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Compact groups with a dense
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Abstract. The compact groups having a dense infinite cyclic subgroup
(known as monothetic compact groups) have been studied by many au-
thors for their relevance and nice applications. In this paper we describe
in full details the compact groups K with a dense free abelian subgroup
F and we describe the minimum rank rt(K) of such a subgroup F of K.
Surprisingly, it is either finite or coincides with the density character
d(K) of K.
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1. Introduction

Dense subgroups (with some additional properties) of compact groups have
been largely studied for instance in [2, 3, 4, 7, 25]. Moreover, large independent
families of dense pseudocompact subgroups of compact connected groups are
built in [23], while potential density is studied in [13, 14, 15].

This note is dedicated mainly to the study of the class F of those Hausdorff
topological groups that have a dense free abelian subgroup. These groups are
necessarily abelian, so in this paper we are concerned exclusively with Hausdorff
topological abelian groups, and we always use the additive notation. Moreover,
we mainly consider the groups K in F that are also compact. The choice
of compactness is motivated by the fact that many non-discrete topological
abelian groups possess no proper dense subgroups at all (see [25] for a locally
compact abelian group with this property), whereas every infinite compact
group K admits proper dense subgroups. Indeed, it is known that d(K) < |K|,
where d(K) denotes the density character of K (i.e., the minimum cardinality
of a dense subgroup of K). We recall also that

d(K) = log w(K);

1The content of this paper was presented at ItEs2012 (Italia - España 2012). This paper
was partially supported by INdAM.
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here as usual w(G) denotes the weight of a topological abelian group G, and
for an infinite cardinal κ we let log κ = min{λ : 2λ ≥ κ} the logarithm of κ.

Let us start the discussion on the class F from a different point of view that
requires also some historical background.

The topological generators of a topological (abelian) group G have been
largely studied by many authors in [1, 8, 10, 12, 16, 17, 18, 19]; these are the
elements of subsets X of G generating a dense subgroup of G. In this case we
say that G is topologically generated by X. In particular, a topological group
having a finite topologically generating set X is called topologically finitely
generated (topologically s-generated, whenever X has at most s element).

Usually, various other restraints apart finiteness have been imposed on the
set X of topological generators. These restraints are mainly of topological
nature and we collect some of them in the next example.

Example 1.1. In the sequel G is a topological group with neutral element eG

and X is a topologically generating set of G.

(a) When X is compact, G is called compactly generated. This provides a
special well studied subclass of the class of σ-compact groups.

(b) The set X is called a suitable set for G if X \ {eG} is discrete and
closed in G \ {eG}. This notion was introduced in 1990 by Hofmann and
Morris. They proved that every locally compact group has a suitable set
in [21] and dedicated the entire last chapter of the monograph [22] to the
study of the minimum size s(G) of a suitable set of a compact group G.
Properties and existence of suitable sets are studied also in the papers
[8, 10, 12, 16, 17, 18, 19].

Clearly, a finite topologically generating set X is always suitable.

(c) The set X is called totally suitable if X is suitable and generates a totally
dense subgroup of G [19]. The locally compact groups that admit a totally
suitable set are studied in [1, 19].

(d) The set X is called a supersequence if X ∪{eG} is compact, so coincides
with the one-point compactification of the discrete set X \ {eG}. Any
infinite suitable set X in a countably compact group G is a supersequence
converging to eG [17]. This case is studied in detail in [12, 16, 26].

Now, with the condition G ∈ F we impose a purely algebraic condition on
the topologically generating set X of the topological abelian group G. Indeed,
clearly a topological abelian group G belongs to F precisely when G has a
topologically generating set X that is independent, i.e., X generates a dense
free abelian subgroup of G. In case G is discrete, the free rank r(G) of G is
the maximum cardinality of an independent subset of G; in this paper we call
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it simply rank. Imitating the discrete case, one may introduce the following
invariant measuring the minimum cardinality of an independent generating set
X of G.

Definition 1.2. For a topological abelian group G ∈ F , the topological free
rank of G is

rt(G) = min{r(F ) : F dense free abelian subgroup of G}.

Let
Ffin = {G ∈ F : rt(G) < ∞}.

Obviously, d(G) ≤ rt(G) whenever G ∈ F \ Ffin, whereas always

d(G) ≤ rt(G) · ω (1)

holds true.

We describe the compact abelian groups K in F in two steps, depending
on whether the topological free rank rt(K) of K is finite.

