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Abstract. In this paper we expand on some results exposed in a previ-
ous one, in which we introduced the concept of inessential and strongly
inessential generators in a standard basis of a saturated homogeneous
ideal. The appearance of strongly inessential elements seemed to be a
non generic situation; in this paper we analyze their presence in a per-
fect height 2 ideal with the greatest number of generators, according to
Dubreil’s inequality.
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1. Introduction

In a previous paper [4] we introduced the concept of strongly inessential ele-
ment (briefly s.i.) in a homogeneous ideal I ⊂ K[X1, . . . , Xn]. Our first idea,
when we started to think about essential and inessential elements of a standard
basis (see [4], n.3), was that every homogeneous ideal should have a standard
basis consisting of essential forms, but we very soon found many counterexam-
ples. Therefore, our next conjecture was that the assertion might be true for
a sufficiently general ideal. In this paper we thus investigate the structure of
e-maximal bases ([4], Definition 5.1) and, as a consequence ([4], Theorem 5.1),
the presence of s.i. elements, in what seemed to be the easiest situation, that
is when I is a perfect height 2 ideal. In this case, it is possible to associate to
every B(I) a Hilbert-Burch matrix ([13, 14]) and to decide the nature of the
forms of B(I), with respect to essentiality, just looking at the ideals generated
by the entries of its columns ([4]).

We observe that, if the multiplicity e(I) ([10, 11, 15]) is low, our first idea
was correct; more precisely, if e(I) < 6, then every standard basis consists of
essential elements, while, if 6 < e(I) < 9, I has at least a standard basis whose
elements are all essential.

To deal with the problem when the multiplicity is ≥ 9, we observe that
strong inessentiality is preserved modulo a regular sequence (while essentiality
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is not). So, the first case to be considered seems to be the one of zero depth. As
the general case still appears hard to be analyzed, we replace the family of all
perfect height 2 ideals with its subfamily F =

⋃
n≥2 F [n], where F [n] is the set

of all perfect height two ideals in S = K[X1, . . . , Xn], n ≥ 2, whose standard
bases are of maximal cardinality with respect to Dubreil’s inequality ([9]). In a
previous paper [3], in fact, we found a description of F that is of help in dealing
with the problem considered here. So, as we restrict our attention to the ideals
of zero depth, we study F [2]. For every ideal I ∈ F [2], we produce a canonical
Hilbert matrix, with the property that its corresponding basis is e-maximal,
which means that its inessential elements are s.i.. Using such a matrix, we
prove that the number of s.i. elements appearing in an e-maximal basis is
linked to the greatest common divisor Φ of its generators of minimal degree
α(I); in fact, it depends on the decomposition of Φ into linear factors (see
Theorem 4.1). More precisely, we prove that I has a basis of essential elements
iff all the linear factors of Φ are distinct; therefore, the generic I ∈ F [2] has
this a property.

The description of the e-maximal bases is much more complicated when we
pass from F [2] to F [3]. The Hilbert-Burch matrix of any element I ∈ F [3] can
be obtained by lifting the Hilbert-Burch matrix of its image Ī ∈ F [2] modulo
any linear form, regular for S/I ([3]); however, it may happen that there exists
some Ĩ with the same number of s.i. elements of Ī in any e-maximal basis,
among the ideals of F [3] lifting Ī ∈ F [2], but there are also cases in which
no lifting of Ī preserves a s.i. element. We prove that the greatest expected
number of s.i. generators in a standard basis of I ∈ F [3] is α(I)−2 and that this
number is attained. So, we focus on the set S ⊂ F [3] of the ideals with α(I)−2
s.i. generators in their e-maximal bases, finding some of their properties and
giving examples. In particular, we completely describe the ideals I generated
in two different degrees, with α(I) = 3 and a s.i. element in any e-maximal
basis.

2. Background and Notation

Let S = K[X1, . . . , Xn], where K is an algebraically closed field, be the co-
ordinate ring of Pn−1, I =

⊕
Id, d ∈ N, a homogeneous ideal of S, and

M = (X1, . . . , Xn) be the irrelevant maximal ideal. We recall some basic
definitions.

The Hilbert function of S/I ([12]), denoted H(S/I,−), is the function
defined by

H(S/I, t) = dimK(S/I)t.

It is well known that for t � 0 the function H(S/I, t) is a polynomial, with
rational coefficients, of degree r(S/I)− 1, where r(S/I) is the Krull dimension
of S/I.
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If ∆ denotes the difference operator on maps from Z to Z, defined by
∆φ(t) = φ(t)− φ(t− 1), the function

Γ(I, t) = ∆r(S/I)H(S/I, t)

is called the Castelnuovo function of I, while ∆r(S/I)H(S/I, t) is, for large t, a
natural number e(I), independent on t, which is called the multiplicity of S/I,
or also of I.

Definition 2.1 ([8]). A standard basis B(I) of I is an ordered set of forms
of S, generating I, such that its elements of degree d define a K-basis of
Id/(Id−1S1) ([5, 7, 8]).

It is well known ([8]) that the degree vector of B(I) , with non decreasing
entries, does not depend on the basis; α(I) denotes its first entry, ν(I) the
number of entries, ν(I, t) the number of entries equal to t. Moreover, if ht(I) >
1, β(I) is the minimal degree t such that GCD(It) = 1.

The following theorem links α(I) to ν(I).

Theorem 2.2 (Dubreil, [7, 8, 9]). Let I be a homogeneous perfect height 2 ideal.
Then ν(I) ≤ α(I) + 1.

According to [3], F [n] denotes the set of all the homogeneous perfect height
2 ideals of S = K[X1, . . . , Xn] such that ν(I) = α(I)+1; in this paper they are
called Dubreil’ s ideals. In the special case n = 2, Theorem 1.7 ii) of [3] gives
a description of every ideal of F [2] involving the greatest common divisor Φ of
its elements of degree α(I) and a decomposition of Φ as a product of forms.

A refinement of Theorem 2.2 ([5]) says, in particular, that, for every perfect
height 2 ideal I in S

t ≤ β(I) ⇒ ν(I, t) ≤ −∆Γ(I, t). (1)

We say that ν(I, t) is maximal when equality holds in (1).

If I is a perfect height 2 ideal, then a minimal resolution of S/I is defined
by a Hilbert-Burch (shortly H.B.) matrix M(I) which, in turn, is uniquely
determined by a standard basis B(I) and by a minimal basis of its module
of syzygies Syz B(I). Its corresponding degree matrix ∂M(I) is uniquely
determined by I.

We need some results, widely explained in [1, 2], that we summarize as
follows.
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Theorem 2.3. Let I be a perfect height 2 ideal, p + 1 a degree in which the
number ν(I, p + 1) of generators in degree p + 1 satisfies the following relation
of maximality with respect to Dubreil-Campanella inequality

ν(I, p + 1) = Γ(I, p)− Γ(I, p + 1), (2)

D the greatest common divisor of Ip. Then I admits a basis

B = (DF1, . . . , DFm, G1, . . . , Gn),

where (DF1, . . . , DFm)S = Ip, so that I splits into two ideals I′ = (F1, . . . , Fm)
and I′′ = (D,G1, . . . , Gn), which are still perfect of height 2. Moreover, there
is a H.B. matrix M(I) with respect to B, with the following shape

M(I) =
(

A 0
B C

)
,

where

i) A ∈ K(m−1)×m is a H.B. matrix of I′,

ii) A H.B. matrix of I′′ is (B′′ C), where B′′ = B t(F1 . . . Fm),

iii) det C = D

3. Strongly inessential elements of an ideal: recalls and
complements

Let I = ⊕Id, d ∈ N, Id ⊂ Sd be a homogeneous ideal of S = K[X1, . . . , Xn].
We recall some definitions and results appearing in [4].

Definition 3.1 ([4], Definition 3.1). An element f of a standard basis B(I) is
called an inessential generator of I with respect to B(I) iff

∃t ∈ N, fM t ⊆ (B(I)− {f})S.

Otherwise we say that f is an essential generator of I with respect to B(I).

