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Abstract. We study the Cauchy problem for 2nd order weakly hyper-
bolic equations. F. Colombini, E. Jannelli and S. Spagnolo showed a
coefficient giving a blow-up solution in Gevrey classes. In this paper, we
get a simple representation of the coefficient degenerating at an infinite
number of points, with which the Cauchy problem is ill-posed in Gevrey
classes. Moreover, we also report numerical results of the singularity
detection with wavelet transform for coefficient functions.
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1. Introduction

We are concerned with the Cauchy problem on [0, T ]×Rx{
∂2
t u− a(t)∂2

xu = 0,
u(0, x) = u0(x), ∂tu(0, x) = u1(x).

(1)

Throughout this paper, we assume the weakly hyperbolic condition, i.e.,

a(t) ≥ 0 for t ∈ [0, T ].

We denote by Gs(R) the space of Gevrey functions satisfying

sup
x∈K

|∂nx g(x)| ≤ CKr
n
Kn!s for any compact set K ⊂ R, n ∈ N.

From the finite propagation property of hyperbolic equations, it is sufficient to
consider compactly supported initial data u0, u1 and solution u (see [3], [6],
[7], etc). Thanks to this fact, we may use the following Gevrey norm for the
functions on the whole interval R:

‖g‖s,r = sup
n∈N

‖∂nx g‖L∞(R)

rnn!s
.



98 N. FUKUDA AND T. KINOSHITA

We say that the Cauchy problem (1) is well-posed in Gs, if for any u0, u1 ∈ Gs,
there is a unique solution u ∈ C2([0, T ];Gs) satisfying the energy estimate:

‖u(t)‖s,R + ‖∂tu(t)‖s,R ≤ CT

(
‖u0‖s,r + ‖u1‖s,r

)
for t ∈ [0, T ], (2)

where R is a constant greater than r, which implies that the derivative loss
possibly occurs in a sense of the radius of the Gevrey class Gs. To know that the
derivative loss really occurs, we have a great interest for the counterexample.

There are many kinds of results on the well-posedness for 2nd order weakly
hyperbolic equations (see [2], [4], [5], [6], [9] etc). Let us denote by Ck,α[0, T ]
(k ∈ N, 0 ≤ α ≤ 1 ) the space of functions having k-derivatives continuous,
and the k-th derivative Hölder continuous with exponent α on [0, T ]. Especially
for the coefficient a ∈ Ck,α[0, T ], F. Colombini, E. Jannelli and S. Spagnolo [4]
proved the well-posedness in Gs for 1 < s < 1+(k+α)/2. Moreover, they also
showed an example of a coefficient a(t) giving a blow-up solution u as follows:

Theorem 1.1. ([4]) For every T > 0, k ∈ N and 0 ≤ α ≤ 1, it is possible to
construct a function a(t), C∞ and strictly positive on [0, T ), zero at t = T ,
and solution u of (1) in a way that a(t) belongs to Ck,α[0, T ] and u belongs to
C1([0, T ), Gs) for s > 1 + (k+ α)/2, whereas {u(t, ·)} is not bounded in D′, as
t ↑ T .

Remark 1.2. a ∈ Ck,α[0, T ] means that the zero extension of a(t) belongs to
Ck,α[0,∞).

Their prior work [5] showed an example of a ∈ C∞[0, T ] giving a blow-
up solution u ∈ C1([0, T ), C∞). The main task of the proof of Theorem 1.1
is to construct the coefficient a(t) defined piecewise on an infinite number of
intervals between [0, T ]. The piecewise functions are connected at the endpoints
of contiguous intervals with a smooth cut off function. For this reason, it would
not be easy to represent such a function a(t). The behavior of a(t) is well
controlled with the parameters ρj , νj and δj regarded as dilation, frequency
and degeneracy respectively.

Remark 1.3. As for the strictly hyperbolic case, F. Colombini, E. De Giorgi
and S. Spagnolo [3] showed an example of a ∈ Cα[0, T ] giving a blow-up solution
u ∈ C1([0, T ), Gs) for s > 1/(1 − α). In this case, the degeneracy parameter
δj is not necessary, and the piecewise functions in a(t) can be connected at the
endpoints of contiguous intervals without a cut off function.

1.1. Main Results

We shall follow their brilliant method with the parameters, and change some
parts of their construction in order to represent the coefficient in a simple form
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without a smooth cut off function. We also say that the Cauchy problem (1)
is ill-posed in Gs if the Cauchy problem (1) is not wellposed in Gs, i.e., the
energy inequality (2) breaks. For the equations with lower order terms (having
an interaction between several coefficients), the ill-posedness can be proved
with an energy based on the Lyapunov function (see [7], [8]).

We note that the coefficient a(t) in Theorem 1.1 degenerates only at t = T
where its regularity becomes Ck,α. For our purpose to represent the coefficient
in a simple form, a(t) must be allowed to have oscillations touching the t axis.
In fact, the case degenerating at an infinite number of points is more difficult
situation than the case degenerating only at one point in the construction of
a counterexample with an energy inequality. Assuming that k = 0, 1, we can
get the following representation of the coefficient degenerating at an infinite
number of points:

Theorem 1.4. Let s0 = 1+(k+α)/2, s > s0, T0 = 0, Tj =
j∑

n=1

2(1−s/s0)(n−1)2/2

(j ≥ 1), and T = lim
j→∞

Tj. Define

a(t) = 2(s/s0+1−2s)j2Θ
(
2(s/s0+1)j2/2(t− Tj)

)
for t ∈ [Tj , Tj+1] (j ≥ 0),

where
Θ(τ) =

2− 2 cos 2πτ
2 + 3Γ3 sin 2πτ + (Γ− 9Γ2) cos 2πτ

and
Γ = (1 + 2

√
7)1/3 − 3

(1 + 2
√

7)1/3
.

Then, the followings hold:

1. a(t) is non-negative and degenerates at t = Tj (j ≥ 0) and t = T .

2. a(t) belongs to Ck,α[0, T ] for k = 0, 1 and 0 ≤ α ≤ 1.

3. The Cauchy problem (1) with a(t) is ill-posed in Gs.

Remark 1.5. Multiplying Tj by a constant, we can take an arbitrary small
T > 0 as far as s > s0. It is interesting that the life span T tends to infinity as
s tends to s0.

In Theorem 1.4 and its proof, the following parts are different from [4]:

• In §2.1, Θ(τ) which is not same as the corresponding function in [4]. We
require Θ(τ) for which both minimum point and minimum value can be
calculated. Therefore, in §2.2 we can construct a(t) which has oscillations
touching the t axis in an infinite number of points accumulating at t = T .
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• In §2.4, the parameters ρj , νj and δj are uniformly taken as some pow-
ers of 2(j−1)2 . This choice of the parameters enables us to simplify the
representation of the coefficient.

