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Recent progress on characterizing
lattices C(X) and U(Y )1

Miroslav Hušek and Antonio Pulgaŕın

Abstract. Our effort to weaken algebraic assumptions led us to obtain
characterizations of C(X) as Riesz spaces, real `-groups, semi-affine
lattices and real lattices by using different techniques. We present a uni-
fied approach valid for any “convenient” category. By setting equivalent
conditions to equi-uniform continuity, we obtain a characterization of
the lattice U(Y ) in parallel with that of C(X).
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1. Introduction

In the early forties and starting mainly by Yosida [20], the topology community
was very interested in obtaining internal conditions under which an object is
isomorphic to the set C(X) of all the real valued continuous functions on some
topological space X.

The problem essentially depends on the algebraic structure in which we are
interested, the weaker assumption the more difficult the answer. Whenever
X 6= ∅, the set C(X) endowed with its pointwise defined order becomes a
distributive lattice containing all the constant functions into R, thus a copy of
R as a sublattice. Henceforth, our basic starting structure on C(X) will be
that of the real lattices (Definition 2.1).

At the crux of most attempts the following conditions on a real lattice L
somehow are needed: (a) L embeds into some C(X) and (b) the lattice of
bounded elements L∗ is isomorphic to C∗(X). Without loosing generality we
may assume that X is a Tychonoff space and even realcompact (since C(X) is
lattice-ordered algebra unit preserving isomorphic to C(υX)).

The only contribution appearing in the literature for the more general case
is that of Jensen [15] as a refinement of that of Anderson [1], but by assuming

1The content of this paper was presented at ItEs2012 (Italia - España 2012).



84 M. HUŠEK AND A. PULGARÍN

richer compatible algebraic structures, namely for Φ-algebras. However, no
effort was made to extend these results to more general situations.

Under this general context, Birkhoff [4] proposed explicitly in his venerable
Lattice Theory the open problem 81 by asking for an internal characterization
of C(X) with X a compact Hausdorff space only as a lattice. The problem was
solved by several authors, by making a special emphasis in the Anderson-Blair’s
solution [2]. Supported by this outstanding result (Lemma 4.3), verification of
above condition (b) can be done by using the Urysohn’s method on construct-
ing a separating function (Definition 4.11), and embedding condition (a) can
be established in any convenient subcategory of the real lattices, where among
other requirements, morphisms should be defined by means of operations (Def-
inition 2.3).

Still some conditions are needed to complete the characterization. We
shall present different approaches to this aim, namely: 2-universal complete-
ness (Definition 5.2), local uniform completeness (Definition 5.4) and pointwise
completeness (Definition 5.8).

Similarly to C(X), an internal characterization of the real lattice U(Y ) of
real uniformly continuous functions on some uniform space Y will be obtained
by determining equi-uniformly continuous sequences (Definition 4.19) and by
setting equi-uniform completeness (Definition 5.10).

This paper has a survey character aiming recent contributions by the au-
thors to the problem. All the technical proofs are avoided refering the readers
to their respective original sources.

2. Representation in convenient categories

We start denoting by T the category of the topological Hausdorff spaces with
their continuous maps HomT , and by U the category of Hausdorff uniform
spaces with their uniformly continuous maps HomU .

As usual, C(X) = HomT (X, R) and U(Y ) = HomU (Y, R) ⊆ C(Y ) are the
sets of real continuous functions on X ∈ T and real uniformly continuous
functions on Y ∈ U respectively. Our basic structure both on C(X) and
U(Y ) is that of a distributive lattice by assuming its pointwise defined order
relationship:

f ≤ g iff f(x) ≤ g(x), for all x ∈ X or Y (f, g ∈ C(X) or U(Y )).

Notice that whenever X 6= ∅, the set R of constant functions becomes a
sublattice of C(X). This requirement can be stated in terms of the lattice
structure since every densely-ordered countable chain of a distributive lattice
is isomorphic to the chain Q of the rational numbers (Birkhoff [4]).
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Definition 2.1. A real lattice is a distributive lattice containing the conditional
completion R of a fixed densely-ordered countable chain by removing the first
and the last element.