In the special case of perfect height 2 ideals, the essentiality of the r-th
element fr of B(I) can be read on the ideal ICr

generated by the entries of
the r-th column of any matrix of Syz B(I). In fact, in [4], Proposition 4.1 says
what follows.
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Proposition 3.2. Let I be a perfect codimension 2 ideal of S. Then fr ∈ B(I)
is inessential for B(I) iff the condition

(∃t ∈ N) M t ⊆ ICr

is satisfied.

Definition 3.3 ([4], Definition 3.2). An element f ∈ Id is strongly inessential
(s.i.) iff f /∈ (Id−1)S and it is inessential with respect to any standard basis
containing it.

Definition 3.4 ([4], Definition 5.1). A standard basis is called e-maximal iff
it has, in every degree d, exactly νe(d) essential generators, where νe(d) is the
greatest number of essential generators of degree d appearing in a standard basis
of I.

Theorem 3.5 ([4], Theorem 5.1). A standard basis is e-maximal iff its inessen-
tial elements are strongly inessential.

Starting from Theorem 3.5 we can prove the following statement.

Proposition 3.6. The ideal I ⊂ S admits a basis of essential elements iff none
of its elements is s.i..

Proof. Proposition 5.2 of [4] says that two different e-maximal bases contain
the same number of inessential elements. So, I has a basis of essential elements
iff all its e-maximal bases do not contain inessential elements, and we know
that they should be s.i., thanks to Theorem 3.5. Now, every s.i. element can
be considered as an entry of a standard basis B(I) and from any standard
basis B(I) it is possible to produce an e-maximal basis BM (I), containing as a
subset all the s.i. elements appearing in B(I) (see Proposition 5.4 in [4]). So,
the e-maximal bases do not contain inessential elements iff s.i. elements do not
exist in I.

In other words, I admits a basis of essential elements iff one of its e-maximal
basis (and, as a consequence, all of them) consists of essential elements and this
is equivalent to say that I does not contain s.i. forms.

Next proposition says that a s.i. element of I preserves its property modulo
a linear form, regular for S/I. We will use the following notation.

Notation If z is any element of S = K[X1, . . . , Xn] and φ : S −→ S/zS is
the canonical morphism, then we set : φ(s) = s̄,∀s ∈ S and φ(A) = Ā for any
subset A ⊆ S, if the element z can be understood.

We need the following lemma.
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Lemma 3.7 ([7, 8]). If B is a standard basis of I and z ∈ S is a linear form,
regular for S/I, then B̄ is a standard basis of Ī.

Proposition 3.8. Let s ∈ I be a s.i. element and z a linear form regular for
S/I. Then s̄ ∈ Ī is s.i..

Proof. Without any loss of generality we can suppose z = X1. At first we
notice that if s is inessential for B(I) = B, then s̄ is inessential for the standard
basis B̄(Ī) = B̄ of Ī. In fact we have:

s Mt ⊆ (B − {s})S ⇒ s̄ M̄t ⊆ (B̄ − {s̄}).

Now, let us suppose s to be s.i. and consider a standard basis B containing it,
say B = (b1, b2, . . . , bh), where bi = s. Then B̄ is a standard basis of Ī, contain-
ing b̄i = s̄ and any other standard basis C of Ī is of the form C = B̄P , where
P = (pji) is an invertible matrix, whose entries are forms in K[X2, . . . , Xn].
Let us observe that s̄ = b̄i ∈ C iff pii 6= 0 and pij = 0 when j 6= i. As a
consequence, B′ = BP is a standard basis containing s = bi; in B′ the element
s is inessential, as it is so in every basis in which it appears. The first part of
the proof allows to conclude that s̄ is inessential for C.

In Section 5 we will see that the lifting of a s.i. element of Ī is not necessarily
s.i. in I. (see Remark 5.4).

A consequence of Proposition 3.8 is that if the image Ī of I ⊂ K[X1, . . . , Xn]
modulo a maximal regular sequence does not contain any s.i. element, the same
property holds for I. So, it seems convenient to start considering the problem
of the presence of s.i. elements when depth (S/I) = 0 (see Section 3).

In the sequel we use the following statement (see Theorem 2.3 for notation).

Theorem 3.9. Let I ⊂ S be a perfect height 2 ideal and p+1 a degree in which
the maximality condition (2) is verified. The following statements hold.

i) If a form F ∈ I′ is s.i. in I′, then also DF ∈ I is s.i. in I.

ii) G ∈ I′′ is s.i. iff G ∈ It, t > p and G is s.i. as an element of I.

Proof. i) Let F ∈ I′u, u ≤ p − d, where d is the degree of D, be s.i.. Then
F /∈ I′u−1S1, because it is an element of a standard basis of I′. As a consequence
FD ∈ Id+u, FD /∈ Id+u−1S1, so that FD can be an element of some standard
basis of I. Let B = (DF1, . . . , DFm, G1, . . . , Gn) be any basis of I such that
F = Fi. As (F1, . . . , Fm) is a standard basis of I′, we have

(∃t) FMt ⊂ (F1, . . . , Fi−1, Fi+1, . . . , Fm).
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So, for some t, the relation

(DF )Mt ⊂ (DF1, . . . , DFi−1, DFi+1, . . . , DFm, G1, . . . , Gn)

holds.
ii) Let G be a s.i. element of I′′. Thanks to Proposition 3.4 in [4], stating

that no element of degree α(I) can be s.i., G cannot be of the form kD, k ∈ K,
so that t = deg G ≥ p + 1. First we observe that, as an element of I, G can
belong to a standard basis. In fact, as it is a form of a standard basis of
I′′, we have G /∈ (I′′t−1)S1 ⊇ (It−1)S1, so that G /∈ It−1S1. Now, let
B = (DF1, . . . , DFm, G1, . . . , Gi−1, G,Gi+1, . . . , Gn) be any standard basis of
I containing G. Then (D,G1, . . . , Gi−1, G,Gi+1, . . . , Gn) is a standard basis of
I′′. The hypothesis of inessentiality of G as an element of I′′ implies that

(∃t) GMt ⊂ (D,G1, . . . , Gi−1, Gi+1, . . . , Gn).

In other words, for every form P ∈ Mt, we have

GP = DV +
∑
j 6=i

VjGj ,

so that (V, V1, . . . , Vi−1,−P, Vi+1, . . . , Vn) ∈ Syz I′′. From (c) of Theorem 3.1
([2]) it follows V ∈ I′, so that GP ∈ (DF1, ..., DFm, G1, ..., Gi−1, Gi+1, ..., Gn).
This means that G is s.i. also as an element of I.

Viceversa, let G ∈ It, t > p be a s.i. element in I. If B = (DF1, . . . , DFm,
G1, . . . , Gi−1, G, Gi+1, . . . , Gn) is a basis of I containing G, then B′′ = (D,G1,
. . . , Gi−1, G ,Gi+1, . . . , Gn) is a basis of I′′. Thanks to Proposition 5.1 in [4],
it is enough to prove that G is inessential with respect to any basis

B̃′′ = (D,G1 + A1G, . . . , Gi−1 + Ai−1G, G,Gi+1 + Ai+1G, . . . , Gn + AnG)

for every (degree allowed) choice of A1, . . . , Ai−1, Ai+1, . . . , An.
As B̃ = (DF1, ..., DFm, G1 +A1G, ..., Gi−1 +Ai−1G, G,Gi+1 +Ai+1G, ..., Gn +
AnG) is still a standard basis of I, G is inessential with respect to it. This
means that

(∃t ∈ N) GMt ⊂ (DF1, . . . , DFm, G1 + A1G, . . . , Gi−1 + Ai−1G,

Gi+1 + Ai+1G, . . . , Gn + AnG)
⊂ (D,G1 + A1G, . . . , Gi−1 + Ai−1G,

Gi+1 + Ai+1G, . . . , Gn + AnG).

As a consequence, G is inessential also with respect to the basis B̃′′.
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Remark 3.10. Theorem 3.9 can also be proved by working on a suitable H.B.
matrix of I, taking into account Proposition 1.2 in [1] and Corollary 4.1 in [4].