It would seem strange that a(t) defined piecewise without a cut off function, is
still smooth i.e., Ck,α[0, T ]. This is true due to our construction of Θ(τ) and
the additional assumption k = 0, 1 in Theorem 1.4 (the piecewise functions
are connected at the minimum points). Therefore, we can remove a cut off
function to represent the coefficient a(t). In order to remove the restriction
that k = 0, 1 form Theorem 1.4, we also need to modify the coefficient with a
cut off function (see Corollary 2.19 in §2.6).

In the particular case that a(t) does not belongs to C0[0, T ], we can also
get the following corollary:

Corollary 1.6. Assume s > 1, T0 = 0, Tj =
j∑

n=1

2(1−s)(n−1)2 (j ≥ 1), and

T = lim
j→∞

Tj. Define

a(t) = Θ
(
2sj

2
(t− Tj)

)
for t ∈ [Tj , Tj+1] (j ≥ 0).

Then, the followings hold:

1. a(t) is non-negative and degenerates at t = Tj (j ≥ 0) and t = T .

2. a(t) is not continuous at t = T and belongs to L∞(0, T ) ∩ C2[0, T ).

3. The Cauchy problem (1) with a(t) is ill-posed in Gs.

Remark 1.7. Let s = q(q−1)−1 (q > 1) and Tj =
∑j
n=1 2(1−q)−1(n−1)2 (j ≥ 1).

Define

a(t) = Θ
(
2q(q−1)−1j2(t− Tj)

)
for t ∈ [Tj , Tj+1] (j ≥ 0).

For t ∈ [Tj , Tj+1], we know that (T − t) ∼
∑∞
n=j+1 2(1−q)−1(n−1)2 ∼ 2(1−q)−1j2 .

While, we have |a′(t)| ≤ C2q(q−1)−1j2 ≤ C(T − t)−q. Thus, Corollary 1.6 is
also a simple counterexample of the ill-posedness in Gs for s ≥ q(q− 1)−1 with
a(t) ∈ L∞(0, T ) ∩ C1[0, T ) satisfying |a′(t)| ≤ C(T − t)−q (see [1], [2]).

It is known that the Cauchy problem for weakly hyperbolic equations is
well-posed in the Analytic class (s = 1), even if a ∈ L1(0, T ). The simple
periodic function Θ proposed in this paper can be expected useful in study
of the ill-posedness. Indeed, we shall present numerical results with this Θ in
Appendix.
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2. Proof of Theorem 1.4

We shall put the parameters ρj , νj and δj (j ≥ 1) as follows:

ρj = 2−X(j−1)2 , νj = 2Y (j−1)2 , δj = 2−Z(j−1)2 ,

where X, Y and Z are all positive and determined later. We suppose that νj
(j ≥ 1) are integers, by taking a integer Y later. Moreover, we define

T0 = 0, Tj =
j∑

n=1

ρn (j ≥ 1) and Ij = [Tj−1, Tj ] (j ≥ 1).

2.1. Construction of Θ(τ)

F. Colombini, E. Jannelli and S. Spagnolo [4] consider the following auxiliary
Cauchy problem for the ordinary equation:{

W ′′
γ (τ) + Θγ(τ)Wγ(τ) = 0,

Wγ(0) = 0, W ′
γ(0) = 1,

(3)

where Θγ(τ) is a non-negative periodic function.

Remark 2.1. The Cauchy problem (3) can be also regarded as a terminal value
problem. In §2.3 we use the negative part τ ≤ 0 for this problem.

By the Floquet theory, the solution has a form Wγ(τ) = Pγ(τ) exp{γτ}
with γ ∈ R and a periodic function Pγ(τ). Now we don’t solve (3), but we find
Θγ(τ) form the solution Wγ(τ) inversely. Thus, we get

Θγ(τ) = −
W ′′
γ (τ)

Wγ(τ)
= −γ2 −

P ′′γ (τ) + 2γP ′γ(τ)
Pγ(τ)

. (4)

Since Pγ(τ) is periodic, Θγ(τ) is periodic too. But, we have to choose suitable
γ ∈ R and Pγ(τ) such that Θ(τ) ≥ 0.

Remark 2.2. In fact, most of choices with random γ ∈ R and Pγ(τ) fail to
satisfy Θγ(τ) ≥ 0. [4] succeeds to find a rare case:

γ =
1
10

and Pγ(τ) = sin τ exp
{
− γ

2
sin 2τ

}
. (5)

Furthermore, we shall change (5) by the following:

0 < γ ≤ Γ and Pγ(τ) = sin τ
(
1− γ

2
sin 2τ

)
, (6)
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where Γ > 0 is a sufficiently small constant such that Θγ(τ) ≥ 0 for 0 < γ ≤ Γ.
(see Lemma 2.5). Then by (4) and (6) we have

Θγ(τ) =
2 + (γ3 − 9γ) sin 2τ + 6γ2 cos 2τ

2− γ sin 2τ
, (7)

here we remark that Θγ(τ) becomes only π-periodic, since sin τ has been can-
celed. Θγ(τ) given by (7) enables us to calculate the exact points of the mini-
mum and the maximum as follows:

Lemma 2.3. Let

p± = p±(γ) =
3γ2(8− γ2)± 12γ

√
−2γ4 + 5γ2 + 16

(γ2 + 4)(γ2 + 16)
.

Then, Θγ(τ) (0 ≤ τ ≤ π) has the maximum value and the minimum value

Θγ(τ±) =
2 + (γ3 − 9γ)

√
1− p2

± + 6γ2p±

2− γ
√

1− p2
±

(8)

at τ+ = 1
2Cos−1p+ and τ− = 1

2Cos−1p− respectively.

Proof. Differentiating Θγ(τ), we get

Θ′γ(τ) =
4γ
{

(γ2 − 8) cos 2τ − 6γ sin 2τ + 3γ2
}

(2− γ sin 2τ)2
.

To find the maximum and minimum values, we solve the equation

(γ2 − 8) cos 2τ − 6γ sin 2τ + 3γ2 = 0.

