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1. Introduction

Let X be a smooth projective variety of dimension n defined over the field of
complex numbers C and let L be an ample line bundle on X. Then we call this
pair (X, L) a polarized manifold. In [11], for every integer i with 0 ≤ i ≤ n,
we defined the invariant bi(X, L) which is called the ith sectional Betti number
of (X, L). If L is spanned, then we can prove that bi(X, L) ≥ hi(X, C) (see
Remark 2.3 (iii.1) below). So it is interesting to classify (X, L) by the value of
bi(X, L)− hi(X, C).

In this paper, we consider the case of i = 2. In [13, Theorem 4.1] (resp.
[14, Theorem 3.1]) we have classified polarized manifolds (X, L) such that L is
spanned and b2(X, L) = h2(X, C) (resp. b2(X, L) = h2(X, C) + 1).

In this paper we will consider the next step and we will classify polarized
manifolds (X, L) such that L is very ample and b2(X, L) = h2(X, C) + 2.

2. Preliminaries

In this paper we will use the customary notation in algebraic geometry.

2.1. Review on sectional invariants of polarized manifolds

In this subsection, we will review the theory of sectional invariants of polarized
manifolds which will be used in the main theorem (Theorem 3.1) and its proof.

Notation 2.1. (1) Let X be a projective variety of dimension n, let L be an
ample line bundle on X. Then the Euler-Poincaré characteristic χ(L⊗t)
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of L⊗t is a polynomial in t of degree n, and we can describe χ(L⊗t) as
follows.

χ(L⊗t) =
n∑

j=0

χj(X, L)
(

t + j − 1
j

)
.

(2) Let Y be a smooth projective variety of dimension i, let TY be the tangent
bundle of Y , and let ΩY be the dual bundle of TY . For every integer j
with 0 ≤ j ≤ i, we put

hi,j(c1(Y ), · · · , ci(Y )) := χ(Ωj
Y )

=
∫

Y

ch(Ωj
Y )Td(TY ).

(Here ch(Ωj
Y ) (resp. Td(TY )) denotes the Chern character of Ωj

Y (resp.
the Todd class of TY ). See [15, Examples 3.2.3 and 3.2.4].)

(3) Let (X, L) be a polarized manifold of dimension n. For every integers i
and j with 0 ≤ j ≤ i ≤ n, we put

Ci
j(X, L) :=

j∑
l=0

(−1)l

(
n− i + l − 1

l

)
cj−l(X)Ll,

wj
i (X, L) := hi,j(Ci

1(X, L), · · · , Ci
i (X, L))Ln−i.

(4) Let X be a smooth projective variety of dimension n. For every integers
i and j with 0 ≤ j ≤ i ≤ n, we put

H1(i, j) :=


i−j−1∑
s=0

(−1)shs(Ωj
X) if j 6= i,

0 if j = i,

H2(i, j) :=


j−1∑
t=0

(−1)i−tht(Ωi−j
X ) if j 6= 0,

0 if j = 0.

Definition 2.2. (See [10, Definition 2.1] and [11, Definition 3.1].) Let (X, L)
be a polarized manifold of dimension n, and let i and j be integers with 0 ≤
j ≤ i ≤ n.

(1) The ith sectional geometric genus gi(X, L) of (X, L) is defined as follows:

gi(X, L) := (−1)i(χn−i(X, L)− χ(OX)) +
n−i∑
j=0

(−1)n−i−jhn−j(OX).
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(2) The ith sectional Euler number ei(X, L) of (X, L) is defined by the fol-
lowing:

ei(X, L) := Ci
i (X, L)Ln−i.

(3) The ith sectional Betti number bi(X, L) of (X, L) is defined by the fol-
lowing:

bi(X, L) :=


e0(X, L) if i = 0,

(−1)i

ei(X, L)−
i−1∑
j=0

2(−1)jhj(X, C)

 if 1 ≤ i ≤ n.

(4) The ith sectional Hodge number hj,i−j
i (X, L) of type (j, i− j) of (X, L) is

defined by the following:

hj,i−j
i (X, L) := (−1)i−j

{
wj

i (X, L)−H1(i, j)−H2(i, j)
}

.

Remark 2.3. (i) For every integers i and j with 0 ≤ j ≤ i ≤ n, gi(X, L),
ei(X, L), bi(X, L) and hj,i−j

i (X, L) are integer (see [11, Proposition 3.1]).

(ii) Let (X, L) be a polarized manifold of dimension n. For every integers i
and j with 0 ≤ j ≤ i ≤ n, we have the following (see [11, Theorem 3.1]).

(ii.1) bi(X, L) =
i∑

k=0

hk,i−k
i (X, L).

(ii.2) hj,i−j
i (X, L) = hi−j,j

i (X, L).

(ii.3) hi,0
i (X, L) = h0,i

i (X, L) = gi(X, L).

(iii) Assume that L is ample and spanned. Then, for every integers i and j
with 0 ≤ j ≤ i ≤ n, the following inequalities hold (see [10, Theorem 3.1]
and [11, Proposition 3.3]).

(iii.1) bi(X, L) ≥ hi(X, C).

(iii.2) hj,i−j
i (X, L) ≥ hj,i−j(X).

(iii.3) gi(X, L) ≥ hi(OX).

2.2. Adjunction theory of polarized manifolds

In this subsection, we will recall results on adjunction theory which will be
used later.

Definition 2.4. Let (X, L) be a polarized manifold of dimension n.
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(1) We say that (X, L) is a scroll (resp. quadric fibration, Del Pezzo fibra-
tion) over a normal projective variety Y of dimension m with 1 ≤ m < n
(resp. 1 ≤ m < n, 1 ≤ m < n − 1) if there exists a surjective morphism
with connected fibers f : X → Y such that KX + (n − m + 1)L = f∗A
(resp. KX + (n − m)L = f∗A, KX + (n − m − 1)L = f∗A) for some
ample line bundle A on Y .

(2) (X, L) is called a classical scroll over a normal variety Y if there exists a
vector bundle E on Y such that X ∼= PY (E) and L = H(E), where H(E)
is the tautological line bundle.