Remark 3.11. It may happen that in I there exist s.i. elements that do not
produce s.i. elements in I′ (see Remark 4.18)

Remark 3.12. For every I ∈ F [n], the maximality condition required in The-
orem 3.9 is verified at any degree.

Proposition 3.2 suggests a situation in which all the elements of every basis
of I are essential because the columns of its H.B. matrix are ”short”, so that
they cannot generate a power of M.

Corollary 3.13. Let I be a perfect height 2 ideal of S = K[X1, . . . , Xn]. Each
of the following conditions is enough to guaranty that in any standard basis of
I all the elements are essential:

i) ν(I) < n + 1

ii) α(I) < n

iii) e(I) <
n(n + 1)

2
.

Proof. i) and ii) are the statement of Corollary 5.1 and Remark in [4]; iii)

comes from the inequality
α(α + 1)

2
≤ e(I) , where α = α(I), just observing

that e(I) <
n(n + 1)

2
implies α < n.

Remark 3.14. It is easy to find examples of ideals with e(I) =
n(n + 1)

2
con-

taining inessential elements in some standard basis; see, for instance, Exam-
ple 3.1 in [4], where n = 3, e = 6.

Proposition 3.4 of [4] says that in degree α(I) no element is s.i.. So, the
existence of a basis of essential elements is assured if the generators of degree
> α are essential. Such a condition is verified when in the degree matrix
∂M(I) = (dij), i = 1, . . . , ν(I)− 1, j = 1, . . . , ν(I) the inequality dh,ν(I,α) ≤ 0
is verified for h = ν(I)−n (and, as a consequence, for h < ν(I)−n), because it
assures that the columns Cj , j ≥ ν(I, α), have at most n−1 elements different
from zero. This justifies the following statement.

Proposition 3.15. Let I be a perfect height 2 ideal of S = K[X1, . . . , Xn],
with degree matrix ∂M(I) = (dij), i = 1, . . . , ν(I) − 1, j = 1, . . . , ν(I). If
dν(I)−n, ν(α,I) ≤ 0, then I has a basis of essential elements.
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A consequence of Proposition 3.15 is the following statement.

Corollary 3.16. Let I be a perfect height 2 ideal of S = K[X1, . . . , Xn]. If

e(I) <
n(n + 3)

2
,

then I has a standard basis whose elements are all essential.

Proof. Taking into account the inequality
α(α + 1)

2
≤ e(I), we see that the

hypothesis implies α ≤ n. In case α < n we apply Corollary 3.13 ii). In
case α = n and ν = ν(I) < α + 1 we apply Corollary 3.13 i). So, the only
case to be considered is α = n, ν = n + 1. In this situation the degree matrix
∂M(I) = (dij) satisfies the conditions di,i+1 = 1, i = 1, . . . , n. Taking into
account the rule of computation of e(I) starting from ∂M(I) (see [6]), it is
easy to verify that the only values of dii compatible with the hypothesis are
the following ones:

a) dii = 1, i = 1, . . . , n

b) dii = 1, i 6= i0, di0i0 = 2 for some i0 6= 1.

In case a) the ideal is generated in degree α, so that we apply Proposition 3.4
of [4].
In case b) we have necessarily di0(i0+1) = 0, so that Proposition 3.15 can be
used.

Remark 3.17. If the inequality of Corollary 3.16 is not satisfied, there exist
examples of ideals with s.i. elements. For instance, let us consider in S =
K[X1, . . . , Xn] the ideal I, with H.B. matrix

M(I) =


X2

2 −X1

X2 −X1

X3 X2 −X1

. . . . . . . . . . . . . . . . . . .
Xn X2 −X1

 ,

where the unwritten entries are zero forms.

I satisfies the condition e(I) =
n2 + 3n

2
and its second generator is s.i..

We observe that the ideals, with multiplicity e(I) =
n2 + 3n

2
, that do not

admit a basis of essential elements must necessarily have as a degree matrix
the one defined by

d11 = 2; dii = 1, i 6= 1; di(i+1) = 1, i = 1, . . . , n,
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so that they have only one generator in degree α.

On the other side, it is possible to produce ideals with a basis of essential
elements and with no upper limit on e(I). For instance, every ideal I whose
∂M(I) is defined by

di(i+1) = 1, i = 1, . . . , n; dii = 1, i = 1, . . . , n− 1; dnn = h ≥ 2

satisfies the condition of Proposition 3.15 and has multiplicity

e(I) =
n(n + 1)

2
+ h− 1, which is arbitrarily large if h � 0.

We see that if e(I) ≥ n2 + 3n

2
the situation is hard to be examined , also

if I is a perfect height 2 ideal. That is a reason why we restrict our attention
to the subfamily F [n] (see Section 2), starting with n = 2.

4. An e-maximal basis of I ∈ F [2]

Relation (1.10) in Remark 1 to Theorem 17 in [3] gives a good description of
every I ∈ F [2]. With some change of notation, we rewrite it as follows:

I =
r∑

i=0

Φi+1 . . .Φr+1Sβi
S, (3)

where Φi is a form of degree δi, Φr+1 = 1 and St is the subset of S = K[X, Y ]
consisting of the forms of degree t.

Let us denote ∆0 = 0,∆i = δ1 + . . .+ δi, i = 1, . . . , r and ∆r = δ the degree
of Φ = Φ1 . . .Φr, so that we have

δ =
r∑

i=1

δi, βi = βi−1 + δi + ti,

where ti = αi − αi−1 > 0, i = 1, . . . , r is the difference between two successive
different degrees of the generators appearing in a standard basis and α0 =
α(I) = α.

In (3), r + 1 is the number of distinct elements appearing in any degree
vector a of a standard basis of I; moreover, we have

a = ((β0 + δ)[β0+1], . . . , (βi + δ −∆i)[δi], . . . , β[δr]
r )

= (α[β0+1]
0 , α

[δ1]
1 , . . . , α

[δi]
i , . . . , α[δr]

r ),

where c[n] is the sequence (c, . . . , c), with c repeated n times.
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The degree matrix ∂M(I) = (dij) is completely determined by its elements
in position (i, i + 1) (which are necessarily 1, as M(I) is a α× (α + 1) matrix)
and by a, or, equivalently, by its elements in position (i, i), which are

dii = 1 if i 6= β0 + 1 + ∆j , j = 0, . . . , r − 1 ,

dii = tj+1 + 1 if i = β0 + 1 + ∆j .

Our aim is to produce an e-maximal basis of I (see Definition 3.4), that
allows to prove the following theorem.

Theorem 4.1. Let I be as in (3) and let

Φ = Φ1 . . .Φr = Hµ1
1 . . .Hµv

v ,
v∑

i=1

µi = δ ≥ 1 (4)

be a factorization of Φ as a product of linear forms pairwise linearly indepen-
dent. The number of s.i. elements appearing in every e-maximal basis of I is
δ − v. If δ = 0, then I = SαS does not contain s.i. elements.

In order to prove Theorem 4.1 it is convenient (and possible) to produce an
e-maximal basis B(I) satisfying the following condition.

(*) There is a basis of its module of syzygies linking only couples of adjacent
elements .

The Hilbert matrix corresponding to such a basis of Syz(B(I)) will be called
the canonical matrix of B(I) or a canonical matrix of I.
Condition (*) will be of help in checking that B(I) is an e-maximal basis.

Let us consider first two special cases, useful to face the general situation.

Case 1. I = SαS.

Thanks to Proposition 3.4 of [4], we know that an ideal generated in minimal
degree cannot have s.i. elements. However, in the sequel we need an e-maximal
basis, satisfying condition (*), constructed according to the following Proposi-
tion. The notation L̂ will always mean that the element L is omitted.