When 0 ≤ τ ≤ π/2, we put p = cos 2τ (−1 ≤ p ≤ 1) and get

(γ2 − 8)p+ 3γ2 = 6γ
√

1− p2. (9)

For small γ > 0, we see that p must be negative, since the signatures of both
sides must coincide. Taking the square of both sides, we can reduce to the
following quadratic equation in p:

(γ2 + 4)(γ2 + 16)p2 − 6γ2(8− γ2)p+ 9γ2(γ2 − 4) = 0. (10)

Hence, we have a (unique) negative solution

p− = p−(γ) =
3γ2(8− γ2)− 12γ

√
−2γ4 + 5γ2 + 16

(γ2 + 4)(γ2 + 16)
. (11)
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When π/2 ≤ τ ≤ π, we put 0 ≤ τ̃ = π − τ ≤ π/2 and p = cos 2τ̃ (−1 ≤ p ≤ 1)
and get

(γ2 − 8)p+ 3γ2 = −6γ
√

1− p2.

For small γ > 0, we see that p must be positive, since the signatures of both
sides must coincide. Taking the square of both sides, we can reduce to the
same quadratic equation (10). Hence, we have a (unique) positive solution

p+ = p+(γ) =
3γ2(8− γ2) + 12γ

√
−2γ4 + 5γ2 + 16

(γ2 + 4)(γ2 + 16)
.

We note that p− = cos 2τ in 0 ≤ τ ≤ π/2 and p+ = (cos 2τ̃ =) cos 2τ in
π/2 ≤ τ ≤ π. Thus it follows that τ− := 1

2Cos−1p− and τ+ := 1
2Cos−1p+

satisfy 0 < τ− < τ+ < π and give the minimum value and the maximum value
respectively, since Θ′γ(0) = 8γ(γ2 − 2) < 0. Substituting τ± into Θ(τ) we also
have (8).

Remark 2.4. p± are the simple roots of the quadratic equation (10). Therefore,
Θ′γ(τ) changes the sign at τ = τ±.

If γ = 0, Θ0(τ) is a positive constant, i.e., the ratio Θ0(τ+)/Θ0(τ−) ≡ 1.
Obviously, it holds that Θγ(τ+)/Θγ(τ−) > 1 for small γ > 0. As γ > 0 becomes
larger, Θγ(τ+)/Θγ(τ−) tends to infinity as follows:

Lemma 2.5. For Γ = (1 + 2
√

7)1/3 − 3(1 + 2
√

7)−1/3(∼ 0.221), we have

Θγ(τ) > 0 if 0 < γ < Γ, ΘΓ(τ−) = 0 and τ− =
1
2
Cos−1(−3Γ2). (12)

Remark 2.6. We remark that π/4 < τ− < π/2, since τ− = 1
2Cos−1(−3Γ2) ∼

1
2Cos−1(−3 × 0.2212) ∼ 0.858. By numerical computations we observe that
ΘΓ(τ+) < 2.

Proof. By (8), ΘΓ(τ−) = 0 means that

2 + (Γ3 − 9Γ)
√

1− p2
− + 6Γ2p− = 0.

Hence, by (9) with p = p− we have

6Γ2p− + 2
9Γ− Γ3

=
(Γ2 − 8)p− + 3Γ2

6Γ

(
=
√

1− p2
−

)
.

Therefore, Γ satisfies the equation

p− =
−3Γ4 + 27Γ2 − 12
Γ4 + 19Γ2 + 72

. (13)
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On the other hand, p− = p−(Γ) is defined in (11). Therefore, Γ > 0 is a
solution to the equation

3Γ2(8− Γ2)− 12Γ
√
−2Γ4 + 5Γ2 + 16

(Γ2 + 4)(Γ2 + 16)
=
−3Γ4 + 27Γ2 − 12
Γ4 + 19Γ2 + 72

.

Adding 3 on both sides and dividing both sides by 12, we get

7Γ2 + 16− Γ
√
−2Γ4 + 5Γ2 + 16

(Γ2 + 4)(Γ2 + 16)
=

7Γ2 + 17
Γ4 + 19Γ2 + 72

.

Multiplying both sides by (Γ2 + 4)(Γ2 + 16)(Γ4 + 19Γ2 + 72), we also get

−8Γ4 + 20Γ2 + 64 = Γ
√
−2Γ4 + 5Γ2 + 16(Γ4 + 19Γ2 + 72).

Moreover, dividing both sides by
√
−2Γ4 + 5Γ2 + 16, we have

4
√
−2Γ4 + 5Γ2 + 16 = Γ(Γ4 + 19Γ2 + 72). (14)

(14) is reduced to the equation of degree 10

Γ10 + 38Γ8 + 505Γ6 + 2768Γ4 + 5104Γ2 − 256 = 0.

Fortunately, this can be divided by (Γ2+4)(Γ2+16). Then we have the equation
of degree 6

Γ6 + 18Γ4 + 81Γ2 − 4 = 0. (15)

Regarding this as a cubic equation with respect to Γ2, we can find the solution

Γ =
{
(29+4

√
7)1/3+(29−4

√
7)1/3−6

}1/2
= (1+2

√
7)1/3− 3

(1 + 2
√

7)1/3
∼ 0.221.

Using (14) again, we can change p−(Γ) defined in (11) into

p−(Γ)

(
≡ 3Γ2(8− Γ2)− 12Γ

√
−2Γ4 + 5Γ2 + 16

(Γ2 + 4)(Γ2 + 16)

)

=
3Γ2(8− Γ2)− 3Γ2(Γ4 + 19Γ2 + 72)

(Γ2 + 4)(Γ2 + 16)
= −3Γ2.

Hence, it holds that τ− = 1
2Cos−1p−(Γ) = 1

2Cos−1(−3Γ2).

At last, we define
Θ(τ) := ΘΓ(πτ + τ−).

By (15) we see that 4(1− 9Γ4) = Γ6 − 18Γ4 + 81Γ2. Hence, we get

2
√

1− 9Γ4 = Γ(9− Γ2).
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By (12) and Remark 2.6 it holds that cos 2τ− = −3Γ2 and sin 2τ− = +
√

1− 9Γ4

= Γ(9− Γ2)/2. Therefore, by (7) we have the 1-periodic function

Θ(τ) =
2 + (Γ3 − 9Γ) sin(2πτ + 2τ−) + 6Γ2 cos(2πτ + 2τ−)

2− Γ sin(2πτ + 2τ−)

=
4− (Γ3 + 9)2 cos 2πτ

4 + 6Γ3 sin 2πτ + Γ(Γ3 − 9Γ) cos 2πτ

=
2− 2 cos 2πτ

2 + 3Γ3 sin 2πτ + (Γ− 9Γ2) cos 2πτ
,

here we used by (15) (Γ3 + 9Γ)2 = 4, i.e., Γ3 + 9Γ = 2 and Γ3 − 9Γ = 2− 18Γ.