We start with the subclass Ffin, i.e., with the compact abelian groups K
having a dense free abelian subgroup of finite rank. The complete character-
ization of this case is given in the next Theorem A, proved in Section 3. We
recall that the case of rank one is that of monothetic compact groups, and the
characterization of monothetic compact groups is well known (see [20]). More-
over, every totally disconnected monothetic compact group is a quotient of the
universal totally disconnected monothetic compact group M =

∏
p Jp, where

Jp denotes the p-adic integers. Furthermore, an arbitrary monothetic compact
group is a quotient of Q̂c×M (see Proposition 3.4 below and [20, Section 25]).

For a prime p and an abelian group G, the p-socle of G is {x ∈ G : px = 0},
which is a vector space over the field Fp with p many elements; the p-rank rp(G)
of G is the dimension of the p-socle over Fp. Moreover, we give the following

Definition 1.3. Let G be an abelian group. For p a prime, set

ρp(G) = rp(G/pG).

Moreover, let ρ(G) = supp ρp(G).

Several properties of the invariant ρp for compact abelian groups are given
in Section 3.

In the next theorem we denote by c(K) the connected component of the
compact abelian group K.

Theorem A. Let K be an infinite compact abelian group and n ∈ N+. Then
the following conditions are equivalent:
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(a) K ∈ F and rt(K) ≤ n;

(b) w(K) ≤ c and K/c(K) is a quotient of Mn;

(c) w(K) ≤ c and ρ(K) ≤ n (i.e., ρp(K) ≤ n for every prime p);

(d) K is a quotient of Q̂c ×Mn.

The case of infinite rank is settled by the next theorem characterizing the
compact abelian groups that admit a dense free abelian subgroup, by making
use of dense embeddings in some power of the torus T = R/Z (endowed with
the quotient topology inherited from R). Here K̂ denotes the Pontryagin dual
of the compact abelian group K; in this case K̂ is a discrete abelian group, and

w(K) = |K̂|.

Note that, if K is an infinite compact abelian group and K ∈ F , then there
exists a dense free abelian subgroup of K of infinite rank, as r(K) ≥ c.

Theorem B. Let K be an infinite compact abelian group and κ an infinite
cardinal. Then the following conditions are equivalent:

(a) K ∈ F and rt(K) ≤ κ;

(b) K̂ admits a dense embedding in Tλ for some λ ≤ κ;

(c) d(K) ≤ r(K) and d(K) ≤ κ.

Theorem B has as an easy consequence the next characterization. To prove
the second part of the corollary take κ = d(K) in item (c) of Theorem B.

Corollary 1. Let K be an infinite compact abelian group. Then K ∈ F if
and only if d(K) ≤ r(K). In this case K has a dense free abelian subgroup of
rank d(K).

According to Corollary 1, a compact abelian group K admits a dense free
abelian subgroup of rank exactly d(K). Hence, we see now in Corollary 2 that
the inequality in (1) becomes an equality in case K is compact. Furthermore, as
a consequence of Theorem A and Theorem B respectively, we can see that rt(K)
is equal either to ρ(K) or to d(K) depending on its finiteness or infiniteness
respectively.

Corollary 2. Let K be an infinite compact abelian group. If K ∈ F , then

d(K) = rt(K) · ω.
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Moreover,

rt(K) =

{
ρ(K) if K ∈ Ffin,

d(K) if K ∈ F \ Ffin.

Roughly speaking, if K is an infinite compact abelian group in F , Theorem
B asserts that d(K) ≤ r(K). Moreover, if F is a dense free abelian subgroup of
K of infinite rank, then r(F ) can range between d(K) and r(K). We underline
that the maximum r(K) can be reached by r(F ) since r(K) ≥ c, and that also
the minimum is a possible value of r(F ) by the equality in Corollary 2.

The proof of Theorem B is given in Section 4. It makes use of the following
concepts introduced and studied in [9]; as usual, for an abelian group G we
denote mG = {mx : x ∈ G} and G[m] = {x ∈ G : mx = 0} for m ∈ N+, where
N+ denotes the set of positive natural numbers.

Definition 1.4. [9] Let G be a topological abelian group.

(i) The group G is w-divisible if w(mG) = w(G) ≥ ω for every m ∈ N+.

(ii) The divisible weight of G is wd(G) = inf{w(mG) : m ∈ N+}.