In the sequel, we shall make no distinction between R and the chain R of
the real numbers. We are denoting by L the category of the real lattices with
their lattice homomorphisms HomL being identity on R.

One of the stronger reasons of starting with a real lattice L is that we may
work with its real sublattice

L∗ = {f ∈ L : r ≤ f ≤ s for some r, s ∈ R} ∈ L

of bounded elements.
On the other hand, morphisms in L are defined by means of “operations”.

Let us formally generalize this framework: A signature is a nonempty set O
endowed with a mapping a : O → Z+ called arity.

Every signature O defines a category O called universal algebra whose
objects L satisfy that for any o ∈ O, there are subsets Lo

1, . . . , L
o
a(o) ⊆ L and a

mapping

oL : Lo
1 × · · · × Lo

a(o) → L, (f1, . . . , fa(o)) 7→ oL(f1, . . . , fa(o))

called a(o)-ary operation.
Their homomorphisms HomO are the mappings x : L → C preserving

operations:

x
(
oL(f1, . . . , fa(o))

)
= oC

(
x(f1), . . . , x(fa(o))

)
,

for every o ∈ O, f1 ∈ Lo
1, . . . , fa(o) ∈ Lo

a(o).
In the sequel the inclusion symbol among categories refers whenever to

be a subcategory (for instance, C ⊆ L means that the C-objects and C-
morphisms becomes at least real lattices and real lattice morphisms). Some
technical considerations will be required on setting up a suitable representation
theory.

Definition 2.2. A category C is said to be appropriate if it is a full subcate-
gory of some universal algebra O ⊆ L, and L∗ is a C-subobject of L whenever
L ∈ C.

Denote by K and X the full subcategories of T consisting of compact and
realcompact Hausdorff spaces respectively.

Definition 2.3. A subcategory C ⊆ L is said to be convenient if it is appro-
priate and satisfies:

(a)
{
C(X) : X ∈ T

}
⊆ C;
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(b) C(X) is C-isomorphic to C(υX) (υX ∈ X is the Hewitt-Nachbin real-
compactification of X);

(c) if X, Y ∈X , then T ∈HomC(C(X), C(Y )) iff there exists t∈HomT (Y, X)
such that Tf = f ◦ t;

(d) C∗(X) is C-isomorphic to C(βX) (βX ∈ K is the Čech-Stone com-
pactification of X).

Almost all the algebraic structures appearing in the literature regarding
characterizations of C(X) are convenient in the above sense, namely: Φ-alge-
bras (see [6, 14, 18]), Archimedean Riesz spaces with a designated weak order
unit (see [13, 17, 19]), real `-groups (see [7, 20]) and semi-affine lattices ([9]).

In order to characterize U(Y ), first we must define uniform spaces topolog-
ically equivalent to realcompact spaces.

Definition 2.4. A uniform space is called realcomplete if it is both complete
and uniformly homeomorphic to a subspace of a power of R. In the sequel Y
denotes the full subcategory of U of realcomplete Hausdorff uniform spaces.

Given Y ∈ U , we set

cY =
{
{f(x)}f∈U(Y ) : x ∈ Y

}
⊂ RU(Y ),

the prerealcomplete modification of Y , and γcY ∈ Y its completion in RU(Y ).

Definition 2.5. A subcategory C ⊆ L is said to be uniformly convenient if it
is appropriate and satisfies

(a)
{
U(Y ) : Y ∈ U

}
⊆ C;

(b) U(Y ) is C-isomorphic to U(γcY ) (γcY ∈ Y is the realcompletion of
Y );

(c) if X, Y ∈Y , then T ∈HomC(U(X), U(Y )) iff there exists t∈HomU (Y, X)
such that Tf = f ◦ t;

(d) U∗(Y ) is C-isomorphic to U(sY ) (sY ∈ K is the Samuel compactifica-
tion of Y ).

In the sequel C denotes either a convenient or uniformly convenient cate-
gory according either to the topological or uniform case.

Definition 2.6. The spectrum (resp. uniform spectrum) of a given object
L ∈ C is the set XC

L = HomC(L, R) equipped with the subspace topology (resp.
Y C

L = HomC(L, R) equipped with the subspace uniformity) of RL.
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It is not difficult to prove that XC
L ∈ X , Y C

L ∈ Y and that both XC
L∗ , Y C

L∗ ∈
K . Topological and uniform version of next theorem can be found in [11]
and [10] respectively, and it is the key of our representation theory.