2.2. Construction of a(t)

For the construction of the coefficient, we shall use Θ(τ). At the 1st step, let
us consider

φ1(t) = Θ(t) for t ∈ [0, 1].

There are only 1 maximum point and only 2 minimum points in the interval
[0, 1]. The graph of φ1(t) starts from the minimum point (t = 0) and ends at
the minimum point (t = 1). Next, we consider

φj(t) = Θ(νjt) for t ∈ [0, 1].

By the 1-periodicity there are νj maximum points and (νj+1) minimum points
in the interval [0, 1]. The graph of φj(t) starts from a minimum point (t = 0)
and ends at a minimum point (t = 1).

At the 2nd step, let us consider

ϕj(t) = Θ
(
νj
t− Tj−1

ρj

)
for t ∈ Ij = [Tj−1, Tj ].

There are νj maximum points and (νj + 1) minimum points in the interval
Ij . The graph of ϕj(t) starts from a minimum point (t = Tj−1) and ends at a
minimum point (t = Tj). Each ϕj(t) can be regarded as the piecewise definition
of the following function in the whole interval [0, T ]:

Φ(t) = Θ
(
νj
t− Tj−1

ρj

)
for t ∈ Ij = [Tj−1, Tj ].

We observe that Φ(t) is continuous at t = Tj (j ≥ 1), since Φ(Tj) = 0.
At the 3rd step, we define that

a(t) = δjΘ
(
νj
t− Tj−1

ρj

)
for t ∈ Ij = [Tj−1, Tj ]. (16)

We remark that a(t) is continuous at the whole interval [0, T ]. Furthermore,
we shall show the following lemma:
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Lemma 2.7. If k = 0, 1 and there exists ε1 > 0 such that

δj

(
νj
ρj

)k+α
≤ 2−ε(j−1)2 for 0 < ε ≤ ε1, (17)

a(t) belongs to Ck,α[0, T ].

Remark 2.8. When we consider the proof of Corollary 1.6, the right hand side
2−ε(j−1)2 is replaced by C.

Proof. We may check Hölder continuity in the right interval t ∈ Ij+1 and the
left interval t ∈ Ij . Replacing j by j + 1 in (16) we obviously get

a(t) = δj+1Θ
(
νj+1

t− Tj
ρj+1

)
for t ∈ Ij+1 = [Tj , Tj+1]. (18)

By the 1-periodicity of Θ, the definition (16) can be rewritten as

a(t) = δjΘ
(
νj
t−(Tj−ρj)

ρj

)
= δjΘ

(
νj
t− Tj
ρj

)
for t ∈ Ij = [Tj−1, Tj ]. (19)

In the case of k = 0, noting that Θ belongs to at least Cα[0, T ], by (18) and (19)
we get

|a(t)− a(Tj)| ≤


∣∣∣∣δjΘ(νj t− Tj

ρj

)
− δjΘ(0)

∣∣∣∣ if t ∈ Ij∣∣∣∣δj+1Θ
(
νj+1

t− Tj
ρj+1

)
− δj+1Θ(0)

∣∣∣∣ if t ∈ Ij+1

≤


Mδj

∣∣∣∣νj t− Tj
ρj

∣∣∣∣α≤Mδj

(
νj
ρj

)α
|t− Tj |α if t ∈ Ij

Mδj+1

∣∣∣∣νj+1
t− Tj
ρj+1

∣∣∣∣α≤Mδj+1

(
νj+1

ρj+1

)α
|t− Tj |α if t∈Ij+1

≤

{
M2−ε1(j−1)2 |t− Tj |α if t ∈ Ij
M2−ε1j

2
|t− Tj |α if t ∈ Ij+1

≤ M2−ε1(j−1)2 |t− Tj |α
(
≤M |t− Tj |α

)
,

here we used (17), but we need not use the fact that a(Tj) = 0. Hence we see
that a(t) is α-Hölder continuous at t = Tj . As for t = T , since a(T ) = 0 we
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also have

|a(t)−a(T )| = |a(t)| ≤


∣∣a(t)− a(Tj)

∣∣+ ∞∑
n=j

∣∣a(Tn)− a(Tn+1)
∣∣ if t ∈ Ij

∣∣a(t)− a(Tj+1)
∣∣+ ∞∑

n=j+1

∣∣a(Tn)− a(Tn+1)
∣∣ if t ∈ Ij+1

≤

( ∞∑
n=1

M2−ε1(n−1)2

)
|t− T |α ≤Mε1 |t− T |α.

This means that a(t) is α-Hölder continuous at t = T .
In the case of k = 1, by (18) and (19) we have

a′(t) =
δj+1νj+1

ρj+1
Θ′
(
νj+1

t− Tj
ρj+1

)
for t ∈ Ij+1 = [Tj , Tj+1],

and

a′(t) =
δjνj
ρj

Θ′
(
νj
t− Tj
ρj

)
for t ∈ Ij = [Tj−1, Tj ].

To get the differentiability at t = Tj , the right derivative and the left derivative
must coincide. The right derivative and the left derivative are respectively

a′(Tj) =
δj+1νj+1

ρj+1
Θ′(0) and a′(Tj) =

δjνj
ρj

Θ′(0),

that is, a′(Tj) = 0 (Θ′(0) = 0) since a(t) takes a minimum value in Ij+1 and
a minimum value in Ij at t = Tj from our construction. Therefore, a(t) is
differentiable at t = Tj . As for t = T , we see that limt↑T |a′(t)| = 0, since
by (17)

lim
j→∞

δj+1νj+1

ρj+1
= lim
j→∞

δjνj
ρj

= 0.

Hence the left derivative at T = t is zero. Then we have a′(T ) = 0 since by the
zero extension the right derivative at T = t is also zero. Thus, a(t) belongs to
C1[0, T ]. Similarly, noting that Θ belongs to at least C1+α[0, T ], we obtain the
estimates |a′(t)−a′(Tj)| ≤Mδj

(
νj/ρj

)1+α|t−Tj |α = M2−ε1(j−1)2 |t−Tj |α
(
≤

M |t− Tj |α
)

and |a′(t)− a′(T )| ≤Mε1 |t− Tj |α.