Proposition 4.2. Let I = SαS. If {L0, . . . , Lα} is a set of linear forms, pair-
wise linearly independent, then B(I) = (Fi), i = 0, . . . , α, Fi = L0 . . . L̂i . . . Lα,
is a standard basis, consisting entirely of essential elements, whose canonical
matrix M looks as follows:

M = (mij), i = 1, . . . , α, j = 1, . . . , (α + 1),
where: mii = Li−1, mi(i+1) = −Li, mij = 0 otherwise.
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Proof. It is immediate to verify that the Fi’s are a set of α + 1 linearly in-
dependent elements of Sα, so that they are a basis of it as a K-space. The
rows of M are syzygies linking adjacent elements; as they are linearly inde-
pendent, they are a basis of Syz (B(I)) ( see Hilbert-Burch Theorem, [13]), so
that M is a matrix of syzygies of I. The entries of every column Ci generate a
principal ideal ICi

; so, Proposition 3.2 says that all the elements of B(I) are
essential.

Case 2. I is generated in two different degrees and in the lower one there
is just one generator, so that

I = ΦS + SbS, deg Φ = δ = α(I), b = β(I) = δ + t, t > 0. (5)

Let us consider the decomposition of Φ as in (4), with r = 1. We prove first
the following lemma.

Lemma 4.3. Let Φ = Hµ1
1 . . .Hµv

v be any form of degree δ in S = K[X, Y ].
The K-space Sb, b = δ + t, t ≥ 0, admits a decomposition

Sb = ΦSt

⊕
T, T =

v⊕
i=1

Ti, (6)

where a K-basis of Ti is the ordered set Bi = (Fij), j = 1, . . . , µi, described as
follows:

Fij = AijCi, (7)

with

Aij = Hµi−j
i H

µi+1
i+1 . . .Hµv

v U j−1, GCD(U,Hh) = 1, h = 1, . . . , v, (8)

and Ci any form of degree t+µ1+. . .+µi−1+1, (µ0 = 0), satisfying the relation

GCD(Ci,Hi) = 1. (9)

Proof. We use induction on v.
For v = 1 we have Φ = Hµ, δ = µ and the statement becomes T = T1,

with basis B1 = (F1j), j = 1, . . . , µ, where

F1j = Fj = AjC = Hµ−jU j−1C, deg C = t + 1, GCD(C,H) = 1. (10)

It is immediate to prove that F1, . . . , Fµ are linearly independent, so we only
have to show that ΦSt

⋂
T = (0).

For Λ ∈ St, let us suppose ΛΦ =
∑µ

j=1 ajFj = (
∑µ

j=1 ajH
µ−jU j−1)C. This

implies that Hµ must divide A =
∑µ

j=1 ajH
µ−jU j−1. For degree reason, A

must be zero, so that aj = 0, j = 1, . . . , µ.
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Let us suppose the statement true until v − 1 and prove it for v. We set
Φ = ΨHµv

v and use the decomposition of case v = 1 with Hµ replaced by Hµv
v ,

so obtaining
Sb = Hµv

v Sb−µv

⊕
Tv,

where Tv = (Fv1, . . . , Fvµv
), with Fvj = AvjCv, Avj = Hµv−j

v U j−1,
GCD(Cv,Hv) = 1, deg Cv = b− µv + 1, according to (10).

Using induction, we have Sb−µv = ΨSt

⊕
T ′, T ′ =

⊕v−1
i=1 T ′

i , where T ′
i

has the basis (F ′
ij) described in the statement of Lemma 4.3, that is F ′

ij =
Hµi−j

i H
µi+1
i+1 . . .H

µv−1
v−1 U j−1Ci. So, we finally obtain

Sb = Hµv
v (ΨSt

⊕
T ′)

⊕
Tv = ΦSt

⊕
T,

where T =
⊕

Hµv
v T ′ ⊕ Tv =

⊕v−1
i=1 Hµv

v T ′
i

⊕
Tv. It is immediate to check

that (Fij) = (Hµv
v F ′

ij), j = 1, . . . , µi, is the required basis of Ti = Hµv
v T ′

i , i =
1, . . . , (v − 1).

Remark 4.4. Each space Ti depends on the choice of the form Ci, with the
link (9). So, there are infinitely many decompositions of the type described
in (6). Later on, we will use some of them, properly chosen accordingly to the
situation.

Remark 4.5. The basis of Sb, b = α, used in Proposition 4.2 is obtained
accordingly to Lemma 4.3, with the choice Φ = L0 . . . Lb, t = −1, Ci =
H1 . . .Hi−1. In this situation, the first summand of (6) is empty, so that
Sb = T .

Proposition 4.6. Let us consider the ideal

I = ΦS + SbS, b = δ + t, t > 0, Φ = Hµ1
1 . . .Hµv

v ,deg Φ = δ.

i) I has as a standard basis the set

B(I) = (Φ, Fij), i = 1, . . . , v, j = j(i) = 1, . . . , µi,

where:
Fij = AijCi, (11)

Aij = Hµi−j
i H

µi+1
i+1 . . .Hµv

v U j−1, GCD(Hi, U) = 1 (12)

C1 = U t+1, Ci = H1H2 . . .Hi−1U
νi ,

νi = t + µ1 + . . . + µi−1 − i + 2, i > 1,
(13)
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ii) The basis B(I) satisfies condition (*). Its canonical matrix M(I) has as
rows the basis of syzygies {sij}, i = 1, . . . , v, j = j(i) = 1, . . . , µi, with
the lexicographic order, where:

s11 = (U t+1,−H1, 0, . . . , 0),
si1 = (0, . . . , 0,Hi−1,−Hi, 0, . . . 0), i = 2, . . . , v ,

−Hi in position µ1 + µ2 + . . . + µi+2,

sij = (0, . . . , 0, U,−Hi, 0, . . . , 0), i = 1, . . . , v, j = 2, . . . , µi ,

−Hi in position µ1 + . . . + µi−1 + j + 1, µ0 = 0.

So, M(I) looks as follows:

M(I) =

U t+1

A
O

 ,

where A = (aij) is a square δ×δ matrix, whose elements different from
aii, a(i+1)i are zero, and (a11, . . . , aδδ)=([−H1]µ1, [−H2]µ2, . . . , [−Hv]µv ),
a(i+1),i = −aii if aii 6= ajj , j > i and a(i+1),i = U otherwise.

iii) The essential elements of B(I) are : Φ, F(i,µi), i = 1, . . . , v. All the other
δ − v elements of B(I) are s.i..

Proof. i) This assertion is an immediate consequence of Lemma 4.3. In fact,
thanks to the inequality µ1 + µ2 + . . . + µi−1 ≥ i − 1, we can choose
Ci = H1 . . .Hi−1U

νi , so obtaining Fij as a basis of the K-space T com-
plementary to ΦSt in Sb.

ii) The fact that the {sij}’s are syzygies can be verified with an easy direct
computation. Moreover, they are clearly linearly independent, of the
expected degree and their number δ is the rank of the module of syzygies,
according to Hilbert theorem. It is easy to verify that the first maximal
minor of M(I) is Φ and (apart from a sign) the other maximal minors are
the Fij ’s. Using Proposition 3.2, we see immediately that the essential
columns of M(I) (that is the columns corresponding to essential elements,
see [4]) are the first one and the (µ1 + µ2 + . . . + µi + 1)− th, i = 1 . . . v;
so, the essential elements of B are {Φ, Fi,µi , i = 1 . . . v}.

iii) The proof that all the inessential elements are s.i. is a consequence of the
following Lemma 4.8, stated in a form sufficiently general to be used later
in a more general situation. In fact, the submatrix A appearing in M(I)
satisfies the hypothesis of Lemma 4.8 .
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It is convenient to generalize the notion of inessential and strongly inessen-
tial columns of a matrix, as considered in [4].

Definition 4.7. Let A be a matrix whose entries aij are forms of K[X1, ..., Xn]
such that deg aij−deg ai(j+1) is independent from i. A column Cj is inessential
when the ideal ICj

generated by its entries contains a power of the irrelevant
ideal. Cj is strongly inessential when every column C ′

j =
∑

i λiCi = (a′ij), λi ∈
K[X1, . . . , Xn], λj = 1, deg a′ij = deg aij, replacing Cj, is still inessential.