This definition is different from the original definition from [9], where in-
stead of w(mG) = w(G) ≥ ω one imposes the stronger condition w(mG) =
w(G) > ω, which rules out all second countable groups. Since this is somewhat
restrictive from the point of view of the current paper, we adopt this slight
modification here.

So an infinite topological abelian group G is w-divisible if and only if w(G) =
wd(G). In particular, an infinite discrete abelian group G is w-divisible if and
only if |mG| = |G| for every m ∈ N+. Moreover, it is worth to note here that
every infinite monothetic group is w-divisible.

Another consequence of Theorem B is that the class F contains all w-
divisible compact abelian groups, so in particular all connected and all torsion-
free compact abelian groups:

Corollary 3. If K is a w-divisible compact abelian group, then K ∈ F .

2. Some general properties of the class F

The next lemma ensuring density of subgroups is frequently used in the sequel.

Lemma 2.1. [4] Let G be a topological group and let N be a quotient of G with
h : G � N the canonical projection. If H is a subgroup of G such that h(H) is
dense in N and H contains a dense subgroup of ker h, then H is dense in G.

In the next result we give two stability properties of the class F .
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Proposition 2.2. The class F is stable under taking:

(a) arbitrary direct products;

(b) extensions.

Proof. (a) Assume Gi ∈ F for all i ∈ I. Let Fi be a dense free abelian subgroup
of Gi for every i ∈ I. Then the direct sum F =

⊕
i∈I Fi is a dense free abelian

subgroup of
∏

i∈I Gi.
(b) Assume that G is a topological abelian group with a closed subgroup

H ∈ F such that also G/H ∈ F . Let F and F1 be dense free abelian subgroups
of H and G/H, respectively. Let q : G → G/H be the canonical projection.
Since q is surjective, we can find a subset X of G such that q(X) is an inde-
pendent subset of G/H generating F1 as a free set of generators. Then X is
independent, so generates a free abelian subgroup F2 of G and the restriction
q �F2 : F2 → F1 is an isomorphism. In particular, F2 ∩ ker q = 0, so F2 ∩ F = 0
as well. Therefore, F3 = F + F2 is a free abelian subgroup of G. Moreover, F3

contains the dense subgroup F1 ⊆ H = ker q and q(F3) = q(F2) = F1 is a dense
subgroup of G/H. Therefore, F3 is a dense subgroup of G by Lemma 2.1.

The next claim is used essentially in the proof of Proposition 2.4, which
solves one of the implications of Theorem A.

Lemma 2.3. Let G be an abelian group, K a subgroup of G of infinite rank
r(K) and let F be a finitely generated subgroup of G. If s ∈ N+ and H is an
s-generated subgroup of G, then there exists a free abelian subgroup F1 of rank
s of G, such that F1 ∩ F = 0 and H ⊆ K + F1.

Proof. Since F + H is a finitely generated subgroup of G, the intersection
N = K ∩ (F + H) is a finitely generated subgroup of K. Therefore, the rank
r(K/N) is still infinite. In particular, there exists a free abelian subgroup F2

of rank s of K, such that F2 ∩N = 0. Then also

F2 ∩ (F + H) = 0. (2)

Let x1, . . . , xs be the generators of H and let t1, . . . , ts ∈ K be the free gen-
erators of F2. Let zi = xi + ti for i = 1, . . . , s and F1 = 〈z1, . . . , zs〉. Then,
obviously H ⊆ K + F1 as xi = ti − zi ∈ K + F1.

The subgroup F1 is free since any linear combination k1z1 + . . . + kszs = 0
produces an equality k1x1 + . . . + ksxs = −(k1t1 + . . . + ksts) ∈ F2. Since
k1x1 + . . . + ksxs ∈ H, from (2) one can deduce that k1t1 + . . . + ksts = 0.
Since t1, . . . , ts are independent, this gives k1 = . . . = ks = 0. This concludes
the proof that F1 is free.

It remains to prove that F1 ∩ F = 0. So let x ∈ F1 ∩ F and let us verify
that necessarily x = 0. Since x ∈ F1, there exist some integers a1, . . . , as such
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that x = a1z1 + . . . + aszs = (a1x1 + . . . + asxs) + (a1t1 + . . . + asts). Then
a1t1 + . . . + asts ∈ F2 ∩ (F + H) and this intersection is trivial by (2). By
the independence of t1, . . . , ts we have a1 = . . . = as = 0 and hence x = 0 as
desired.