Remark 2.9. In order to justify a′(Tj) and a′(T ) we first showed that a(t)
belongs to C1[0, T ]. Then, we are allowed to consider |a′(t) − a′(Tj)| and
|a′(t)− a′(T )|.
Remark 2.10. We can not deal with k = 2, because the right 2nd derivative
and the left 2nd derivative does not coincide at t = Tj . So, we can not justify
a′′(Tj). Thus a(t) does not belong to C2[0, T ]. But, a(t) belongs to C1,1[0, T ]
which implies a′(t) ∈ Lip[0, T ].
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2.3. Construction of Solutions

We consider a sequence of the solutions {u(J)(t, x)}J≥1 to the Cauchy problem
on [0, T ]×Rx {

∂2
t u

(J) − a(t)∂2
xu

(J) = 0,

u(0, x) = u
(J)
0 (x), ∂tu(0, x) = u

(J)
1 (x).

(20)

Let us take the sequence {tj}j≥1 defined by

tj := Tj −
ρjτ−
πνj

. (21)

We see that tj ∈ Ij = [Tj−1, Tj ], since τ−
πνj

≤ 1. Now we shall devote ourselves
to only the interval [0, tj ] by separating into two parts [Tj−1, tj ] and [0, Tj−1],
where the Cauchy problems are solved in the inverse direction.

For the interval [Tj−1, tj ], we suppose that u(J)(t, x) has a form of

u(J)(t, x) =
∞∑
j=J

vj(t) coshjx, (22)

where
hj =

πνj

ρj
√
δj
, (23)

and vj solves the terminal value problem on [Tj−1, tj ] ⊂ Ij{
v′′j + h2

ja(t)vj = 0,
vj(tj) = 0, v′j(tj) = 1.

(24)

Noting that by (19)

a(t) = δjΘ
(
νj
t− Tj
ρj

)
= δjΘΓ

(
πνj

t− Tj
ρj

+ τ−

)
for t ∈ [Tj−1, tj ] ⊂ Ij ,

and putting

vj(t) =
ρj
πνj

WΓ

(
πνj

t− Tj
ρj

+ τ−

)
,

by the change of variable τ = πνj
t−Tj

ρj
+ τ− we have just (3). Therefore, by (6)

it follows that

WΓ(τ) = sin τ
(

1− Γ
2

sin 2τ
)
eΓτ .
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Hence, noting Remark 2.1 we have

V0 := vj(Tj−1) =
ρj
πνj

WΓ(−πνj + τ−)

=
ρj
πνj

sin τ−
(
1− Γ

2
sin 2τ−

)
exp

{
− Γπνj + Γτ−

}
, (25)

V1 := v′j(Tj−1) = W ′
Γ(−πνj + τ−)

=
(

cos τ− + Γ sin τ− −
Γ
2

sin 2τ− cos τ− − Γ cos 2τ− sin τ−

−Γ2

2
sin τ− sin 2τ−

)
exp

{
− Γπνj + Γτ−

}
. (26)

By (25) and (26) it follows that

|V0| ≤ C0
ρj
νj
e−Γπνj , |V1| ≤ C1e

−Γπνj . (27)

This fact plays an important role in the construction of the counterexample.
For the interval [0, Tj−1] we suppose that u(J)(t, x) also has a form of (22)

with vj solving the terminal value problem on [0, Tj−1] = ∪j−1
n=1In (j ≥ 2){

v′′j + h2
ja(t)vj = 0,

vj(Tj−1) = V0, v
′
j(Tj−1) = V1.

(28)

We remark that the formula with WΓ can not be obtained in this interval.
Therefore, we shall use the energy method. Let us introduce the following
proposition concerned with the energy method:

Proposition 2.11. Let h > 0 and a(t) be a non-negative C1 function. Then,
for the solution v satisfying v′′ + h2a(t)v = 0, it holds that

E(σ1) ≤ E(σ2) exp
[ ∣∣∣∣∫ σ1

σ2

max{a′(t), 0}
a(t) + λ2h2(1/s−1)

dt

∣∣∣∣+ |σ1 − σ2|λh1/s

]
,

where E(t) = |v′(t)|2 + (h2a(t) + λ2h2/s)|v(t)|2.

Remark 2.12. We can apply the energy inequality also into the terminal value
problem. Because we may take σ1 and σ2 such that σ1 ≤ σ2.

Proof. Differentiating E(t), we have

E′(t) = 2<
(
v′(t), v′′(t)

)
+ 2(h2a(t) + λ2h2/s)<

(
v′(t), v(t)

)
+ h2a′(t)|v(t)|2

≤ h2a′(t)|v(t)|2 + 2λ2h2/s|v′(t)||v(t)|

≤ h2 max{a′(t), 0}|v(t)|2 + λ2h2/s
(
λ−1h−1/s|v′(t)|2 + λh1/s|v(t)|2

)
≤

{
max{a′(t), 0}

a(t) + λ2h2(1/s−1)
+ λh1/s

}
E(t),
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which proves the proposition.

From the construction of the coefficient, we know that a(t) has νj−1 maxi-
mum points and (νj−1 +1) minimum points in the interval Ij−1 = [Tj−2, Tj−1].
Using Proposition 2.11 with σ1 = Tj−2 and σ2 = Tj−1, by Remark 2.4 we get
the estimate in the interval Ij−1 = [Tj−2, Tj−1]

Ej(Tj−2)≤Ej(Tj−1) exp

[ ∣∣∣∣∣
∫ Tj−2

Tj−1

max{a′(t), 0}
a(t)+λ2h

2(1/s−1)
j

dt

∣∣∣∣∣+|Tj−2 − Tj−1|λh1/s
j

]
≤Ej(Tj−1) exp

[
νj−1 log

{
λ−2h

2(1−1/s)
j δjΘΓ(τ+) + 1

}
+ (Tj−1 − Tj−2)λh

1/s
j

]
,

where Ej(t) = |v′j(t)|2 + (h2
ja(t) + λ2h

2/s
j )|vj(t)|2. Combining all the energy

inequalities in In (n = 1, 2, · · · , j − 1), we have

Ej(0) ≤ Ej(Tj−1) exp

[
j−1∑
n=1

νn log
{
λ−2h

2(1−1/s)
j δjΘΓ(τ+) + 1

}
+ Tj−1λh

1/s
j

]
.