Lemma 4.8. Let A = (aij), aij ∈ K[X, Y ], be a square m×m matrix such that
deg aij − deg ai(j+1) ≤ 0 is independent from i and satisfying the conditions:

i) aij = 0 if i 6= j, j + 1
ii) aii is a linear form Li,
iii) a(i+1)i, is any form Gi, such that Lj is not a factor of Gi if Lj 6= Li

and Gi is a multiple of Li iff every Lj , j > i is different from Li.
Then the inessential columns of A are s.i.

Proof. The inessential column we are considering is of the form

Cj =t (0, . . . , 0, Lj , Gj , 0, . . . , 0),

where Lj does not divide Gj , so that no Li divides Gj . Let us replace such a
Cj with C ′

j =
∑

i Ci, λj = 1 and prove that C ′
j is still inessential. If h is the

first index for which λh 6= 0, we point our attention on the column Ch (clearly,
h ≥ j). Let us distinguish two possible situations.

i) Ch is essential, so that Ch =t (0, . . . , 0,−Lh, aLh, 0, . . . , 0). In this case we
have Ch 6= Cj , so that h < j and the entries of Ch must have the same
degree of the corresponding entries of Cj (in particular, a ∈ K∗.)

- If λh+1 6= 0, let us consider Ch+1 =t (0, . . . 0, Lh+1, Gh+1, 0, . . . , 0). The
entries of C ′

j in position (h, j) and (h+1, j) are respectively c′hj = λhLh

and c′(h+1)j = aλhLh + λh+1Lh+1, so that IC′
j

= (Lh, Lh+1) = M, as
Lh is independent from Lh+1.

- If λh+1 = λh+2 = . . . λh+u−1 = 0, λh+u 6= 0, u > 1, then necessarily
h + u ≥ j, so that C ′

j has as elements c′hj = λhLh and c′h+u =
λh+uLh+u, λh+u ∈ K∗; as a consequence, also in this case IC′

j
= M.

ii) Ch is inessential, so that Ch =t (0, . . . , 0,−Lh, aLh, 0, . . . , 0), where Gh is
not divisible for Lq, q = 1, . . . ,m. ( As a special case, Ch might coincide
with Cj .) Let us denote h + u the least integer v for which Lv = Lh.

1- If u = 1, then c′h,j = λhLh, c′(h+1)j = λhGh + λh+1Lh, so that IC′
j
⊇

(Lh, Gh) ⊇ Mt, for some t ∈ N.

2- If u 6= 1 but λh+1 = 0, then c′hj = Lh, c′(h + 1)j = Gh, so that
IC′

j
⊇ (Lh, Gh), as in the previous case.
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3- If u 6= 1, λh+1 6= 0, then c′hj = λhLh, c′(h+1)j = λhGh + λh+1Lh+1,
where λh ∈ K∗ (as h ≤ j).

If λh+1 is such that c′(h+1)j is not a multiple of Lh, we get C ′
j ⊇ Mt,

for some t ∈ N. However, for some choice of λh+1 it may happen
c′(h+1)j = LhP . In fact, if Gh = M1 . . .Ms is a decomposition of Gh into
linear factors, there exists a ∈ K∗ such that λh+1 = aM1 . . .Ms−1 gives
c′(h+1)j = M1 . . .Ms−1(λhMs + aLh+1), where λhMs + aLh+1 = bLh, as
Ms, Lh+1 are linearly independent linear forms. Let us observe that such
a λh+1 cannot be a multiple of Lh, as Gh is not so. If we replace Ch

with C∗
h = λCh +λh+1Cλ+1Ch+1 and consider C ′

j = C∗
h +

∑m
i=h+2 λiCi,

we have a situation very similar to the previous one. In fact c∗hj =
λhLh, c∗(h+1)j = PLh, c∗h+2,j = λh+1Gh+1, so that Gh is replaced with
λh+1Gh+1, which is not a multiple of Lh. Now, we can repeat the same
reasoning until when we find either case 2, if λi = 0 for some i with
h + 1 < i ≤ h + u, or case 1, for i = h + u.

Remark 4.9. The essential generators of B(I)−{Φ} are exactly the ones that
do not contain as their factors all the linear factors of Φ; more precisely, Fiµi

does not contain Hi, while it contains as factors Hj , j 6= i.

In the sequel we will need also bases slightly different from the one produced
in Proposition 4.6. We introduce them in the following Remarks.

Remark 4.10. If, in the definition of Fij , i > k, Ci is replaced by C̃i =
H1 . . . Ĥk . . .Hi−1U

νi+1 (that is, if Hk is replaced with U), then B̃, obtained
from B by replacing Fij with F̃ij = AijC̃i, is still a standard basis, whose
Hilbert matrix M̃(I) differs from the M(I) described in Proposition 4.6 just in
the column corresponding to F̃kµk

, which becomes C̃k =t (0, ...,−Hk, U, 0, ...0).
The consequence is that the generator F̃kµk

= Fkµk
now is inessential, while

the other generators are changed but remain with unchanged nature. B̃ is not
an e-maximal basis, but it will erase in a splitting (see Remark 4.18).

Remark 4.11. Let us observe that the Fij’s have U t+1 as a common factor. If
we replace U t+1 by any form η, of degree t + 1, such that G.C.D.(η, Φ) = 1,
the matrix M∗(I) corresponding to the new basis B∗ differs from M(I) only in
the first column. In particular, B∗ is still an e-maximal basis.

Remark 4.12. Let us produce other H.B. canonical matrices of I, relative to
standard bases different from the one described in Proposition 4.6 . They are
defined as follows:



STRONGLY INESSENTIAL ELEMENTS 489

M ′(I) =

U t+1

A′
O

 ,

where A′ = (a′ij) is a square δ × δ matrix, whose elements different from
a′ii, a

′
(i+1)i are zero, and

- (a′11, . . . , a
′
δδ) = (−Hσ(1), . . . ,−Hσ(δ)), with σ any permutation of the

sequence ([1]µ1 , ([2]µ2 , . . . , ([v]µv ),
- a′(i+1),i = −a′ii if a′ii 6= a′jj , j > i and a′(i+1),i = U otherwise.

In fact, Lemma 4.8 guaranties that all the inessential columns of M ′(I) are
s.i. and it is a matter of computation to check that the maximal minors of
the new matrix are still the basis of a subspace T such that ΦSt

⊕
T = Sb.

The maximal minors of M ′(I), different from Φ, apart from a sign are: (B′i =
U t+1G1 . . . GiĤσ(i)Hσ(i+1) . . .Hσ(δ)), i = 1, . . . , δ. A reasoning analogous to
the one in the proof of Lemma 4.3 shows that they are linearly independent. In
fact the relation λ1Hσ(1) . . .Hσ(δ)+

∑δ−1
i=2 = 0, (λ1, . . . , λδ) 6= (0, . . . , 0) implies

that G1 divides Hσ(1) . . .Hσ(δ), against the hypothesis.
Moreover, let us denote T ′ the K-space generated by (B′1, . . . ,B′δ). Then

ΦSt

⋂
T ′ = (0), because ΛΦ =

∑
aiU

t+1G1 . . . GiĤσ(i)Hσ(i+1) . . .Hσ(δ)), Λ 6=
0, implies that U must divide Φ, for degree reason, against the hypothesis.

Example 4.13. Let us consider the ideal

I = (H3
1H2

2H3)S + S8S,

where H1,H2,H3 are linearly independent linear forms. The basis consid-
ered in Proposition 4.6 is B(I) = (Φ, F11, F12, F13, F21, F22, F31), where Φ =
H3

1H2
2H3, F11 = H2

1H2
2H3U

3, F12 = H1H
2
2H3U

4, F13 = H2
2H3U

5, F21 =
H1H2H3U

5, F22 = H1H3U
6, F31 = H1H2U

6.
The corresponding H.B. matrix is

M(I) =


U3 −H1

U −H1

U −H1

H1 −H2

U −H2

H2 −H3

 ,

where the unwritten entries are zero forms. The essential elements are: Φ,
F13, F22, F31. All the other elements are s.i..