Theorem 2.7. The functors

C → X , L XC
L , and X → C , X  C(X),

C → Y , L Y C
L , and Y → C , Y  U(Y ),

form adjoint situations in convenient and uniformly convenient categories C
respectively.

As a consequence X ∈ X iff XC
C(X) = X, and Y ∈ Y iff Y C

U(Y ) = Y .
Moreover, for L ∈ C there are reflections

ηC
L ∈ HomC

(
L,C(XC

L )
)
, x 7→ ηC

L (f)(x) = x(f) (x ∈ XC
L , f ∈ L),

µC
L ∈ HomC

(
L,U(Y C

L )
)
, y 7→ µC

L (f)(y) = y(f) (y ∈ Y C
L , f ∈ L),

called spectral and uniform spectral representation of L respectively.

Question 1. Which C-stated conditions are required for an object L ∈ C in
order to ηC

L ∈ IsoC

(
L,C(XC

L )
)

or µC
L ∈ IsoC

(
L, U(Y C

L )
)
?

We shall proceed in three steps:

• Embedding: L ⊆ C(XC
L ) or L ⊆ U(Y C

L );

• Intermediateness: L∗ = C∗(XC
L ) or L∗ = U∗(Y C

L );

• Completion: L = C(XC
L ) or L = U(Y C

L ).

3. Embedding

The first task will consist on setting when the spectral representation is injective
(we may use the notation ηC

L (L) = L).
Let V ⊂ L be the convenient category consisting of Archimedean (i.e.

nf ≤ g for all n ∈ N implies f ≤ 0) vector lattices with a designated weak
order unit e > 0 (i.e. f ∧e > 0 for every f > 0), and HomV their vector lattices
homomorphisms mapping weak order units in weak order units.

Luxemburg-Zaanen [17] showed that there is a one-to-one correspondence
between XV

L and the set of real maximal ideals of L (i.e. vector subspaces M
of L not containing the weak order unit e, and which are maximal among those
being solid, i.e. |f | ≤ |g| for g ∈ M implies f ∈ M).

Lemma 3.1. ηV
L (L) = L iff the intersection of all the real maximal ideals of L

is {0}.



88 M. HUŠEK AND A. PULGARÍN

This condition is usually known as “semisimplicity” and can be generalized
to any convenient category C .

Definition 3.2. L is said to be C-semisimple if for every r ∈ R⋂
x∈XC

L

x−1(r) = {r}

Since morphisms in convenient categories are defined by means of opera-
tions, and reasoning as in [11], we may correspond elements of XC

L with certain
subsets of the real lattice L.

Lemma 3.3. Let C be a convenient category with signature O. There is a one-
to-one correspondence between XC

L and the set RC
L consisting of real indexed

families R = {R(r)}r∈R of subsets of L having the following properties

(a)
⋃

R(r) = L and R(r) ∩R(s) = ∅ if r 6= s;

(b) R(r) ∩ R = {r} for every r ∈ R;

(c) if oL(f1, . . . , fa(o)) ∈ R(r), then f1 ∈ R(r1), . . . , fa(o) ∈ R(ra(o)) for some
r1, . . . , ra(o) ∈ R such that oR(r1, . . . , ra(o)) = r, for every r ∈ R.

Such families from RC
L are called real-systems of L.

Recall that given R ∈ RC
L , the mapping

R−1 : L → R, f 7→ R−1(f) = r, such that f ∈ R(r)

belongs to XC
L , and conversely if x ∈ XC

L , then {x−1(r)}r∈R ∈ RC
L .

Corollary 3.4. L is C-semisimple iff
⋂

R∈RC
L

R(r) = {r} for every r ∈ R.