Noting that by (27)

Ej(Tj−1) ≤ |V1|2 + Ch2
j |V0|2 ≤ C3

(
1 +

h2
jρ

2
j

ν2
j

)
exp{−2Γπνj},

and taking λ = 1
πTj−1

, we obtain

Ej(0) ≤ C3

(
1 +

h2
jρ

2
j

ν2
j

)
exp

[
j−1∑
n=1

νn log
{
π2T 2

j−1h
2(1−1/s)
j δjΘΓ(τ+) + 1

}
+

1
π
h

1/s
j − 2Γπνj

]
. (29)

Moreover, we need the following lemma:

Lemma 2.13. If
ρjν

s−1
j

√
δj = 1, (30)

and there exists ε2 > 0 such that

j−1∑
n=1

νn(log j + log νj + 3) ≤
(
Γπ − 1

2
− 2ε

)
νj for 0 < ε ≤ ε2, (31)

it holds that
j−1∑
n=1

νn log
{
π2T 2

j−1h
2(1−1/s)
j δjΘΓ(τ+) + 1

}
+

1
π
h

1/s
j − 2Γπνj ≤ −ε2h1/s

j . (32)
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Proof. By (23) and (30) we get h1/s
j =

(
πνj

ρj

√
δj

)1/s

= π1/sνj(≥ 1). Hence,

noting that (1 ≤ )Tj−1 =
∑j−1
n=1 ρn ≤

∑j−1
n=1 1 ≤ j, by Remark 2.6 and (31) we

have

j−1∑
n=1

νn log
{
π2T 2

j−1h
2(1−1/s)
j δjΘΓ(τ+) + 1

}
+

1
π
h

1/s
j − 2Γπνj

≤
j−1∑
n=1

νn log
{
π2 · T 2

j−1 · π2(1−1/s)ν
2(1−1/s)
j · 1 · 2 + 1

}
+ π1/s−1νj − 2Γπνj

≤
j−1∑
n=1

νn log
{
4π4T 2

j−1ν
2
j

}
+ π1/s−1νj − 2Γπνj

≤
j−1∑
n=1

νn(2 log j + 2 log νj + 6) + π1/s−1νj − 2Γπνj

≤ 2
j−1∑
n=1

νn(log j + log νj + 3) + νj − 2Γπνj

≤ −4ε2νj = − 4ε2
π1/s

h
1/s
j ≤ −ε2h1/s

j ,

thus getting the conclusion.

Consequently, by (29) and (32) it follows that

Ej(0) ≤ C3

(
1 +

h2
jρ

2
j

ν2
j

)
exp

{
− ε2h

1/s
j

}
. (33)

2.4. Choice of ρj, νj and δj

For our purpose, ρj(= 2−X(j−1)2), νj(= 2Y (j−1)2) and δj(= 2−Z(j−1)2) satisfy
(17), (30) and (31). Only the parameter Y must be an integer in order that νj
becomes an integer. So, the simplest choice is Y = 1. Then (31) means that
there exists ε2 > 0 such that

j−1∑
n=1

2(n−1)2(log j+(j− 1)2 +3) ≤
(
Γπ− 1

2
− 2ε

)
2(j−1)2 for 0 < ε ≤ ε2. (34)
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We remark that j is greater than or equal to J which tends to infinity later in
§2.5. Thus, for large j ≥ 1, the inequality (34) holds, since,

j−1∑
n=1

2(n−1)2(log j + (j − 1)2 + 3) ≤ j2
j−1∑
n=1

2(n−1)2 ≤ j32(j−2)2

≤ 1
10
e(j−1)2 , (35)

and Γ ∼ 0.221 and 1/10 ≤ Γπ − 1/2− 2ε for a sufficiently small ε > 0.

Remark 2.14. More generally, if we consider the functions ρj(= 2−X(j−1)r

),
νj(= 2Y (j−1)r

) and δj(= 2−Z(j−1)r

) with the parameter r ≥ 1, we can not
obtain the corresponding inequality of (35) just for r = 1.

Taking the binary logarithm and dividing by (j − 1)2 in (17) and (30), we
may take X and Z such that (k + α)X − Z + k + α+ ε1 = 0,

−X − 1
2
Z + s− 1 = 0.

Hence, we get

X =
s

s0
− 1− ε1

2s0
and Z = 2s

(
1− 1

s0

)
+
ε1
s0
.

Since s0 ≥ 1, we see that Z > 0 for ε1 > 0. In order to have X > 0, we may
take ε1 = s− s0. Then we obtain

X =
1
2

(
s

s0
− 1
)

and Z = 2s− s

s0
− 1.

Summing up, we have

ρj = 2−(s/s0−1)(j−1)2/2, νj = 2(j−1)2 and δj = 2−(2s−s/s0−1)(j−1)2 , (36)

and with (18) instead of (16)

a(t) = 2(s/s0+1−2s)j2Θ
(
2(s/s0+1)j2/2(t− Tj)

)
for t ∈ [Tj , Tj+1].

Remark 2.15. If we consider a discontinuous coefficient, we need not Lem-
ma 2.7 anymore. So, we can take ε1 = 0 and Z = 0 (δj = 1) with s0 = 1.
Then, we also have X = s− 1 (ρj = 2−(s−1)(j−1)2) and

a(t) = Θ
(
2sj

2
(t− Tj)

)
for t ∈ [Tj , Tj+1],

which proves the proof of Corollary 1.6.
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We also note that hj = πνsj = π2s(j−1)2 ≥ 1 and ρ2
j/ν

2
j = 2−(2+X)(j−1)2 ≤ 1.

By (33) it follows that

Ej(0) ≤ C3

(
1 +

h2
jρ

2
j

ν2
j

)
exp

{
− ε2h

1/s
j

}
≤ C4h

2
j exp

{
− ε2h

1/s
j

}
.

Thus, we have

Ej(0) ≤ C5 exp
{
− εh

1/s
j

}
for 0 < ε < ε2. (37)

Remark 2.16. The Cauchy problem (28) is solved in the inverse direction.
Therefore, we can also see that for all 0 ≤ t ≤ Tj−1

Ej(t) ≤ C5 exp
{
− εh

1/s
j

}
for 0 < ε < ε2.

