(b).
Thus the expected value s(A) such that the s(A)-secant variety of V fills the
space of forms of degree kb is s(A) = k/2 + o(k), which is (asymptotically) 1/2
of our bound.

We hope that a refinement of our method will provide, in a future, advances
towards sharper bounds for s(A).
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