Unfortunately, C-semisimplicity is not enough to ensure ηC
L (L) = L. The

well behavior of V -semisimplicity responds to the embedding ηV
L∗(L∗) = L∗

(from [20]), but without assuming linear structures this fact does not hold.
In [9] the convenient category S of semi-affine lattices is studied in details

(roughly speaking, a semi-affine lattice of C(X) is a sublattice which is closed
under addition by R and multiplication by {0} ∪ {wn : n ∈ N} for some real
number w < −1) where the following counterexample is produced:

Example 3.5. Let

L =

 if a < b, then i ∈ {−1, 0},
(a, b, i) ∈ R2 × {−1, 0, 1} : if a = b, then i = 0,

if a > b, then i ∈ {0, 1},
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endowed with the following order, addition and multiplication:

(a, b, i) ≤ (c, d, j) iff (a, b) ≤ (c, d), and either i ≤ j or a ≥ b, c ≤ d ,

r + (a, b, i) = (a + r, b + r, i) , r ∗ (a, b, i) = (ra, rb, sign(ri)) .

Then L is S-semisimple but ηS
L(L) 6= L (since ηS

L∗(L∗) 6= L∗).

Next definition from [3] ensures injectivity of ηL
L∗ .

Definition 3.6. L ∈ L is said to be special if

(a) for every r, s ∈ R and f ∈ L:

(a.1) f ∨ r ≥ s > r implies f ≥ s;

(a.2) f ∧ r ≤ s < r implies f ≤ s;

(b) for every pair f < g in L there exists r < s in R and h ∈ L such that
f ∧ h ≤ r and g ∧ h � t for every t < s.

Lemma 3.7. L∗ is special iff ηL
L∗(L∗) = L∗.

By adding speciality to semisimplicty, injectivity of the spectral represen-
tation yields in any convenient category (see [11]).

Theorem 3.8. L is special and C-semisimple iff ηC
L (L) = L.

4. Intermediateness

Yosida proved in [20] that L∗ is uniformly dense in C(XV
L∗). However this fact

does not work in weaker convenient categories, even by assuming speciality as
one can see in the next counterexample extracted from [3].

Example 4.1. Let L = {f ∈ C({0, 1}) : |f(0) − f(1)| < 1}. Then L is special
and L-semisimple, but L∗ is not uniformly dense in C(XL

L∗).

In order to solve this gap, Anderson-Blair introduced in [3] the notion of
normality.

Definition 4.2. L ∈ L is said to be normal if for all α, β, γ, δ ∈ R with β < γ
and for every f ∈ L∗, there exist g, h, k ∈ L∗ such that g ∧ h ≤ α, β ≤ h ∨ f,
f ∧ k ≤ γ and δ ≤ k ∨ g.

This condition allowed them to obtain a Stone-Weierstrass-like theorem in
the category L.

Lemma 4.3 (Stone-Weierstrass-like). L∗ is special and normal iff L∗ is uni-
formly dense in C(XL

L∗).
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Once arrived at this point, our interest focuses on stating a Kakutani-like
theorem in C , i.e. to obtain conditions under which L∗ is uniformly dense in
C∗(XC

L ). In general, it is false (even by assuming semisimplicity, speciality and
normality) as next example from [13] shows.

Example 4.4. Let L =
{
f|R : f ∈ C(R, R), f(x) = ±∞ iff x = ±∞

}
. Then

L is V -semisimple (of course L∗ is both special and normal) but L∗ is not
uniformly dense in C∗(XV

L ).

Next lemma from [11] will be important to our aims.

Lemma 4.5 (Kakutani-like). Under the assumption of speciality and normality,
L is C-semisimple iff XC

L∗ is a compactification of XC
L . As a consequence, if

L is special, normal and C-semisimple, the following are equivalent:

(i) L∗ is uniformly dense in C∗(XC
L );

(ii) L∗ separates disjoint zero-sets of XC
L .

Functionally separated subsets can be described by means of the method of
the famous Urysohn’s lemma. We shall start by determining closed subsets:

Definition 4.6. A real indexed family C = {C(r)}r∈R of subsets of L is said
to be a closed-system if there exists a class {Ri}i ⊆ RC

L of real-systems in L
(defined as in Lemma 3.3) such that C(r) =

⋂
i Ri(r) for every r ∈ R.