In particular, if j1 < j2, it holds that for the point t = tj1(≤ Tj1 ≤ Tj−1)

Ej(tj1) ≤ C5 exp
{
− εh

1/s
j

}
for 0 < ε < ε2. (38)

2.5. Ill-posedness of the Cauchy problem

We finally show the ill-posedness by the contradiction. We suppose that the
energy inequality for u(J) holds, i.e.,

‖u(J)(t)‖s,R+ ‖∂tu(J)(t)‖s,R ≤ CT

(
‖u(J)

0 ‖s,r + ‖u(J)
1 ‖s,r

)
for t ∈ [0, T ]. (39)

Let us note the point (t, x) = (tJ , 0), where tJ ∈ IJ defined by (21) with
j = J . From the definition of the Gevrey norm, by (22) and (38) we have

‖∂tu(J)(tJ)‖s,R≥ ‖∂tu(J)(tJ)‖L∞ ≥ |∂tu(J)(tJ , 0)| =

∣∣∣∣∣∣
∞∑
j=J

v′j(tJ) cos(hj · 0)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑
j=J

v′j(tJ)

∣∣∣∣∣∣ ≥ |v′J(tJ)| −
∞∑

j=J+1

|v′j(tJ)|

≥ |v′J(tJ)| −
∞∑

j=J+1

Ej(tJ) ≥ |v′J(tJ)| −
∞∑

j=J+1

C5 exp
{
− εh

1/s
j

}
= 1− C5

∞∑
j=J+1

exp
{
− επ1/s2(j−1)2

}
, (40)
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here we used (24).
On the other hand, from the definition of the Gevrey norm, by (22), (37)

and Stirling’s formula we also have

‖u(J)
1 ‖s,r ≤

∞∑
j=J

|v′j(0)| sup
n∈N

hnj
rnn!s

≤
∞∑
j=J

Ej(0) sup
n∈N

hnj
rnn!s

≤
∞∑
j=J

C5 exp
{
− εh

1/s
j

}
sup
n∈N

hnj
rn(2nπ)s/2nsne−sn

=
C5

(2π)s/2

∞∑
j=J

2−(j−1)2 sup
n∈N

exp
{
− επ1/s2(j−1)2

}
2(sn+1)(j−1)2

ns/2
(
r
πes

)n
nsn

≤ C5

(2π)s/2

∞∑
j=J

2−(j−1)2 sup
n∈N

(
sn+1
επ1/s

)sn+1
e−(sn+1)

ns/2
(
r
πes

)n
nsn

=
C5

eεπ1/s(2π)s/2

∞∑
j=J

2−(j−1)2 sup
n∈N

(sn+ 1)sn+1

ns/2(rεs)nnsn
.

here we used the inequality e−κξξβ ≤
(
β
κ

)β
e−β with ξ = 2(j−1)2 , κ = επ1/s

and β = sn+ 1. We note that

(sn+ 1)sn+1

ns/2(rεs)nnsn
=

sn+ 1
ns/2(rεs)n

·
(
s+

1
n

)sn
≤ sn+ n

1 · (rεs)n
· (s+ 1)sn = n(s+ 1)

(
(s+ 1)s

rεs

)n
.

If we take r > 0 such that (s+1)s

rεs < 1, we see that supn∈N
(sn+1)sn+1

ns/2(rεs)nnsn ≤ Cs.

Thus, we get

‖u(J)
1 ‖s,r ≤ C6

∞∑
j=J

2−(j−1)2 , (41)

similarly,

‖u(J)
0 ‖s,r ≤ C7

∞∑
j=J

2−(j−1)2 . (42)

If the energy inequality (39) with t = tJ holds, by (40), (41) and (42) we
have

‖u(J)(tJ)‖s,R + 1− C5

∞∑
j=J+1

exp
{
− επ

1
s 2(j−1)2

}
≤ (C6 + C7)

∞∑
j=J

2−(j−1)2 .
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If J tends to infinity, tJ tends to T and we get

‖u(J)(T )‖s,R + 1 ≤ 0.

This implies that the energy inequality (39) breaks and that the derivative loss
really occurs in a sense of the radius of the Gevrey class Gs.

2.6. Concluding Remarks

Remark 2.17. For the well-posedness, the case degenerating only at one point
is a better situation than the case degenerating at an infinite number of points
in a sense of the derivative loss. While, for the ill-posedness one would think
that the latter case included more factors that a(t) causes a blow-up solution.
But in fact, we can not find out such a factor in this construction. The proof
of the ill-posedness also relays on the energy inequality in Proposition 2.11.
This means that the case degenerating at an infinite number of points is not a
better situation than the case degenerating only at one point.

Remark 2.18. Let

gη(t) =

{
e
− 1

(η2−4t2) for |t| < η/2,
0 for |t| ≥ η/2,

and ψη(t) =

∫ t
−∞ gη(σ)dσ∫∞
−∞ gη(σ)dσ

.

We define that
χη(t) = 1− ψη

(
t− η

2

)
ψη

(
t+

η

2

)
.

We know that χη(t) ≡ 1 for |t| ≥ η and χη(t) touches the t axis at t = 0. We
pay attention to the degeneration of infinite order. Instead of (16) we define

a(t) = δjΘ
(
νj
t− Tj−1

ρj

)
χη(t− Tj−1)χη(t− Tj) for t ∈ Ij = [Tj−1, Tj ],

where η with a sufficiently small constant such that Tj−1 < Tj−1 + η < tj .
Thanks to degeneration of χη(t), we can remove the restriction that k = 0, 1
for the coefficient a(t) (see Remark 2.10). Then, we may consider the terminal
value problem (24) on [Tj−1 + η, tj ] ⊂ Ij . Moreover, we insert the terminal
value problem on [Tj−1, Tj−1 + η] ⊂ Ij{

v′′j + h2
ja(t)vj = 0,

vj(Tj−1 + η) = Ṽ0, v
′
j(Tj−1 + η) = Ṽ1,

where Ṽ0 and Ṽ1 satisfy the estimates as (27). Similarly as (28), we have
an energy inequality for this additional problem. Thus, we can also get the
following:
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Corollary 2.19. There exists a coefficient a(t) such that

1. a(t) is non-negative and degenerates at an infinite number of points.

2. a(t) belongs to Ck,α[0, T ] for all k ∈ N and 0 ≤ α ≤ 1.

3. The Cauchy problem (1) with a(t) is ill-posed in Gs for s > 1+(k+α)/2.

Appendix. Singularity Spectra of Coefficients

Theorem 1.4 with s0 = 1 (k = α = 0) suggests that there exists a continuous
coefficient a(t) such that the Cauchy problem is ill-posed in the non-analytic
class, in other words, a solution may blow-up if we give the initial data which
can not be represented as a Taylor series (an infinite sum). It will be practically
useful to find a way to know such an unsuitable coefficient a(t) in advance. The
Fourier transform is the complete absence of information regarding the time.
Meanwhile, the windowed Fourier transform:

(Twβ
f)(b, ξ) =

∫
R

e−iτξf(τ)wβ
(
τ − b

)
dτ (43)

and the wavelet transform:

(Wψf)(b, a) =
1√
a

∫
R

f(τ)ψ
(
τ − b

a

)
dτ (44)

can extract the local information in time. Here we remark that a function g(t) ∈
L2(R) such that tg(t) ∈ L2(R) is called window. In (43) and (44), wβ , ψ are
window functions. In this paper, we shall utilize wβ(t) = χ(−β,β)(t) cos2 (10πt)

in case 1 and case 2, wβ(t)=χ(−β,β)(t)e−9t2/5 in case 3, and ψ(t)= 2(1−t2)√
3π1/4 e

−t2/2

for the windowed Fourier transform and the wavelet transform. The simplified
representations of the coefficients in Theorem 1.4 and Corollary 1.6 make it
possible to analyze coefficients with the windowed Fourier transform and the
wavelet transform. Only in this section we shall write the coefficient function
by the letter f instead of a in order to avoid a confusion with the parameter a
in the wavelet transform.