(3) We say that (X, L) is a hyperquadric fibration over a smooth projective
curve C if (X, L) is a quadric fibration over C such that the morphism
f : X → C is the contraction morphism of an extremal ray. In this case,
(F,LF ) ∼= (Qn−1,OQn−1(1)) for any general fiber F of f , every fiber of f
is irreducible and reduced (see [18] or [7, Claim (3.1)]) and h2(X, C) = 2.

Remark 2.5. (1) If (X, L) is a scroll over a smooth projective curve C, then
(X, L) is a classical scroll over C (see [2, Proposition 3.2.1]).

(2) If (X, L) is a scroll over a normal projective surface S, then S is smooth
and (X, L) is also a classical scroll over S (see [3, (3.2.1) Theorem] and
[9, (11.8.6)]).

(3) Assume that (X, L) is a quadric fibration over a smooth curve C with
dim X = n ≥ 3. Let f : X → C be its morphism. By [3, (3.2.6) Theorem]
and the proof of [18, Lemma (c) in Section 1], we see that (X, L) is one
of the following:

(a) A hyperquadric fibration over C.

(b) A classical scroll over a smooth surface with dim X = 3.

Definition 2.6. (1) Let X (resp. Y ) be an n-dimensional projective man-
ifold, and L (resp. H) an ample line bundle on X (resp. Y ). Then
(X, L) is called a simple blowing up of (Y, H) if there exists a birational
morphism π : X → Y such that π is a blowing up at a point of Y and
L = π∗(H)− E, where E is the π-exceptional effective reduced divisor.

(2) Let X (resp. M) be an n-dimensional projective manifold, and L (resp.
A) an ample line bundle on X (resp. M). Then we say that (M,A) is a
reduction of (X, L) if there exists a birational morphism µ : X → M such
that µ is a composition of simple blowing ups and (M,A) is not obtained
by a simple blowing up of any other polarized manifold.

Theorem 2.7. Let (X, L) be a polarized manifold with dim X = n ≥ 3. Then
(X, L) is one of the following types.
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(1) (Pn,OPn(1)).

(2) (Qn,OQn(1)).

(3) A scroll over a smooth projective curve.

(4) KX ∼ −(n− 1)L, that is, (X, L) is a Del Pezzo manifold.

(5) A hyperquadric fibration over a smooth projective curve.

(6) A classical scroll over a smooth projective surface.

(7) Let (M,A) be a reduction of (X, L).

(7.1) n = 4, (M,A) = (P4,OP4(2)).

(7.2) n = 3, (M,A) = (Q3,OQ3(2)).

(7.3) n = 3, (M,A) = (P3,OP3(3)).

(7.4) n = 3, M is a P2-bundle over a smooth curve C, the nef value of A
is 3

2 , and (F ′, A|F ′) ∼= (P2,OP2(2)) for any fiber F ′ of it.

(7.5) KM + (n− 2)A is nef.

Proof. See [2, Proposition 7.2.2, Theorems 7.2.4, 7.3.2 and 7.3.4] and [9, (11.2),
(11.7) and (11.8)].

Notation 2.8. (1) Let (X, L) be a hyperquadric fibration over a smooth curve
C and let f : X → C be its morphism. We put E := f∗(L). Then E is
a locally free sheaf of rank n + 1 on C. Let π : PC(E) → C be the pro-
jective bundle. Then X ∈ |2H(E) + π∗(B)| for some B ∈ Pic(C) and
L = H(E)|X , where H(E) is the tautological line bundle of PC(E). We
put e := deg E and b := deg B.

(2) (See [9, (13.10)].) Let (M,A) be a P2-bundle over a smooth curve C and
A|F = OP2(2) for any fiber F of it. Let f : M → C be the fibration and
E := f∗(KM + 2A). Then E is a locally free sheaf of rank 3 on C, and
M ∼= PC(E) such that H(E) = KM +2A. In this case, A = 2H(E)+f∗(B)
for a line bundle B on C, and by the canonical bundle formula we have
KM = −3H(E)+f∗(KC +detE). Here we set e := deg E and b := deg B.

2.3. A classification of very ample vector bundles E on
surfaces with c2(E) = 3

Here we classify very ample vector bundles E on smooth projective surfaces
with c2(E) = 3. We will use this result later.
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Theorem 2.9. Let S be a smooth projective surface and let E be a very ample
vector bundle on S with c2(E) = 3 and rankE ≥ 2. Then (S, E) is one of the
following types.

(i) (P2,OP2(1)⊕3).

(ii) (P2, TP2), where TP2 is the tangent bundle of P2.

(iii) (P1×P1, [p∗1(OP1(1))⊗p∗2(OP1(2))]⊕ [p∗1(OP1(1))⊗p∗2(OP1(1))]), where pi

is the ith projection.

(iv) S is a blowing up of P2 at a point and E = (p∗(OP2(2)) − E)⊕2, where
p : S → P2 is the morphism and E is the exceptional divisor of p.

(v) (P2,OP2(1)⊕OP2(3)).

(vi) S is a Del Pezzo surface of degree 3 and E ∼= O(−KS)⊕2.

Proof. By a result of Noma [22, Corollary], we see that (S, E) ∼= (P2,OP2(1)⊕
OP2(3)) if c1(E)2 ≥ 4c2(E) + 1 = 13. So we may assume that c1(E)2 ≤ 12.
We consider (PS(E),H(E)) and let X := PS(E), L := H(E) and n := dim X.
Then H(E) is very ample and H(E)n = c1(E)2 − c2(E) ≤ 12 − 3 = 9. Let
π : PS(E) → S be the projection. We use a classification of polarized manifolds
by the degree (see [17], [19] and [5]). First of all, we prove the following claim.

Claim 2.10. If g(X, L) ≤ 3 and c2(E) = 3, then (S, E) is one of the types (i),
(ii), (iii), (iv) and (v) in Theorem 2.9.