If F 6= ∅ is a closed subset of XC
L , then the family CF =

{⋂
x∈F x−1(r)

}
r∈R

becomes a closed-system, and conversely, if C = {
⋂

i Ri(r)}r∈R is a closed-
system, then FC =

{
R−1

i

}
i

becomes a closed subset of XC
L (see in the com-

ments below Lemma 3.3 how the morphisms Ri are constructed). Furthermore,
CXC

L
= R and FR = XC

L .
Denote by CC

L the set consisting of its closed-systems by adding L as one
of its members under the assertion C∅ = L and FL = ∅. As a consequence:

Corollary 4.7. There is a one-to-one correspondence between CC
L and the

family of closed subsets of XC
L .

Actually, CC
L becomes a complete lattice with the first element R and the

last element L, whenever we are setting for B,D ∈ CC
L the lattice operations

B ∧D = C(FB∪FD) and B ∨D = C(FB∩FD).

A description of cozero-sets was given by Kerstan [16].

Proposition 4.8. A subset of a topological space X is a cozero-set iff it belongs
to a family V of open sets having the property that for every its member U there
exist two sequences {Un}n, {Vn}n in V such that

U =
⋃

Un , Un ⊂ X \ Vn ⊂ U, for each n.
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Above result will be helpful in order to determine zero-sets.

Definition 4.9. A closed-system in L is said to be a zero-system provided it
belongs to a class Z of closed-systems in L having the property that for every
its member B there are countable sequences {Bn}n, {Dn}n from Z such that

B =
∨
n

Bn, Bn ∧Dn = R and Dn ∨B = L, for all n.

Denote by ZC
L the set consisting of zero-systems in L.

Lemma 4.10. There is a one-to-one correspondence between ZC
L and the family

of zero-sets of XC
L .

Proof. Every zero-system belongs to a class Z of closed-systems in L such that
for every its member B there are sequences {Bn}n,{Dn}n from Z such that
B =

∨
n Bn, Bn ∧ Dn = R and Dn ∨ B = L, for every n. One derives that

FB =
⋂

n FBn
, FB ⊂ XC

L \FDn
⊂ FBn

. Thus, FC becomes a zero-set whenever
C ∈ ZC

L .
Conversely, from Proposition 4.8, the complementary of a given zero-set

Z from XC
L belongs to a family V of open sets in XL having the property

that that for every its member U there are sequences sequences {Un}n, {Vn}n

from V such that U =
⋃

Un, Un ⊂ XC
L \ Vn ⊂ U for each n. By taking

Z = {CXC
L \U : U ∈ V }, the closed-systems Bn = CXC

L \Un
, Dn = CXC

L \Vn

satisfy CXC
L \U =

∨
n Bn, Bn ∧ Dn = R and Dn ∨ B = L, for every n. As a

consequence, CZ ∈ ZC
L .

Definition 4.11. L is said to be C-separating provided C(r) ∩D(s) 6= ∅ for
every pair of distinct reals r 6= s, and for any pair C,D ∈ ZC

L which satisfies
C ∨D = L.

On the one hand, C ∨ D = L for C,D ∈ ZC
L is equivalent to assert that

FC , FD are disjoint zero-sets of XC
L . On the other hand, if C = {

⋂
i Ri(r)}r∈R

and D = {
⋂

j Sj(r)}r∈R, f ∈ C(r) ∩ D(s) iff R−1
i (f) = r and S−1

j (f) = s for
every i, j, equivalently f(FC) = r and f(FD) = s. As a consequence:

Theorem 4.12 (Uryshon-like). L is C-separating iff L separates functionally
separated subsets of XC

L .

The isomorphism L∗ = C∗(XC
L ) can be currently obtained by assuming

uniform completeness. However, to define this concept subtraction and absolute
value operations are needed. A partial solution was proposed in [3].

Definition 4.13. A continuous ideal is a solid subset I of L which is closed
under finite suprema and such that for any 0 < r ∈ R there exists 0 < α < β < r
in R, k1, k2 ∈ L and g ∈ I such that I ≤ k1 ∨ k2 , and if h ∈ I, g ≤ h and
ki ∧ α � h, then ki ∧ h ≤ β (i = 1, 2).
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Next theorem constitutes the Anderson-Blair’s solution [3] to the prob-
lem 81 of Birkhoff.

Theorem 4.14. L is special, normal and every continuous ideal in L∗ has a
supremum in L∗ iff L∗ = C(XL

L∗).