- If in each generator of degree 8 we replace U3 by any degree 3 form η,
with G.C.D.(η, Φ) = 1, we obtain a new e-maximal basis.
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- If we replace F21, F22, F31 respectively by F̃21 = H2H3U
6, F̃22 = H3U

7,
F̃31 = H2U

7, then in the new matrix M̃(I) the H1 in (4, 4) position is replaced
by U . As a consequence, F̃11 = F11 and F̃12 = F12 are s.i., while F̃13 = F13 is
inessential, but not strongly and F̃21 6= F21 is s.i..

- If we replace F31 by F̃31 = H1U
7 (or, equivalently, in M(I) the form

H2 in position (6, 6) is replaced by U), then F22 becomes inessential (but not
strongly), while the nature of the other generators does not change.

The two special cases just considered suggest us to afford the general case
pointing our attention on the H.B. matrix, more than on the standard basis.
We need a decomposition of the Φ’s appearing in (3) into pairwise independent
linear forms, as follows

Φk = Hµk1
k1 . . .Hµk2

k2 . . .H
µkvk

kvk
, k = 1, . . . , r. (14)

Moreover, it is convenient to choose a set of linear forms {U,L0, . . . , Lβ0}
such that the elements of the set {U,Li,Hkj}, i = 0, . . . , β0, k = 1, . . . , r, j =
1, . . . , vk are pairwise linearly independent and define

Φ0 = L0 . . . Lβ0 . (15)

With this notation we can state the following proposition.

Proposition 4.14. A canonical matrix of the ideal I of (3) is the following
one

M(I) =
(
B O
C A

)
,

where:

i) B ∈ Sβ0×(β0+1), A ∈ Sδ×δ, C ∈ Sδ×(β0+1), O is a zero matrix, whose
elements are of degree ≤ 0.

ii) B = (bij), where: bii = Li−1; bi(i+1) = −Li; bij = 0 if j 6= i, i + 1.

iii) C = (cij), where: c1(β0+1) = U t1+1; cij = 0 if (ij) 6= (1(β0 + 1))

iv) A = (aij), where:

- aij = 0 if j 6= i, j 6= i− 1,

- (a11, . . . , aδ,δ) = ((−H11)[µ11], (−H12)[µ12], . . . , (−H1v1)
[µ1v1 ], . . .

. . . , (−Hk1)[µk1], (−Hk2)[µk2], . . . , ((−Hkvk
)[µkvk

], . . .

. . . , (−Hr1)[µr1], (−Hr2)[µr2], . . . , (−Hrvr
)[µrvr ]),
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- a(i+1)i = −aii if aii 6= ajj , j > i, i 6= ∆k,

a(i+1)i = −aiiU
tk if aii 6= ajj , j > i, i = ∆k,

a(i+1)i = −U if (∃j > i) aii = ajj , j 6= ∆k, k < r,

a(i+1)i = U tk+1 if (∃j > i) aii = ajj , i = ∆k, k < r.

Moreover, the inessential columns of M(I) are s.i..

Proof. We first observe that the degree matrix of M(I) is the expected one. Let
us denote I the ideal generated by the maximal minors of M(I) and prove that
I is the one described in (3). As B is the matrix considered in Proposition 4.2,
it is immediate to see that Iα0 = ΦSβ0 and that the minors of B are linearly
independent.

The minors in degree α1 have as a common factor Φ/Φ1. So, it is enough to
prove that, divided by their common factor, they are a basis of a subspace T1

of Sβ1 such that Sβ1 = Φ1Sβ1−δ1

⊕
T1. But we are in the situation described

in Lemma 4.3, where:

t = t1, b = β1, Φ = Φ1, Hi = H1i ,

Ci = Φ0L
−1
β0

U t1+1a21 . . . a(j+1)j , j = µ11 + µ12 + . . . + µ1(i−1), i = 1, . . . , v1 .

So, let us suppose the statement true until the degree αk−1 and prove it for αk.
Just as in the case k = 1, we see that all the minors have as a common factor
Φk+1 . . .Φr = Φ/Φ1 . . .Φk. So, it is enough to show that, divided by this factor,
they are a basis of a subspace Tk of Sβk

such that Sβk
= ΦkSβk−δk

⊕
Tk. We

are again in the situation of Lemma 4.3, with:

t = tk, b = βk, Φ = Φk, Hi = Hki

Ci = Φ0L
−1
β0

U t1+1a21 . . . a(∆k−1+j+1)(∆k−1+j),

j = µk1 + µk2 + . . . + µk(i−1), i = 1, . . . , vk.

Thanks to Proposition 3.2, we immediately see that the inessential columns are
exactly the ones in which a(i+1)i is not a multiple of aii or, equivalently, the
ones whose element aii is equal to some ajj , with j > i. The proof that they
are s.i. is a consequence of Lemma 4.8.

Extending the notation used in Proposition 4.6, we denote the basis linked
to the canonical matrix of Proposition 4.14 as follows:

B(I) = (B0,B1, . . . ,Bk . . . ,Br), where
B0 = (F 0

j ), j = 0, . . . , β0, Bk = (F k
ij),

k = 1, . . . , r, i = 1, . . . , vk, j = 1, . . . , µki.

With this notation we can state the following corollary.
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Corollary 4.15. i) All the elements of B0 are essential. The generator F k
ij ∈

Bk is essential iff j = µki and Hki is not a factor of it.

ii) B(I) is an e-maximal basis and the number of its essential elements in
degree bigger then α(I) is equal to the number v of the distinct linear
factors appearing in a factorization of Φ.

iii) In any e-maximal basis the essential generators appearing in degree αk are
as many as the linear factors of Φk that do not divide Φk+1 . . .Φr.

iv) I admits a basis of essential elements iff Φ is a product of distinct linear
factors.

Proof. i) From Proposition 4.14 iv) we easily see that the essential columns
of A are the ones whose entry ahh is different from every ajj , j > h. This
happens iff ahh = −Hki, where Hki does not appear any more in the
diagonal of A, in position (j, j), j > h. A necessary condition for such
a situation is that the generator corresponding to that column is of the
kind F k

iµki
. In this case we have:

∏
j>h ajj = RΦk+1 . . .Φr, where Hki is

not a factor of R. So, the condition characterizing the essential F k
iµki

’s
is that Φk+1 . . .Φr is not a multiple of Hki. From the equality F k

iµki
=∏

j>h ajj

∏
j<h a(j+1)j we see that the previous condition is equivalent to

say that Hki does not divide F k
iµki

.

ii) B(I) is an e-maximal basis, because its inessential elements are s.i. (The-
orem 3.5). Moreover, the Hki appearing in an essential column corre-
sponding to F k

iµki
is a linear factor of Φ, making there its last appearing

as an element of the diagonal of A. So, the essential columns of A are as
many as the distinct linear factors of Φ.

iii) As the number of essential elements in an e-maximal basis does not depend
on the e-maximal basis chosen, it is enough to verify the statement on
the basis B(I) of Proposition 4.14. In the proof of i) we observed that
the essential elements of Bk are as many as the linear factors Hki of Φk

that are not divisors of Φk+1 . . .Φr.

iv) This is an obvious consequence of ii).

Corollary 4.15 completes the proof of Theorem 4.1.

Corollary 4.16. Let I be represented as in (3), with Φk = Hµk1
k1 . . .H

µkvk

kvk
.

If τk is the number of distinct linear factors that Φk has in common with
Φk+1 . . .Φr, then any e-maximal basis of I has exactly

∑vk

j=1(µkj − 1) + τk

strongly inessential generators in degree αk.
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Corollary 4.16 implies that it is possible to find I ∈ F [2] with a prescribed
number of strongly inessential elements in a prescribed number of sufficiently
high degree, as we see in the following proposition.