Proof. First we note that E is very ample.
If g(X, L) = 0, then by [8, (3.2) Theorem] or [4, (2.1) Theorem] we see that

c2(E) 6= 3.
If g(X, L) = 1 (resp. 2, 3) and c2(E) = 3, then by [8, (3.3) Theorem] or

[4, (2.2) Theorem] (resp. [8, (3.4) Theorem] or [4, (2.3) Theorem], [4, (2.11)
Theorem] and [20, Corollary 4.7]) we see that (X, L) is either (i) or (ii) (resp.
(iii) or (iv), (v)).

From now on, we assume that g(X, L) ≥ 4. By the list of [17], we have
Ln ≥ 6.

(A) The case where Ln = 6. Then we see from the list of [17] that X is
either a complete intersection of type (2, 3) or a hypersurface in Pn+1. But in
each case we have Pic(X) ∼= Z and this is impossible.

(B) The case where Ln = 7. Then we see from the list of [17] and Table
II of [1, Page 55] that (X, L) is one of the following types.
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(B.1) (X, L) = (PT (F),H(F)) and g(X, L) = 4, where T is the blowing up of
P2 at 6 points and F is a locally free sheaf on T .

(B.2) n = 3, g(X, L) = 5 and σP : X → Y is the blowing up of Y at a point P ,
where Y is a smooth complete intersection of type (2, 2, 2).

(B.3) g(X, L) = 6 and the morphism φ : X → P1 defined by the complete linear
system |KX + L| is a fibration over P1.

(B.4) X is a hypersurface of degree 7 in Pn+1.

(B.I) First we consider the case (B.2). Then Pic(X) ∼= Z⊕2 and Pic(S) ∼= Z.
Next we prove the following.

Claim 2.11. κ(S) = −∞ holds.

Proof. In this case, there exists an effective divisor E on X such that E ∼= P2.
We note that π(E) is not a point because every fiber of π is P1. Therefore
πE : E → S is surjective because E ∼= P2. Assume that πE is not finite. Then
there exists a fiber Fπ of π such that Fπ is contracted by σP . Hence [2, Lemma
4.1.13] there exists a morphism δ : S → Y such that σP = δ ◦ π. But this is
impossible because σP is surjective and dim S < dim Y . Therefore πE is finite
and we have κ(S) = −∞ because κ(E) = −∞.

We see from Claim 2.11 and Pic(S) ∼= Z that S ∼= P2. We note that
rankE = 2 because dim X = 3 in this case. Hence by [20, Corollary 4.7]
g(X, L) ≤ 3 holds and this case is ruled out.
(B.II) Next we consider the case (B.3). Since h0(KX + L) = h0(KPS(E) +
H(E)) = 0, this case is also ruled out.
(B.III) Next we consider the case (B.4). This case is also ruled out because
Pic(X) 6∼= Z.
(B.IV) Finally we consider the case (B.1). Then we have Pic(T ) ∼= Z⊕7,
Pic(X) ∼= Z⊕8 and Pic(S) ∼= Z⊕7. Since c2(E) = 3 and Ln = 7, we have
c1(E)2 = 10. Hence we have KSc1(E) = −4 because g(S, c1(E)) = g(X, L) = 4.
Next we prove the following.

Claim 2.12. κ(S) = −∞ holds.

Proof. Let ρ : X = PT (F) → T be the projection. Let D1, . . . , Dn−2 be general
members of |L| such that Xn−2 := D1∩· · ·∩Dn−2 is a smooth projective surface.
Here we note that ρXn−2 : Xn−2 → T and πXn−2 : Xn−2 → S are birational
because Ln−2Fρ = 1 (resp. Ln−2Fπ = 1) for any general fiber Fρ (resp. Fπ) of
ρ (resp. π). Therefore S is birationally equivalent to T . So we get the assertion
because κ(T ) = −∞.
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Since κ(S) = −∞, h1(OS) = 0 and Pic(S) ∼= Z⊕7, we see that K2
S = 3.

Hence we get
(KSc1(E))2 = 16 < 30 = (KS)2(c1(E))2,

but this contradicts the Hodge index theorem. Therefore this case is also im-
possible.

(C) The case where Ln = 8. Then since we assume that g(X, L) ≥ 4, we
see from the list of [19] that (X, L) is one of the following types.

(C.1) (X, L) = (PQ2(F),H(F)) and g(X, L) = 4, where F is a locally free sheaf
of rank two on Q2.

(C.2) X is a smooth complete intersection of type (2, 2, 2).

(C.3) The morphism φ : X → P1 defined by |KX + L| is a fibration over P1.

(C.4) X is a complete intersection of type (2, 4).

(C.5) X is a hypersurface of degree 8 in Pn+1.

(C.I) First we consider the cases (C.2), (C.4) and (C.5). These cases are ruled
out because PicX 6∼= Z.
(C.II) Next we consider the case (C.3). Since h0(KX + L) = h0(KPS(E) +
H(E)) = 0, this case is also ruled out.
(C.III) Finally we consider the case (C.1). Since g(S, c1(E)) = g(X, L) = 4 and
c1(E)2 = 11, we have KSc1(E) = −5. Moreover Pic(X) ∼= Z⊕3 and h1(OX) = 0.
Hence we have Pic(S) ∼= Z⊕2 and h1(OS) = 0. By the same argument as in
the proof of Claim 2.12, we see that κ(S) = −∞. So we have K2

S = 8, and

(KSc1(E))2 = 25 < 88 = (KS)2(c1(E))2.

But this contradicts the Hodge index theorem. Therefore this case is also im-
possible.

(D) The case where Ln = 9. In this case, since we assume that g(X, L) ≥ 4,
we see from [6, Table III in page 104] (see also [5]) that (X, L) is one of the
following types.

(D.1) (X, L) = (PQ2(F),H(F)) and g(X, L) = 4, where F is a locally free sheaf
of rank two on Q2.

(D.2) (X, L) is a hyperquadric fibration over P1, g(X, L) = 4 and n = 3, 4, 5.

(D.3) X is the Segre embedding of P1 × Y in P7 and g(X, L) = 4, where Y is
a cubic surface in P3.
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(D.4) The reduction (M,A) of (X, L) is (Q3,OQ3(2)) and g(X, L) = 5.