Proposition 2.4. Let G be a topological abelian group and K a closed subgroup
of G with r(K) ≥ ω. If K contains a dense free abelian subgroup F of rank
m ∈ N+ and G/K is topologically s-generated for some s ∈ N+, then G admits
a dense free abelian subgroup E of rank m+s (i.e., G ∈ F and rt(G) ≤ m+s).

Proof. Let q : G → G/K be the canonical projection and consider G/K en-
dowed with the quotient topology of the topology of G. Let Y be a subset of
size s of G/K generating a dense subgroup of G/K. Pick a subset X of size s
of G such that q(X) = Y and let H = 〈X〉. By Lemma 2.3 there exists a free
abelian subgroup F1 of rank s of G such that F1 ∩ F = 0 and H ⊆ K + F1.
Hence, q(F1) is a dense subgroup of G/K as it contains q(H) = 〈Y 〉. Let
E = F + F1. Then E is a free abelian subgroup of G of rank m + s. Moreover,
E contains a dense subgroup of K = ker q and q(E) = q(F1) is dense in G/K.
Therefore, E is dense in G by virtue of Lemma 2.1.

Corollary 2.5. If G is a topologically finitely generated abelian group with
infinite rank r(G), then G ∈ Ffin.

Proof. Let H be the finitely generated dense subgroup of G. Then H = L×F ,
where L is a free abelian subgroup of finite rank and F is a finite subgroup.
Then the closure K of L in G is a closed finite index subgroup of G, so K is open
too. Since K has finite index in G, its rank r(K) is infinite. By Proposition 2.4,
G contains a dense free abelian subgroup F of finite rank.

In particular, topologically finitely generated compact abelian groups be-
long to F . The same holds relaxing compactness to pseudocompactness since
non torsion pseudocompact abelian groups have rank at least c as proved in [6].

We recall the following result stated in [11] giving, for an infinite compact
abelian group K, several equivalent conditions characterizing the density char-
acter d(K) of K.

Proposition 2.6. [11, Exercise 3.8.25] Let K be an infinite compact abelian
group and κ an infinite cardinal. Then the following conditions are equivalent:

(a) d(K) ≤ κ;

(b) there exists a homomorphism f :
⊕

κ Z → K with dense image;

(c) there exists an injective homomorphism K̂ → Tκ;

(d) |K̂| ≤ 2κ;
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(e) w(K) ≤ 2κ;

(f) there exists a continuous surjective homomorphism (M × Q̂)2
κ → K.

Proof. (a)⇒(b) Since d(K) ≤ κ and it is infinite, then there exists a dense
subgroup D of G with |D| ≤ κ, so in particular there exists a homomorphism
f :

⊕
κ Z → D, which has dense image in K.

(b)⇒(a) is obvious and (b)⇔(c) is an easy application of Pontryagin duality.
(c)⇔(d) follows from the fact that Tκ is divisible with r(Tκ) = rp(Tκ) = 2κ

for every prime p.
(d)⇔(e) follows from the fact that w(K) = |K̂|.
(c)⇔(f) follows from the fact that as a discrete abelian group Tκ is isomor-

phic to
⊕

2κ Q⊕
⊕

2κ Z(p∞) = (Q⊕Q/Z)2
κ

.

Remark 2.7. As a by-product of this proposition we show an easy argument
for the well known equality d(K) = log w(K) for a compact group K in case K
is abelian (the argument in the non-abelian case makes use of the highly non-
trivial fact of the dyadicity of the compact groups). The inequality log w(K) ≤
d(K) follows from the well known fact that w(K) ≤ 2d(K). Since w(K) ≤
2log w(K) obviously holds by the definition of log, the equivalence of (a) and (e)
from above proposition, applied to κ = log w(K) gives the desired inequality
d(K) ≤ log w(K).

The equivalent conditions of Proposition 2.6 appear to be weaker than those
of Theorem B (see also Lemma 4.2). On the other hand, these conditions
become equivalent to those of Theorem B assuming the infinite compact abelian
group K to be in F ; indeed, the point is that K ∈ F is equivalent to d(K) ≤
r(K) by Corollary 1 in the Introduction.

3. Compact abelian groups with dense free subgroups of
finite rank

In the next lemma we give a computation of the value of the invariant ρp of a
compact abelian group K in terms of the p-rank of the discrete dual group K̂.