We shall say:

Definition 4.15. L is C-intermediate if:

(a) L is C-semisimple;

(b) L is C-separating;

(c) L is special, normal and every continuous ideal in L∗ has a supremum in
L∗.

From all above mentioned, we get the following result:

Corollary 4.16. L is C-intermediate iff C∗(XC
L ) ⊆ L ⊆ C(XC

L ).

Once arrived at this point, we asked whether it would be possible to trans-
late this intermediate situation to uniform spaces. Suppose C is a uniformly
convenient category and L ∈ C .

Given δ > 0 and g ∈ L we set

Uδ,g =
{
(R,S) ∈ RC

L ×RC
L : g ∈ R(r) ∩ S(s) implies |r − s| < δ

}
.

Notice that the definition is internal in character since the operation |r−s| <
δ is in R.

Definition 4.17. A sequence {fn}n ⊆ L is said to be equi-uniformly C-
continuous if for any ε > 0 there are g1, . . . , gm ∈ L and δ > 0 such that
for all n

fn ∈
⋂ {[⋃

{R(r) ∩ S(s) : |r − s| < ε}
]

: (R,S) ∈ Uδ,g1 ∩ · · · ∩ Uδ,gm

}
.

If Y ∈ Y , then {fn}n ⊆ U(Y ) is equi-uniformly C-continuous iff for any
ε > 0 there exists an entourage U of Y such that |fn(x)− fn(y)| < ε for all n,
(x, y) ∈ U .

We have recently obtained in [12] an equivalent condition to intermediate-
ness by avoiding separation.

Theorem 4.18. Suppose L is special, normal and every continuous ideal in
L∗ has a supremum in L∗ (recall from Theorem 4.14 that this is equivalent to
L∗ = U(Y C

L∗)). The following are equivalent:
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(i) L∗ = U∗(Y C
L );

(ii) every equi-uniformly C-continuous sequence {fn}n ⊂ L+ bounded from
above by a real number has a supremum f in L which satisfies f ∧ g = 0
whenever fn ∧ g = 0 for all n.

Now we may add a condition ensuring injectivity of µC
L and furthermore

determining uniform intermediateness (see [12]).

Definition 4.19. L is uniformly C-intermediate if:

(a) L is special, normal and every continuous ideal in L∗ has a supremum in
L∗;

(b) every equi-uniformly C-continuous sequence {fn}n ⊂ L+ bounded from
above by a real number has a supremum f in L which satisfies f ∧ g = 0
whenever fn ∧ g = 0 for all n;

(c) if f 6= g from L, there exist n, k ∈ N such that (f ∧ (−k) ∨ n) 6= (g ∧
(−k) ∨ n).

Corollary 4.20. L is uniformly C-intermediate iff U∗(Y C
L ) ⊆ L ⊆ U(Y C

L ).

5. Completion

We produced in [8] a C-intermediate lattice not isomorphic to any C(X).

Example 5.1. Let L = C∗(N) ∪ {f ∈ C(N) : |f(n)| ≤ n starting from some
n0 ∈ N}. Then L is L-intermediate, but L is not L-isomorphic to C(N).

Next definition close to inversion closeness is due to Feldman-Porter [5].

Definition 5.2. L is 2-universally C-complete if any sequence {fn}n ⊆ L+

(resp. in L−) having some member fm /∈ R(0) for every R ∈ RC
L and satisfying

that fn ∧ fk 6= 0 (resp. fn ∨ fk ≥ 0) for at most two indices k distinct from n,
has a supremum (resp. infimum) f in L.

Montalvo et al. obtained in [19] an internal characterization of C(X) as a
Riesz space.

Theorem 5.3. The following are equivalent:

(i) L is V -isomorphic to some C(X);

(ii) L is V -intermediate and 2-universally V -complete.

By taking into account that |f − g| ≤ ε on coz(h) iff mh ∧ |f − g| ≤ ε for
all m ∈ N, a “local uniform completeness” definition can be proposed.
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Definition 5.4. Let L be a V -object with a designated weak order unit e. A
sequence {fn}n in L+ is said to be locally V -Cauchy if there exists a subset H
of L+ contained in no real maximal ideal and having the property: if h ∈ H,
and ε > 0, then there exists nh

ε ∈ N such that for all m ∈ N, mh∧|fn−fnh
ε
| ≤ εe

whenever n ≥ nh
ε .