(D.5) (X, L) is a scroll over P2 with five double points blown up, g(X, L) = 5
and n = 3.

(D.6) (X, L) is a scroll over the first Hirzebruch surface F1, g(X, L) = 5 and
n = 3.

(D.7) X is a blowing up of a Fano manifold Y at a point in P7, g(X, L) = 6
and n = 3.

(D.8) X is a hypercubic section of a cone over the Segre embedding of P1 × P2

in P5, g(X, L) = 7 and n = 3.

(D.9) (X, L) is a complete intersection of type (3, 3) and g(X, L) = 10.

(D.10) n = 3, X is linked to a P3 in the complete intersection of a quadric and
a quintic hypersurface, and g(X, L) = 12.

(D.11) n = 3, X is linked to a cubic scroll in the complete intersection of a cubic
and a quartic hypersurface, and g(X, L) = 9.

(D.12) n = 3, X is a P1-bundle over a minimal K3 surface and L is the tauto-
logical line bundle with g(X, L) = 8.

(D.13) X is a hypersurface of degree 9 in Pn+1 and g(X, L) = 28.

(D.I) First we consider the cases (D.9) and (D.13). These cases do not occur
because Pic(X) 6∼= Z.

(D.II) Next we consider the case (D.1). In this case we have Pic(X) ∼= Z⊕3.
Hence Pic(S) ∼= Z⊕2. By the same argument as the proof of Claim 2.12, we
see that κ(S) = −∞. Therefore S is a P1-bundle over P1. We also infer that
rankE = 2 because dim X = 3. So we see from [20, Corollary (2.11)] that (S, E)
is one of the following.

• S ∼= P1 × P1 and E ∼= (p∗1OP2(1) ⊗ p∗2OP2(1)) ⊕ (p∗1OP2(1) ⊗ p∗2OP2(2)),
where pi is the ith projection.

• S is the blowing up of P2 at a point and E = (p∗(OP2(2))−E)⊕2, where
p : S → P2 is the morphism and E is the exceptional divisor of p.

But here we assume that g(X, L) ≥ 4, so these cases do not occur.

(D.III) Next we consider the case (D.3). First we note the following.

Claim 2.13. κ(S) = −∞.
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Proof. Let p : X → P1 be the projection map. If πFp
: Fp → S is finite for a

fiber Fp of p, then κ(S) = −∞ because κ(Fp) = −∞. If πFp
: Fp → S is not

finite for any fiber Fp of p, then there exists a fiber Fπ of π such that p(Fπ) is
a point. So by [2, Lemma 4.1.13] there exists a surjective morphism r : S → P1

such that p = r ◦ π. Since the irregurality of a general fiber of p is zero, so is
the irregurality of a general fiber of r. Therefore κ(S) = −∞.

In this case we have Pic(X) ∼= Z⊕8. Hence Pic(S) ∼= Z⊕7. Since h1(OS) =
0, we have K2

S = 3. On the other hand we have g(S, c1(E)) = g(X, L) = 4
and c1(E)2 = H(E)3 + c2(E) = 12. Hence KSc1(E) = −6. Hence we have
(KSc1(E))2 = 36 = (K2

S)(c1(E)2). By the Hodge index theorem we have
c1(E) ≡ −2KS , that is, S is a Del Pezzo surface of degree 3. Since rankE = 2,
we see from [20, Corollary (3.14)] that E ∼= O(−KS)⊕2. This is the type (vi)
in Theorem 2.9.

(D.IV) Next we consider the case (D.4). Let µ : X → Q3 be the reduction
map. Then µ is not the identity map because L3 = 9 and OQ3(2)3 = 16.
Hence there exists an effective divisor E on X such that E ∼= P2. If π(E) 6= S,
then π(E) is a point. But this is impossible because π is a P1-bundle. Hence
π(E) = S holds. Moreover πE : E → S is finite because E ∼= P2. Hence we see
that κ(S) = −∞ and h1(OS) = 0. Here we prove the following.

Claim 2.14. S ∼= P2.

Proof. Assume that S 6∼= P2. Then there exists a surjective morphism p : S →
P1. Hence p ◦ πE : E → P1 is surjective. But this is impossible because
E ∼= P2.

Therefore we see that K2
S = 9. We also have c1(E)2 = 12 and g(S, c1(E)) =

g(X, L) = 5. Therefore KSc1(E) = −4. But this is impossible because of the
Hodge index theorem.

(D.V) Next we consider the case (D.6). By the same argument as the proof of
Claim 2.12, we have κ(S) = −∞.

In this case we have Pic(X) ∼= Z⊕3. Hence Pic(S) ∼= Z⊕2. Since h1(OS) =
0, we have K2

S = 8. On the other hand we have g(S, c1(E)) = g(X, L) = 5
and c1(E)2 = 12. Hence KSc1(E) = −4. But this is impossible because of the
Hodge index theorem.

(D.VI) Next we consider the case (D.7). In this case there exists an effec-
tive divisor E on X such that E ∼= P2. Then we see that πE : E → S is finite,
κ(S) = −∞ and h1(OS) = 0 by the same reason as the case (D.4). By the
same argument as the proof of Claim 2.14 we see that S ∼= P2. Therefore we
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have K2
S = 9. We also have c1(E)2 = 12 and g(S, c1(E)) = g(X, L) = 6. There-

fore KSc1(E) = −2. But this is impossible because of the Hodge index theorem.

(D.VII) Next we consider the case (D.8). Then by the proof of [5, Propo-
sition (2.5)], there exists a Del Pezzo fibration f : X → P1. In particular
KX + L is nef.

Claim 2.15. κ(S) = −∞ holds.