Proposition 4.17. Let (d1 < d2 < . . . < ds) and (r1, r2, . . . , rs) be sequences
of natural numbers. There exist ideals I ∈ F [2] with exactly ri s.i. elements in
degree di, i = 1, . . . , s, iff

d1 >
s∑

i=1

ri + 1. (16)

Proof. Let us observe that the minimal degree δ of a form Φ satisfying the
condition δ−v =

∑s
i=1 ri is obtained with v = 1, so that Φ looks as Φ = Hm+1,

where m =
∑s

i=1 ri and H is any linear form. So, condition (16) is necessary.
It is also sufficient, because the ideal

I = Hm+1S + Hm+1−r1Sd1−(m+1−r1) + . . .

. . . + Hm+1−
∑j

i=1 riSdj−(m+1−
∑j

i=1 ri)
+ . . . + Sds (17)

obtained with the choice Φj = Hrj , j = 1, . . . , (s−1), Φs = Hrs+1, satisfies the
required condition. If d1 =

∑s
i=1 ri +2, then (17) is the unique ideal satisfying

the condition. If d1 >
∑s

i=1 ri + 2, there are many other possibilities. In fact,
the set of the ideals satisfying the required condition increases with the degree
δ = v + m, or, equivalently, with the number v of different linear factors of Φ.
Let us observe that the degree vector of the ideal I considered in (17) is the
least compatible with the required condition.

Remark 4.18. Every I ∈ F [2] satisfies condition (2) ( maximality with respect
to Dubreil-Campanella inequality) in each degree αi. So, for every j, I splits
into two ideals, I′ = (I : (Φj+1 . . .Φr)) and I′′ = (I,Φj+1 . . .Φr), both ele-
ments of F [2]. The first β0 + 1 + ∆j rows and β0 + ∆j columns of the matrix
M(I) produced in Proposition 4.14 form a H.B. matrix of I′, whose inessential
columns are not necessarily s.i.. In fact, it may happen that a linear factor of
Φi, i ≤ j does not divide Φi+1 . . .Φj but divides Φj+1 . . .Φr; so the assertion of
Remark 3.11 is justified.

Examples 4.19. In the following examples U,H,K,L0, L1, L2 are linear forms,
pairwise linearly independent.

1- I = H3K2S2S + K2S6S + S10S.

In this case we have: Φ = H3K2,Φ1 = H3,Φ2 = K2, GCD(Φ1,Φ2) = 1.
According to Proposition 4.14, we get
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M(I) =



L0 −L1

L1 −L2

L2U −H
U −H

U −H
HU2 −K

U −K


.

The corresponding canonical basis is

B(I) = (H3K2(L1L2, L0L2, L0L1);K2L0L1L2U(H2,HU,U2);
L0L1L2HU5(K, U)) .

There are 3 s.i. generators, according to the fact that δ = 5, v = 2. Let us
observe that in this example a s.i. generator gives rise to a s.i. generator
in any splitting.

2- I = H3K2S2S + HKS6S + S10S.

In this case we have: Φ = H3K2,Φ1 = H2K, Φ2 = HK, so that all
the linear factors of Φ1 are also divisors of Φ2. According to Proposition
4.14, we get

M(I) =



L0 −L1

L1 −L2

L2U −H
U −H

U −K
U3 −H

H −K


.

The corresponding canonical basis is

B(I) = (H3K2(L1L2, L0L2, L0L1);HKL0L1L2U(HK,UK, U2);
L0L1L2U

6(K, H)) .

There are 3 s.i. generators, according to the fact that δ = 5, v = 2.

Let us observe that in this case the splitting in degree p = 8 gives rise to
the matrices

M(I′) =


L0 −L1

L1 −L2

L2U −H
U −H

U −K

 ,
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and, respectively,

M(I′′) =
(

U9 −H
H −K

)
.

The 6-th column of M(I′) is inessential, but not s.i.. A H.B. matrix of
I′, whose corresponding inessential generators are s.i., can be obtained
from M(I′) just by replacing U with H in its 6-th column.

3- I = H3S2 + H2S4 + HS8 + S10.

In this case we have: Φ = H3,Φ1 = Φ2 = Φ3 = H. According to
Proposition 4.14, we get:

M(I) =


L0 −L1

L1 −L2

L2U −H
U4 −H

U2 −H

 .

There are 2 s.i. generators and the corresponding canonical basis is:

B(I) = (H3(L1L2, L0L2, L0L1);H2L0L1L2U ;HL0L1L2U
5;L0L1L2U

7)

The splittings in degrees 8 and 9 produce a new inessential, but not s.i.,
element in I′.

5. Behaviour of I ∈ F [3] with respect to essentiality:
special cases and examples

According to Theorem 1.5 of [3], every element I ∈ F [3] has a shape very
similar to the one described in (3) for the elements of F [2]. The difference is
that Sβi

is replaced by a linear subspace Tβi
⊆ Sβi

of S = K[X, Y, Z], where
dim Tβi = βi + 1. The subspaces Tβi are characterized by Theorem 3.4 of [3].
That theorem says that, up to a change of cohordinates, every element I ∈ F [3]
is generated by the maximal minors of an α×(α+1) matrix, obtained by lifting
to K[X, Y, Z] a H.B. matrix of its image Ī ⊂ K[X, Y ] = S̄, modulo a regular
linear form Z. So, I looks like

I = Φ1 . . .ΦrTβ0S + . . . + Φi . . .ΦrTβi−1S + Φi+1 . . .ΦrTβi
S + . . .

. . . + ΦrTβr−1S + Tβr
S =

r∑
i=0

Φi+1 . . .Φr+1Tβi
S, , (18)
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where Φi is a form in S and Φr+1 = 1, and its image modulo Z becomes

Ī = Φ̄1 . . . Φ̄rS̄β0 S̄ + . . . + Φ̄i . . . Φ̄rS̄βi−1 S̄ + Φ̄i+1 . . . Φ̄rS̄βi
S̄ + . . .

. . . + Φ̄rS̄βr−1 S̄ + S̄βr
S̄ =

r∑
i=0

Φ̄i+1 . . . Φ̄r+1S̄βi
S̄, Φ̄r+1 = 1. (19)

The problem of stating if a lifting of Ī ∈ F [2] to I ∈ F [3] preserves the
strong inessentiality of the entries of B(Ī) becomes a lifting problem of H.B.
matrices, which seems not easy to be solved. So, we start to consider a very
special case. More precisely, we focus our attention on the ideals I ∈ F [3] with
the largest number of s.i. generators in any e-maximal basis. If α = α(I) =
α(Ī) is the minimal degree of the generators of I, we will see that the maximal
expected number is α−2; we’ll prove that such a number is reached. Let us first
state a property for every homogeneous saturated ideal I of S = K[X1, . . . , Xn].

Proposition 5.1. Let B = (b1, . . . , bh, c1, . . . , ck), k ≥ 1, be an e-maximal basis
of the saturated homogeneous ideal I ⊂ S = K[X1, . . . , Xn], where b1, . . . , bh

are essential and c1, . . . , ck are s.i. elements. The condition depth I = r implies
h > r.

Proof. Thanks to Corollary 5.3 of [4], (c1, . . . , ck) is an inessential set ([4], Def-
inition 5.2), so that I = (b1, . . . , bh)sat. As depth I = depth (b1, . . . , bh), the
hypothesis implies h ≥ r; however, the equality holds iff (b1, . . . , bh) is a c.i.
and, as a consequence, a saturated ideal, against the hypothesis k ≥ 1.

Choosing h = 2, we get immediately the following statement.

Corollary 5.2. The largest possible number of s.i. generators in an e-maxi-
mal basis of an ideal I ∈ F [3] is α(I)− 2.

If α(I) = 2, then I ∈ F [3] has 3 generators and Corollary 5.2 says that
in every e-maximal basis they are essential. Let us point our attention on the
case α(I) > 2.

We will use the following Notation

S = {I ∈ F [3] : νe(I) = 3, α(I) > 2},

where νe(I) denotes the number of essential elements of any e-maximal basis
of I (see [4], Definition 5.1).