Lemma 3.1. For a prime p and a compact abelian group K, we have that

ρp(K) =

{
rp(K̂) if ρp(K) is finite,
2rp(K̂) if ρp(K) is infinite.

Proof. Let G = K̂. Then K/pK ∼= Ĝ[p]. If K/pK is finite then K/pK ∼= G[p]
and so rp(K/pK) = rp(G[p]). Assume now that K/pK is infinite; therefore G[p]
is infinite as well. So G[p] ∼=

⊕
rp(G[p]) Z(p), consequently K/pK ∼= Z(p)rp(G[p])

and hence rp(K/pK) = 2rp(G[p]).
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Since pK contains the connected component c(K), which is divisible, K/pK
is a quotient of K/c(K) and it is worth to compare their p-ranks. Note that in
general ρp(K) = rp(K/pK) does not coincide with rp(K/c(K)) for a compact
abelian group K; indeed, take for example K = Jp. On the other hand, one
can easily prove the following properties of the invariant ρp for compact abelian
groups.

Lemma 3.2. Let p be a prime and K be a compact abelian group. Then:

(a) ρp(K) ≥ ρp(K1) if K1 is a quotient of K;

(b) ρp(K) = ρp(K/c(K));

(c) ρp(Kn) = nρp(K).

The next lemma proves in particular the equivalence of conditions (b), (c)
and (d) in Theorem A of the Introduction.

Lemma 3.3. Let K be an infinite compact abelian group and n ∈ N+. Then the
following conditions are equivalent:

(a) w(K) ≤ c and K/c(K) is a quotient of Mn;

(b) w(K) ≤ c and ρ(K) ≤ n (i.e., ρp(K) ≤ n for every prime p);

(c) K is a quotient of Q̂c ×Mn.

Proof. (a)⇒(b) By Lemma 3.2 we have ρp(K) = ρp(K/c(K)) ≤ ρp(Mn) =
nρp(M) = n for every prime p.

(b)⇒(c) Let G = K̂ be the discrete dual of K and denote by D(G) the
divisible hull of G. Since |G| = w(K) ≤ c and ĉ(K) ∼= G/t(G), in particular
r(D(G)) = r(G) = r(G/t(G)) ≤ c. On the other hand, for every prime p, the
p-rank of D(G) is rp(D(G)) = rp(G) = r(G[p]) ≤ n by Lemma 3.1. Then
D(G) is contained in

⊕
c Q× (Q/Z)n, hence by Pontryagin duality we have the

condition in (c).
(c)⇒(a) Since the weight is monotone under taking quotients, we have

w(K) ≤ c. By hypothesis we have that K is a quotient of Q̂c × (Q̂/Z)n, so by
Pontryagin duality G admits an injective homomorphism in

⊕
c Q ⊕ (Q/Z)n

and in particular t(G) is contained in the subgroup (Q/Z)n. Applying again
Pontryagin duality we conclude that K/c(K) ∼= t̂(G) is a quotient of (Q̂/Z)n ∼=
Mn.

The following result on monothetic groups is known, we give it here as
a consequence of the previous lemma noting that an infinite quotient of a
monothetic group is monothetic as well.
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Proposition 3.4. Let K be an infinite compact abelian group. If w(K) ≤ c
and ρp(K) ≤ 1 for every prime p, then K is monothetic.

Proof. By Lemma 3.3 the group K is a quotient of Q̂c×M , which is monothetic.

We are now in position to prove the next characterization of compact abelian
groups admitting a dense free abelian subgroup of finite rank, i.e., with finite
topological free rank. Along with Lemma 3.3, this concludes the proof of
Theorem A of the Introduction.

Theorem 3.5. Let K be an infinite compact abelian group and n ∈ N+. Then
the following conditions are equivalent:

(a) K ∈ F and rt(K) ≤ n;

(b) w(K) ≤ c and ρ(K) ≤ n (i.e., ρp(K) ≤ n for every prime p);

Proof. (a)⇒(b) By hypothesis in particular d(K) ≤ ω, so w(K) ≤ c as d(K) =
log w(K) (see Remark 2.7).

Let p be a prime. Let q : K → K/pK be the canonical projection and
let F be a dense free abelian subgroup of K of finite rank r(F ) ≤ n. Since
pK ∩ F ⊇ pF and ker q = pK, we have that q(F ) ∼= F/ ker q is finite, being
a quotient of the finite group F/pF . Now the density of F in K implies the
density of the finite subgroup q(F ) in K/pK, which has exponent p. Therefore
K/pK = q(F ) has at most n many generators, in other words rp(K/pK) ≤ n.
This proves ρp(K) ≤ n.