Proof. Let Ff be a fiber of f . If π(Ff ) 6= S for a general fiber Ff of f , then
Ff contains a fiber of π and by [2, Lemma 4.1.13] there exists a morphism
δ : S → P1 such that f = δ ◦ π. Since the irregularity of a general fiber of f is
0, we see that any general fiber of δ is P1. Hence we get the assertion. So we
may assume that π(Ff ) = S for any general fiber Ff of f . If πFf

: Ff → S is
not a finite morphism, then Ff contains a fiber of π and we get the assertion
by the same argument as above. So we may assume that πFf

: Ff → S is a
finite morphism. Since κ(Ff ) = −∞, we have κ(S) = −∞.

Let D be a general member of |L|. Then D is a smooth projective surface
and κ(D) ≥ 0 because KX + L is nef. But since πD : D → S is birational, this
is a contradiction.

(D.VIII) Next we consider the case (D.10). In this case κ(X) = 1, see [1,
8) in Table I, pg 53]. But this is impossible.

(D.IX) Next we consider the case (D.11). Let D ∈ |L| be a general mem-
ber. Then D is a smooth projective surface and πD : D → S is birational.
Hence χ(OD) = χ(OS). By 9) in Table I of [1, Page 53], we have χ(OD) = 4.
On the other hand since hi(OX) = hi(OS), we have χ(OX) = χ(OS) = 4. But
this is impossible because χ(OX) = 1, see 9) in Table I of [1, Page 53].

(D.X) Next we consider the case (D.2). Let f : X → P1 be the fibration.
If n ≥ 4, then π(Ff ) is a point for a general fiber Ff of f because Pic(Ff ) ∼= Z.
Hence by [2, Lemma 4.1.13] there exists a morphism δ : P1 → S such that
π = δ ◦ f . But this is impossible because π is surjective and dim S = 2. So we
may assume that n = 3. Let Ff = aH(E) + π∗(B), where B ∈ Pic(S). Then
we have

0 = F 3
f = 9a3 + 3a2c1(E)B + 3aB2, (1)

0 = LF 2
f = 9a2 + 2ac1(E)B + B2, (2)

2 = L2Ff = 9a + c1(E)B. (3)

By (1) and (2) we get a2c1(E)B + 2aB2 = 0.
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If a 6= 0, then B2 = −a
2 c1(E)B. Hence by (2) we have c1(E)B = −6a.

Therefore by (3) we get 2 = 9a + c1(E)B = 3a. But this is impossible because
a is an integer. Hence a = 0 and Ff = π∗(B). In particular a fiber of π is
contained in a fiber of f . So by [2, Lemma 4.1.13] there exists a morphism
h : S → P1 such that f = h ◦ π. Since h1(OFf

) = 0, we see that h1(OFh
) = 0

for any general fiber Fh of h. So we infer that any general fiber of h is P1.
We note that B = Fh for a fiber Fh of h. In particular we see from (3) that
Fhc1(E) = 2 for any fiber Fh of h. On the other hand since E is an ample
vector bundle of rank two, we infer that any fiber of h is P1 and therefore S is
relatively minimal and S is a P1-bundle over P1. Let C0 be the minimal section
and let e := −C2

0 . Since Fhc1(E) = 2, we can write c1(E) as c1(E) ≡ 2C0 +bFh.
Hence c1(E)2 = 4(b− e). On the other hand c1(E)2 = H(E)3 + c2(E) = 12. So
we get b−e = 3. Since c1(E) is ample, by [16, Theorem 2.12 and Corollary 2.18
in Chapter V] we have e ≥ 0 and b > 2e. Therefore 3 = b− e > 2e− e = e ≥ 0,
namely we get (b, e) = (3, 0), (4, 1), (5, 2). We also note that 2 ≤ c1(E)C0

because C0
∼= P1. Hence 2 ≤ c1(E)C0 = −2e+b and (b, e) = (5, 2) is impossible.

So by Ishihara’s result [20, Corollary (2.11)] we have

• S ∼= P1 × P1 and E ∼= (p∗1OP2(1) ⊗ p∗2OP2(1)) ⊕ (p∗1OP2(1) ⊗ p∗2OP2(2)),
where pi is the ith projection.

• S is a blowing up of P2 at a point and E = (p∗(OP2(2)) − E)⊕2, where
p : S → P2 is the morphism and E is the exceptional divisor of p.

But we see that g(X, L) ≤ 3 in these cases, and these cases are ruled out.

(D.XI) Next we consider the case (D.5). By the same argument as the proof
of Claim 2.12, we have κ(S) = −∞.

In this case we have Pic(X) ∼= Z⊕7. Hence Pic(S) ∼= Z⊕6. Since h1(OS) =
0, we have K2

S = 4. On the other hand we have g(S, c1(E)) = g(X, L) = 5 and
c1(E)2 = H(E)3 + c2(E) = 12. Hence KSc1(E) = −4. But this is impossible
because of the Hodge index theorem.

(D.XII) Finally we consider the case (D.12). Let p : X → Y be the pro-
jection, where Y is a minimal K3 surface. Then there exists a very ample
line bundle H on Y and a smooth member B ∈ |H| such that g(B) ≥ 2 and
p∗(B) =: V is a smooth projective surface with κ(V ) = −∞.
(i) Assume that πV : V → S is surjective. Then by the same argument as the
proof of Claim 2.12, we have κ(S) = −∞. We note that h1(OS) = 0.

If S ∼= P2, then since rankE = 2 we see from [20, Corollary (4.7)] that E ∼=
OP2(1)⊕OP2(3) or TP2 . But in these cases we have g(X, L) = g(S, c1(E)) ≤ 3
and this contradicts the assumption.