L is said to be locally uniformly V -complete if for every locally V -Cauchy
sequence {fn}n in L+ there exists f ∈ L+ such that for every h ∈ H and ε > 0,
mh ∧ |f − fnh

ε
| ≤ εe for all m ∈ N.

In [13] we have obtained recently an improvement of Theorem 5.3 by re-
moving both uniform completeness and 2-universal completeness.

Theorem 5.5. The following are equivalent:

(i) L is V -isomorphic to some C(X);

(ii) L is V -semisimple, V -separating and locally uniformly V -complete.

Furthermore, in the category S of semi-affine lattices, condition mh∧ |f −
g| ≤ ε for all m ∈ N is equivalent to both

(w2m ∗ h) ∧ g+ − ε ≤ (w2m ∗ h) ∧ f+ ≤ (w2m ∗ h) ∧ g+ + ε, and

(w2m−1 ∗ h) ∨ g− − ε ≤ (w2m−1 ∗ h) ∨ f− ≤ (w2m−1 ∗ h) ∨ g− + ε.

By shifting the condition that H is contained in no real maximal ideal by that:
for any R ∈ RS

L there exists f ∈ H such that f /∈ R(0), then local uniform
S-completeness yields, and we derive next characterization theorem (see [8]).

Theorem 5.6. The following are equivalent:

(i) L is S-isomorphic to some C(X);

(ii) L is special, S-semisimple, S-separating and locally uniformly S-com-
plete.

However, local uniform completeness can not be stated in L, and Theorem
5.3 does not work, as next example from [8] shows.

Example 5.7. Let L = C∗(R) ∪ C+(R) ∪ C−(R). Then L is L-intermediate
and 2-universally L-complete, but L is not L-isomorphic to some C(X).

We develop a different approach.

Definition 5.8. A sequence {fn}n in L is said to be pointwise C-bounded if
for every R ∈ RC

L there are r < s in R with fn ∧ r ∈ R(r) and fn ∨ s ∈ R(s)
for each n.

L is said to be pointwise C-complete if every increasing (resp. decreasing)
pointwise C-bounded sequence {fn}n in L having the property that fn∧k = fk

(resp. fn ∨−k = fk) for every n > k, has a supremum (resp. infimum) f in L
which satisfies f ∧ n = fn (resp. f ∨ −n = fn) for each n.
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In [11] we have obtained the most general characterization of C(X) up to
the date.

Theorem 5.9. The following are equivalent:

(i) L is C-isomorphic to some C(X);

(ii) L is C-intermediate and pointwise C-complete.

On realizing a uniform version of previous theorem we had to impose dif-
ferent requirements.

Definition 5.10. {fn}n is said to be weakly pointwise C-bounded from above
(resp. below) if for every R ∈ RC

L there is n with fn /∈ R(n) (resp. fn /∈
R(−n)).

L is said to be equi-uniformly C-complete if every equi-uniformly C-con-
tinuous and weakly pointwise C-bounded from above (resp. from below) se-
quence {fn}n in L having the property that fn ∧ k = fk (resp. fn ∨ −k = fk)
whenever n > k, has an upper bound (or a lower bound) f in L which satisfies
f ∧ n = fn (or f ∨ −n = fn, resp.) for all n.

We obtained in [12]:

Theorem 5.11. The following are equivalent:

(i) L is C-isomorphic to some U(Y );

(ii) L is uniformly C-intermediate and equi-uniformly C-complete.
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96 M. HUŠEK AND A. PULGARÍN
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[8] M. Hušek and A. Pulgaŕın, C(X) as a lattice: A generalized problem of
Birkhoff and Kaplansky, Topology Appl. 158 (2011), 904–912.

[9] M. Hušek and A. Pulgaŕın, C(X)-objects in the category of semi-affine lat-
tices, Appl. Categ. Structures 19 (2011), 439–454.
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Univ. of Extremadura,
Avda. Universidad s/n, 10003 Cáceres,
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