Case 1: Let 0 < T < 1 and f(t) be a non-negative monotone function
defined by

f(t) =


1

− log(T − t)
for 0 ≤ t < T (< 1),

0 for t ≥ T.

(45)

f(t) degenerates only at t = T . We find that f(t) belongs to C0[0,∞), but
does not belong to Cα[0,∞) for any α > 0. Thanks to the monotonicity, we
see that the Cauchy problem with (45) is C∞ well-posed.
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Figure 1: Graphs for windowed Fourier transform (left) and wavelet transform
(right) of (45) with T = 1/2. Both figures show that the irregular point is
t(≡ b) = T . In particular, the wavelet transform (right) indicates that the high
frequency (irregularity) increases toward the irregular point with a slope (the
function (45) becomes irregular not rapidly but gradually).

Case 2: Let 0 < T < 1 and f(t) be a non-negative oscillating function
defined by

f(t) =


1− cos

(
− log(T − t)

)
− log(T − t)

for 0 ≤ t < T (< 1),

0 for t ≥ T.

(46)

f(t) degenerates at an infinite number of points. If we take tj = T − e−2jπ

and sj = T − e−2jπ−π/2, it holds that |tj − sj | = e−2jπ|1 − e−π/2| ∼ e−2jπ

and |f(tj)− f(sj)| = (2jπ + π/2)−1 ∼ 1
j . Hence, we find that f(t) belongs to

C0[0,∞), but does not belong to Cα[0,∞) for any α > 0. Noting that f(t)
satisfies |f ′(t)| ≤ C(T − t)−1, by [2] we see that the Cauchy problem with (46)
is C∞ well-posed.

Remark 2.20. In general, given functions are not always represented by the
elementary periodic functions like sine and cosine. In this case,

1− cos
(
− log(T − t)

)
− log(T − t)

≡
∞∑
n=1

(−1)n

(2n)!

{
log(T − t)

}2n−1

.

If a function is given as the right hand side, it will be difficult to know the
oscillations. The numerical analysis with the windowed Fourier transform and
the wavelet transform can be available even for the function approximated by
a finite sum

f̃(t) =


100∑
n=1

(−1)n

(2n)!

{
log(T − t)

}2n−1

for 0 ≤ t < T (< 1),

0 for t ≥ T.

(47)



118 N. FUKUDA AND T. KINOSHITA

Figure 2: Graphs for windowed Fourier transform (left) and wavelet transform
(right) of (46) with T = 1/2. Similarly as Figure 1, both figures show that the
blow-up point is t(≡ b) = T and the wavelet transform (right) indicates that the
high frequency (irregularity) increases toward the irregular point with a slope.
Furthermore for the graph of the wavelet transform (right), we observe that
the part of the slope becomes wider and higher since the oscillation influences
on the irregularity in neighbourhood of t(≡ b) = T .

Then, we observe that the figures for f and f̃ are almost same.

Figure 3: Graphs for windowed Fourier transform (left) and wavelet transform
(right) of (47) with T = 1/2.

Case 3: Let f(t) be a coefficient function in Theorem 1.4 with s0 = 1 and

s = 11/10, i.e., Tj =
j∑

n=1

2−(n−1)2/20 (j ≥ 1) and

f(t) = 2−j
2/10Θ

(
221j2/20(t− Tj)

)
for t ∈ [Tj , Tj+1] (j ≥ 0). (48)

By Theorem 1.4 and its proof, f(t) degenerates at an infinite number of points
and belongs to C0[0,∞). Then we see that the Cauchy problem with (48) is
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G11/10 ill-posed. For the ill-posedness it is possible to replace the function (48)
by

f(t) = 2−j
r/10Θ(211jr/20(t− Tj)

with r > 1 (see Remark 2.14). It is not so difficult to describe the figure of
the wavelet transform even for a large r. Meanwhile, as r is larger, it would be
more difficult to describe the figure of the windowed Fourier transform. For the
simplicity, supposing that r = 1, we shall describe the figures of the following:

Tj =
j∑

n=1

2−(n−1)/20 (j ≥ 1)

and
f(t) = 2−j/10Θ

(
221j/20(t− Tj)

)
for t ∈ [Tj , Tj+1] (j ≥ 0). (49)

Figure 4: Graphs for windowed Fourier transform (left) and wavelet transform
(right) of (49). In this case, the windowed Fourier transforms require 7 graphs
to adjust the brightness of the spectrogram. On the other hand, such an
arrangement is not necessary for the wavelet transform. In this sense the
wavelet transform is convenient.

The degenerating and oscillating coefficients often appear in weakly hyper-
bolic equations. The amplitudes of oscillating coefficients are flattened by the
degeneracy. In all above figures, the brightness shows a large value of windowed
Fourier transform or wavelet transform, and the decay along the vertical axis
denotes the smoothness of analyzed functions. For cases 1 and 2, from figures
1-3 we see that both the windowed Fourier transform and the wavelet transform
detect the degenerations of analyzed functions at t = T . But, for case 3, to
detect the variation of frequency with the windowed Fourier transform, we are
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forced to prepare some graphs according to the value of the windowed Fourier
transform (its graph is obtained by pasting together). On the other hand, the
wavelet transform is able to catch more information of low amplitudes with
high-frequency oscillations in comparison with the windowed Fourier trans-
form. Moreover, the multiplication by 1/

√
a in the definition of wavelet (44)

makes the amplitudes more conspicuous. The slopes of figures in case 3 in-
dicate that a peak moves toward the blow-up point T > 0 as the frequency
increases, which possibly causes the ill-posedness. Thus, the wavelet transform
can be used as a good screening test for coefficients giving the ill-posedness of
the Cauchy problem.

Remark 2.21. Generally for a function f(t) = F
(
t−b′
a′

)
, the wavelet transform

with ψ
(
t−b
a

)
detects a ∼ a′ and b ∼ b′. Figure 4 means that a ∼ 2−21j/20 and

b = Tj are conspicuous since f(t) = 20−j/10Θ
(

t−Tj

2−21j/20

)
.
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