If S 6∼= P2, then there exists a surjective morphism h : S → P1 such that any
general fiber of h is P1. Let F be a general fiber of h ◦ π. If pF : F → Y is not
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finite, then there exists a fiber Fp of p such that Fp is contained in F . Then by
[2, Lemma 4.1.13] there exists a morphism g : Y → P1 such that g ◦ p = h ◦ π.
But since Y is a minimal K3 surface, we infer that p is an elliptic fibration and
this is impossible because any general fiber of h is P1. Therefore pF : F → Y
is finite. But this is impossible because κ(F ) = −∞ and κ(Y ) = 0.
(ii) Assume that πV : V → S is not surjective. Then there exists a fiber Fπ of
π such that Fπ is contained in V . Moreover p(Fπ) is a point because g(B) ≥ 2
and Fπ

∼= P1. So by [2, Lemma 4.1.13] there exists a morphism r : S → Y such
that p = r ◦ π. Furthermore since p and π have connected fibers, we see that r
is birational. Since p and π are P1-bundles, we see that r is finite. Hence r is
an isomorphism and S is a minimal K3 surface. Since

8 = g(X, L) = g(S, c1(E)) = 1 +
c1(E)2

2
,

we have c1(E)2 = 14. Therefore c2(E) = c1(E)2−H(E)3 = 14− 9 = 5, and this
is impossible.

3. Main Theorem

Theorem 3.1. Let (X, L) be a polarized manifold of dimension n ≥ 3 and let
(M,A) be a reduction of (X, L). Assume that L is very ample. If b2(X, L) =
h2(X, C) + 2, then (X, L) is one of the following types.

(i) (PS(E),H(E)), where S is a smooth projective surface and E is a very
ample vector bundle on S with c2(E) = 3. In particular (S, E) is described
in Theorem 2.9.

(ii) (M,A) is a Del Pezzo fibration over a smooth curve C with n = 3, 4.
Let f : M → C be its morphism. In this case there exists an ample
line bundle H on C such that KM + (n − 2)A = f∗(H), and we have
(g(C),deg H) = (1, 1), b2(M,A) = 14 and h2(M, C) = 12.

(iii) (M,A) is a quadric fibration over a smooth surface S with n = 3, 4. Let
f : M → S be its morphism. In this case there exists an ample line
bundle H on S such that KM + (n − 2)A = f∗(KS + H), and (S, H) is
one of the following types:

(iii.1) S is a P1-bundle, p : S → B, over a smooth elliptic curve B, and
H = 3C0 − F , where C0 (resp. F ) denotes the minimal section of
S with C2

0 = 1 (resp. a fiber of p). In this case b2(M,A) = 12 and
h2(M, C) = 10.

(iii.2) S is an abelian surface, H2 = 2, and h0(H) = 1. In this case
b2(M,A) = 14 and h2(M, C) = 12.
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(iii.3) S is a hyperelliptic surface, H2 = 2, and h0(H) = 1. In this case
b2(M,A) = 10 and h2(M, C) = 8.

Proof. First we note that the following hold.

• b2(X, L) = 2g2(X, L) + h1,1
2 (X, L) by Remark 2.3 (ii.1) and (ii.3).

• g2(X, L) ≥ h2(OX) by Remark 2.3 (iii.3).

• h1,1
2 (X, L) ≥ h1,1(X) by Remark 2.3 (iii.2).

• h2(X, C) = 2h2(OX) + h1,1(X) by the Hodge theory.

Hence we see from b2(X, L) = h2(X, C) + 2 that one of the following holds.

(A) g2(X, L) = h2(OX) and h1,1
2 (X, L) = h1,1(X) + 2.

(B) g2(X, L) = h2(OX) + 1 and h1,1
2 (X, L) = h1,1(X).

(A) First we consider the case (A). Since L is very ample and g2(X, L) =
h2(OX), by [10, Corollary 3.5] we infer that (X, L) is one of the types from (1)
to (7.4) in Theorem 2.7. Since b2(X, L) = h2(X, C) + 2, by using [13, Example
3.1], we see that (X, L) is one of the following types as possibility.

(a) (P2 × P2,⊗2
i=1p

∗
iOP2(1)), where pi is the ith projection.

(b) (PP2(TP2),H(TP2)), where TP2 is the tangent bundle of P2.

(c) A hyperquadric fibration over a smooth curve.

(d) (PS(E),H(E)), where S is a smooth projective surface and E is a very
ample vector bundle on S with c2(E) = 3.

(e) A reduction (M,A) of (X, L) is a Veronese fibration over a smooth curve
C, that is, M is a P2-bundle over C and A|F = OP2(2) for every fiber F
of it.

(A.1) The case (a) (resp. (b)) corresponds to the case (i.1) (resp. (i.2)) in
Theorem 3.1.

(A.2) Next we consider the case (c) and we use Notation 2.8 (1). Here we
note that h2(X, C) = 2 in this case (see Definition 2.4 (3)). Since b2(X, L) =
h2(X, C)+2 and h2(X, C) = 2, we see from [13, Example 3.1 (5)] that 2e+3b =
2. On the other hand, from the fact that Ln = 2e+ b > 0 and 2e+(n+1)b ≥ 0
by [7, (3.3)], we get the following.

Claim 3.2. (e, b) = (1, 0) or (4,−2). Moreover n = 3 if (e, b) = (4,−2).
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Proof. If b > 0, then 2e + 3b = 2e + b + 2b ≥ 3 and this is impossible. So
we have b ≤ 0. If b = 0, then e = 1. So we assume that b < 0. Then
2 = 2e + 3b = 2e + (n + 1)b − (n − 2)b ≥ −(n − 2)b ≥ −b because n ≥ 3 and
b < 0. So we have b = −2 or −1. If b = −1, then 2 = 2e + 3b = 2e − 3. But
this is impossible because e is an integer. Hence b = −2 and we see from the
above inequality that n = 3. We also note that 2e + 3b = 2 implies e = 4.

(A.2.1) If (e, b) = (1, 0), then Ln = 2e + b = 2. Therefore we see that (X, L) ∼=
(Qn,OQn(1)) because L is very ample. Since n ≥ 3, we have Pic(X) ∼= Z.
But this is impossible because (X, L) is a hyperquadric fibration over a smooth
curve.
(A.2.2) Assume that (e, b) = (4,−2). In this case n = 3 by Claim 3.2. Therefore
rankE = 4. On the other hand we see from L3 = 6 that h1(OX) = 0 holds by
Ionescu’s result [17]. Hence C = P1. Therefore by the Riemann-Roch theorem
we have

h0(L) = h0(E) = deg E + (rankE) χ(OC) = 8

and X is embedded in P7. We see from the list of [17] that (X, L) is a Del Pezzo
manifold, but this is impossible because O(KX +(n−1)L) 6= OX in the case (c).