(b)⇒(a) By Lemma 3.3 we know that K/c(K) is a quotient of Mn ∼=
∏

p Jn
p .

In particular this implies that K/c(K) is a product of at most n monothetic
subgroups. Indeed, for a prime p, a quotient of Jn

p is always of the form Cp,1×
. . .× Cp,n where Cp,i is either Jp or a cyclic p-group for every i = 1, . . . , n, or
0. Therefore, one can write K/c(K) = M1 × . . . ×Mn, letting Mi =

∏
p Cp,i

for every i = 1, . . . , n; observe that Mi is monothetic for every i = 1, . . . , n.
Let now q : K → K/c(K) be the canonical projection and K1 = q−1(M1).

Then c(K1) = c(K) and K1/c(K) ∼= M1 is monothetic, so K1 is monothetic
as well by Proposition 3.4. Since K/K1

∼= M2 × . . . × Mn is topologically
(n− 1)-generated, Proposition 2.4 implies that K contains a dense free abelian
subgroup of rank ≤ n.

One can easily see that if K is a totally disconnected compact abelian group
with a dense finitely generated subgroup, then K = M1 × . . .×Mn, where Mi

are compact monothetic groups (see the proof of the implication (b)⇒(a) in
Theorem 3.5). We do not know whether this factorization in direct product
of compact monothetic groups remains true without the additional restraint of
total disconnectedness.
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4. Compact abelian groups with infinite topological free
rank

We recall the following known result in terms of the divisible weight.

Theorem 4.1. [14, Theorem 2.6] Let κ be a cardinal. A discrete abelian group
G admits a dense embedding into Tκ if and only if |G| ≤ 2κ and log κ ≤ wd(G).

Recall that the bimorphisms (i.e., monomorphisms that are also epimor-
phisms) in the category L of LCA groups are precisely the continuous injective
homomorphisms with dense image. Therefore, applying the Pontryagin duality
functor ̂: L → L, we deduce that for a cardinal κ the following conditions are
equivalent:

(a) there exists a bimorphism
⊕

κ Z → K;

(b) there exists a bimorphism K̂ → Tκ.

In equivalent terms:

Lemma 4.2. Let K be a compact abelian group and let κ be a cardinal. Then
the following conditions are equivalent:

(a) K admits a dense free abelian subgroup of rank κ (in particular, K ∈ F);

(b) K̂ admits a dense embedding in Tκ.

The following easy relation between the divisible weight of a compact abel-
ian group and that of its discrete Pontryagin dual group was already observed
in [9].

Lemma 4.3. Let K be a compact abelian group. Then wd(K) = wd(K̂).
Consequently, K is w-divisible if and only if K̂ is w-divisible.

Proof. Let G = K̂. Since nG ∼= n̂K for every n ∈ N+, one has |nG| = w(nK),
hence the conclusion follows.

We recall now a fundamental relation given in [9] between the divisible
weight and the rank of a compact abelian group. It is worth to note that the
rank is a purely algebraic invariant, while the divisible weight is a topological
one.

Theorem 4.4. [9, Corollary 3.9] Let K be a compact abelian group. Then
r(K) = 2wd(K).

Applying these observations we can give now the proof of Theorem B. Note
that in the proof of the implication (c)⇒(b) we apply both Theorem 4.4 and
Theorem 4.1.
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Proof of Theorem B. We have to prove that if K is an infinite compact
abelian group and κ is an infinite cardinal, then the following conditions are
equivalent:

(a) K ∈ F and rt(K) ≤ κ;

(b) K̂ admits a dense embedding in Tλ for some λ ≤ κ;

(c) d(K) ≤ r(K) and d(K) ≤ κ.

The equivalence (a)⇔(b) is contained in Lemma 4.2 and (a)⇒(c) is clear.
(c)⇒(b) Let G = K̂. Put λ = d(K). Since d(K) = log w(K) and w(K) =

|G|, we have that λ = log |G|, and so 2λ ≥ |G|. On the other hand,

log λ = log log |G| = log d(K) ≤ log r(K) ≤ wd(K),

where the last inequality follows from Theorem 4.4. So log λ ≤ wd(G) by
Lemma 4.3, and Theorem 4.1 guarantees that G admits a dense embedding
into the power Tλ.
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