(A.3) Next we consider the case (e). We use Notation 2.8 (2). From [13,
Example 3.1 (7.4)] we have

2e + 3b = 2. (4)

Here we note that by [13, Remark 2.6]

g1(M,A) = 2e + 2b + 1. (5)

We also note that g1(M,A) ≥ 2 in this case because KM +2A is ample. Hence
by (5) we have

2e + 2b ≥ 1. (6)

Moreover by [13, Remark 2.6]

e + 2b + 2g(C)− 2 = 0. (7)

Hence we see from (4) and (7)

b = 2− 4g(C), (8)
e = 6g(C)− 2. (9)

By (6), (8) and (9), we get 2g(C) = b + e ≥ 1
2 , that is, g(C) ≥ 1.

Then we have L3 ≤ A3 = 8e+12b = 8. Since L is very ample and n = 3, we
have h0(L) ≥ 4. Assume that h0(L) = 4. Then X is a 3-dimensional projective
space. But this is impossible because X is a fiber space over a smooth curve.
Next we consider the case h0(L) = 5. Then X is a hypersurface in P4 and we
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have Pic(X) ∼= Z in this case. But this is also impossible. So we may assume
that h0(L) ≥ 6.
(A.3.1) If L3 ≤ 5, then L3 ≥ 2∆(X, L) + 1 and g(X, L) ≥ 2 ≥ L3 − 3 ≥
∆(X, L). Hence we see from [9, (3.5) Theorem] that h1(OX) = 0. But this is
a contradiction because g(C) ≥ 1.
(A.3.2) Assume that L3 = 6. If h0(L) ≥ 7, then L3 = 6 > 5 ≥ 2∆(X, L) + 1
and g(X, L) ≥ 2 ≥ ∆(X, L). Hence we see from [9, (3.5) Theorem] that
h1(OX) = 0. But this is a contradiction.

If h0(L) = 6, then X is embedded in P5 and by Ionescu’s result [17] we have
h1(OX) = 0. But this is a contradiction.
(A.3.3) Assume that L3 = 7. If h0(L) ≥ 7, then L3 = 7 ≥ 2∆(X, L) + 1 and
g(X, L) = g(M,A) = 2e + 2b + 1 = 4g(C) + 1 ≥ 5 > 3 ≥ ∆(X, L). Hence we
see from [9, (3.5) Theorem] that h1(OX) = 0. But this is a contradiction.

If h0(L) = 6, then X is embedded in P5 and by Ionescu’s result [17] we have
h1(OX) = 0. But this is a contradiction.
(A.3.4) Assume that L3 = 8. If h0(L) ≥ 8, then L3 = 8 > 7 ≥ 2∆(X, L) + 1
and g(X, L) = g(M,A) = 2e + 2b + 1 = 4g(C) + 1 ≥ 5 > 3 ≥ ∆(X, L). Hence
we see from [9, (3.5) Theorem] that h1(OX) = 0. But this is a contradiction.

If h0(L) = 7 (resp. 6), then X is embedded in P6 (resp. P5) and by Ionescu’s
result [19] we have h1(OX) = 0. But this is a contradiction.

(A.4) Next we consider the case (d). In this case, since E is a very ample
vector bundle with c2(E) = 3, we see from Theorem 2.9 that (S, E) is one of
the types from (i.1) to (i.6) in Theorem 3.1.

(B) Next we consider the case (B). Let (M,A) be a reduction of (X, L). Since
L is very ample and g2(X, L) = h2(OX) + 1, by [10, Theorem 3.6] and [12,
Theorem 1] we infer that (X, L) is one of the following types.

(f) (M,A) is a Mukai manifold.

(g) (M,A) is a Del Pezzo fibration over a smooth curve C. Let f : M → C
be its morphism. In this case there exists an ample line bundle H on C
such that KM + (n− 2)A = f∗(H) and (g(C),deg H) = (1, 1).

(h) (M,A) is a quadric fibration over a smooth surface S. Let f : M → S be
its morphism. In this case there exists an ample line bundle H on S such
that KM + (n − 2)A = f∗(KS + H) and (S, H) is one of the following
types:

(h.1) S is a P1-bundle, p : S → B, over a smooth elliptic curve B, and
H = 3C0 −F , where C0 (resp. F ) denotes the minimal section of S
with C2

0 = 1 (resp. a fiber of p).

(h.2) S is an abelian surface, H2 = 2, and h0(H) = 1.
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(h.3) S is a hyperelliptic surface, H2 = 2, and h0(H) = 1.

First we note that b2(X, L)− h2(X, C) = b2(M,A)− h2(M, C) by [13, Re-
mark 2.2 (3)].

(B.1) First we consider the case (f). Then we see from [10, Example 2.10
(7)] that (KM + (n − 2)A)2An−2 = 0, h1(OM ) = 0 and g2(M,A) = 1 holds.
Hence by [13, Proposition 3.1] we have

h1,1
2 (M,A)=10(1−h1(OM )+g2(M,A))−(KM+(n−2)A)2An−2+2h1(OM )=20.

Therefore b2(M,A) = 2g2(M,A) + h1,1
2 (M,A) = 22.

Next we calculate h2(M, C). Since L is very ample, there exist n− 3 mem-
bers D1, . . . , Dn−3 of |A| such that Mn−3 := D1∩· · ·∩Dn−3 is a smooth projec-
tive variety of dimension 3 and O(KMn−3 + AMn−3) = OMn−3 . By a classifica-
tion of 3-dimensional Fano manifolds (see [21]), we see that h2(Mn−3, C) ≤ 10
and by the Lefschetz theorem we get h2(M, C) ≤ 10. Therefore b2(X, L) −
h2(X, C) = b2(M,A)− h2(M, C) > 2 and this case is ruled out.

(B.2) Next we consider the case (g). We note that g2(M,A) = 1, h1(OM ) = 1
and (KM +(n− 2)A)2An−2 = 0 in this case. Hence by [13, Proposition 3.1] we
have

h1,1
2 (M,A)=10(1−h1(OM )+g2(M,A))−(KM+(n−2)A)2An−2+2h1(OM )=12.

Therefore b2(M,A) = 2g2(M,A) + h1,1
2 (M,A) = 14.

Next we calculate h2(M, C). First we note that τ(A) = n − 2 in this case,
where τ(A) is the nef value of A. Assume that n ≥ 5. Then

τ(A) = n− 2 >
n

2
=

n− dim C + 1
2

.

Hence by the proof of [3, (3.1.1) Theorem] we see that there exists a non-
breaking dominating family T of lines relative to A such that for any t ∈ T the
curve lt corresponding to t satisfies (KM + (n− 2)A)lt = 0.

(B.2.1) If n ≥ 6, then τ(A) = n − 2 ≥ n
2 + 1 holds. Hence by (3.1.1.2)

in [3, (3.1.1) Theorem] we see that f is an elementary contraction because
dim C = 1. In particular ρ(M) = ρ(C) + 1 = 2 and we get h2(M, C) = 2,
where ρ(M) (resp. ρ(C)) is the Picard number of M (resp. C). Therefore
b2(X, L)− h2(X, C) = b2(M,A)− h2(M, C) > 2 and this case is ruled out.

(B.2.2) Next we consider the case n = 5. Let l be a line on M relative to A
such that l is the curve corresponding to a point of T and let ν := −KM l − 2.
Since (KM + (n− 2)A)l = 0, we have −KM l = 3. Hence ν = 1. On the other
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hand τ(A) = n − 2 = 3. So we get ν = 1 ≥ 1 = n−3
2 and ν = 1 = τ(A) − 2.

Hence by [3, (2.5) Theorem] we see that either (2.5.1) or (2.5.2) in [3, (2.5)
Theorem] holds because dim C = 1.
If (2.5.1) in [3, (2.5) Theorem] holds, then f is an elementary contraction and
ρ(M) = ρ(C)+1 = 2. So we get h2(M, C) = 2. Therefore b2(X, L)−h2(X, C) =
b2(M,A)− h2(M, C) > 2 and this case is ruled out.
If (2.5.2) in [3, (2.5) Theorem] holds, then there exist two morphism φ : M → W
and π : W → C such that φ is a P2-bundle over a smooth projective variety
W of dimension 3, π is a P2-bundle over C and f = π ◦ φ. In this case
ρ(M) = ρ(W ) + 1 = ρ(C) + 2 = 3. So we get h2(M, C) = 3. Therefore
b2(X, L)− h2(X, C) = b2(M,A)− h2(M, C) > 2 and this case is ruled out.

(B.3) Finally we consider the case (h). In this case, g2(M,A) = h2(OM ) + 1 =
h2(OS) + 1 and (KM + (n− 2)A)2An−2 = 2(KS + H)2. So we get

h1,1
2 (M,A) = 10(1−h1(OM )+g2(M,A))− (KM +(n−2)A)2An−2 + 2h1(OM )

= 10(χ(OS) + 1)− 2(KS + H)2 + 2h1(OS).

(B.3.1) We consider the case (h.1). Then (KS + H)2 = 1, h2(S, C) = 2,
h1(OS) = 1 and h2(OS) = 0. Hence g2(M,A) = 1, h1,1

2 (M,A) = 10 and
b2(M,A) = 2g2(M,A) + h1,1

2 (M,A) = 12.

(B.3.2) We consider the case (h.2). Then (KS + H)2 = 2, h2(S, C) = 6,
h1(OS) = 2 and h2(OS) = 1. Hence g2(M,A) = 2, h1,1

2 (M,A) = 10 and
b2(M,A) = 2g2(M,A) + h1,1

2 (M,A) = 14.

(B.3.3) We consider the case (h.3). Then (KS + H)2 = 2, h2(S, C) = 2,
h1(OS) = 1 and h2(OS) = 0. Hence g2(M,A) = 1, h1,1

2 (M,A) = 8 and
b2(M,A) = 2g2(M,A) + h1,1

2 (M,A) = 10.

Next we calculate h2(M, C). First we note that τ(A) = n− 2 in this case.
Assume that n ≥ 4. Then

τ(A) = n− 2 >
n− 1

2
=

n− dim S + 1
2

.

Hence by [3, (3.1.1) Theorem] we see that there exists a non-breaking domi-
nating family of lines relative to A such that for any t ∈ T the curve lt corre-
sponding to t satisfies (KM + (n− 2)A)lt = 0.

If n ≥ 6, then τ(A) = n − 2 ≥ n
2 + 1 holds. Hence by (3.1.1.2) in [3, (3.1.1)

Theorem] we see that f is an elementary contraction because dim S = 2. In
particular ρ(M) = ρ(S) + 1 and we get h2(M, C) = h2(S, C) + 1. Therefore
b2(X, L) − h2(X, C) = b2(M,A) − h2(M, C) > 2 for each case and the case
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where n ≥ 6 is ruled out.

Next we consider the case n = 5. Let l be a line on M relative to A such
that l is the curve corresponding to a point of T and let ν := −KM l − 2.
Since (KM + (n − 2)A)l = 0, we have −KM l = 3. Hence ν = 1. On
the other hand τ(A) = n − 2 = 3. So we get ν = 1 ≥ 1 = n−3

2 and
ν = 1 = τ(A) − 2. Hence by [3, (2.5) Theorem] we see that (2.5.1) in [3,
(2.5) Theorem] holds because dim S = 2. Then f is an elementary contrac-
tion and ρ(M) = ρ(S) + 1. So we get h2(M, C) = h2(S, C) + 1. Therefore
b2(X, L) − h2(X, C) = b2(M,A) − h2(M, C) > 2 and the case where n = 5 is
also ruled out.

Therefore we get the assertion.

Corollary 3.3. Let (X, L) be a polarized manifold of dimension n ≥ 3. As-
sume that L is very ample. If b2(X, L) = h2(X, C) + 2, then n = 3 or 4.
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