Let us observe that any dehomogenization I∗ with respect to a regular linear
form of an ideal I ∈ S has just 3 generators (that is the least number for a non
complete intersection), while the number of generators of I is the maximum
allowed by Dubreil’s inequality.
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Proposition 5.3. For every I ∈ S the form Φ appearing in (18) is of degree
δ = α(I) and Φ has necessarily one of the following shapes:

i) Φ = Hδ,

ii) Φ = HrKs, r + s = δ,

iii) Φ = Cγ , 2γ = δ,

where H and K are independent linear forms and C is a quadratic irreducible
form in K[X, Y, Z].

Proof. An immediate consequence of Proposition 3.8 is that if I ⊂ K[X, Y, Z]
has α − 2 s.i. generators, then the number of s.i. generators of its quotient Ī
modulo a regular linear form is either α − 2 or α − 1. Applying Theorem 4.1
to Ī, we immediately get

δ − v = α− 1, δ ≤ α, (20)

or
δ − v = α− 2, δ ≤ α. (21)

Relation (20) is equivalent to δ = α, v = 1, while relation (21) gives two
possible situations:

δ = α, v = 2 (22)

and
δ = α− 1, v = 1. (23)

Let us verify that (23) is not realized. In fact in this case we have (Ī)α =
H̄α−1S̄1 and the s.i. generators lie all in degree bigger than α; so, a splitting
in degree α ( see Theorem 3.9) gives rise to an ideal I′′, with α(I′′) = α − 1
and α− 2 s.i. generators, against Corollary 5.2.

So, Φ must be a form, of degree α, whose quotient modulo any regular linear
form splits into a product of powers of at most two different linear factors. This
means that the curve Φ = 0 meets a generic line in at most two different points,
so that Φ is necessarily as described in i), ii), iii).

Remark 5.4. 1- We do not have examples in which the situation iii) appears.
Let us observe that it requires every ν(I, j), j = 1, . . . , r, to be a power
of 2.

2- Proposition 5.3 says that the schemes corresponding to ideals with α − 2
s.i. generators lie necessarily either on a multiple line or on two multiple
lines or (may be) on a multiple irreducible conic. However this condition
is not sufficient. For instance, by lifting the canonical matrix M of an
ideal J of K[X, Y ] with α − 1 s.i. generators with M itself, we obtain a
basis for an ideal I ⊂ K[X, Y, Z] without inessential elements.
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3- In case i), Φ̄ has the same structure of Φ, for every regular form L, while
in case ii) and iii) we have generically Φ̄ = H̄rK̄s, but we get Φ̄ = M̄r+s,
M a linear form in K[X, Y ], iff the line L = 0 either is tangent to
Φ = 0 (case iii)) or meets it in its singular point (case ii)). So, it is
possible to represent an element I ∈ S as a lifting of ideals Ī ⊂ k[X, Y ]
such that Φ̄ = M̄ δ, except for the case in which Φ = HrKs and the
intersection between the two lines H = 0 and K = 0 is in the support of
the corresponding scheme.

Proposition 5.5. If I is an element of S, let us consider its splitting into I′

and I′′ (see Theorem 2.3), in degree αk, with k < r if deg Φr ≥ 2 and k < r−1
if deg Φr = 1. Then I′′ is still an element of S.

Proof. Theorem 3.9 says that if B(I) = (Φ,B1,B2, . . . ,Br) is an e-maximal
basis of I, then B(I′′) = (Φ′′,Bk+1, . . . ,Br), where Φ′′ = Φk+1 . . .Φr, is an
e-maximal basis of I′′ and the forms of B(I′′), different from Φ′′, maintain the
same nature they had in B(I). So, as B(I) has two essential elements different
from Φ, B(I′′) cannot contain more then two essential elements different from
Φ′′; the hypothesis on the choice of k guaranties that it has at least 3 elements;
then, Corollary 5.2 says that B(I′′) must have exactly 3 essential elements, so
that I′′ ∈ S.

Corollary 5.6. In any e-maximal basis of an ideal I ∈ S the degree of the
three essential generators are: α = α(I), αr(I) and either αr(I) or αr−1(I).
The latter possibility takes place iff in degree αr(I) there is just one generator.

Proof. It is enough to apply Proposition 5.5, with k = r− 1 if in degree αr the
basis B(I) contains at least two forms and with k = r − 2 otherwise. In fact
the two essential elements of B(I′′), not in minimal degree, must be essential
also in B(I).

Now, let us produce examples of ideals of S.

Proposition 5.7. Every Ī ⊂ K[X, Y ] with α − 1 s.i. generators in any e-
maximal basis has at least a lifting in S.

Proof. After a possible change of coordinates, a H.B. matrix of Ī is

M(Ī) =


Y t0 −X

Y t1 −X
Y t2 −X

. . . . . . . . . . . . . . . . . .
Y tδ−2 −X

Y tδ−1 −X

 (24)
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A lifting M(I) of M(Ī), with α− 2 s.i. columns, is

Y t0 −X
ZP1 Y t1 −X
ZP2 Zt1+t2−1 Y t2 −X
ZP3 Zt2+t3−1 Y t3

. . . . . . . . . . . . . . . . . .
ZPδ−2 Y tδ−2 −X
ZPδ−1 Ztδ−2+tδ−1−1 Y tδ−1 −X


, (25)

where Pi ∈ K[X, Y, Z] is a form of degree
∑i

j=0 tj − i − 1 and, as usual, the
unwritten entries are zero. M(I) is obtained from M(Ī) by leaving unchanged
the last two columns and replacing the zero entries in position (i + 1, i), i =
2, . . . , δ − 1, with Zti−1+ti−1 and the ones in position (i, 1) with ZPi−1. It is
immediate to verify that the second column is s.i. and Lemma 5.3 of [4] says
that the same reasoning can be repeated for the following ones with three non
zero entries.

Finally, let us point our attention on the ideals I ∈ S with the smallest α(I)
allowing the presence of s.i. generators. Corollary 5.2 implies that if I has a s.i.
generator then α(I) ≥ 3. So, let us look for the ideals with α(I) = 3 and just
one s.i. generator in every e-maximal basis; they are the elements of S with the
smallest number of generators. Let us consider the special case of generators
in two different degrees. Proposition 5.3 says that, apart from a coordinates
change, they can be obtained by lifting an ideal of one of the following types

Ī1 = X3S + SβS, β > 3, (26)

Ī2 = X2Y S + SβS, β > 3. (27)

Let us first consider all the required liftings of Ī1 or, equivalently, all the
liftings M(I1) of the matrix

M(Ī1) =

Y t −X 0 0
0 Y −X 0
0 0 Y −X

 , t = β − 2, (28)

having a s.i. column. M(I) has the following shape (see [3])

M(I1)=

Y t+ZP1(X, Y, Z) −X+a11Z a12Z a13Z
ZP2(X, Y, Z) Y +a21Z −X+a22Z a23Z
ZP3(X, Y, Z) a31Z Y +a32Z −X+a33Z

, (29)
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where aij ∈ K, deg Pi = t− 1. The forms P1, P2, P3 can be chosen arbitrarily
among the ones of degree t− 1, so that we just have to characterize the matrix
A = (aij), i, j = 1, 2, 3. As the first column of M(I1) is essential for every
choice of the aij ’s, let us consider the second and third columns. The second
column is s.i. iff the forms L1 = −X + a11Z + λ2a12Z + λ3a13Z, L2 =
Y +a21Z +λ2(−X +a22Z)+λ3a23Z, L3 = a31Z +λ2(Y +a23Z)+λ3(−X +
a33Z) are linearly independent, for every choice of λ2, λ3 or, equivalently, iff
the matrix

B =

 −1 0 a11 + λ2a12 + λ3a13

−λ2 1 a21 + λ2a22 + λ3a23

−λ3 λ2 a31 + λ2a32 + λ3a33


has determinant different from zero. Such a condition gives the relation

−a12λ
3
2 − a13λ

2
2λ3 + (a22 − a11)λ2

2 + a13λ
2
3 + (a12 + a23)λ2λ3

+(−a32 + a21)λ2 + (−a33 + a11)λ3 − a31 6= 0. (30)

An easy computation shows that the matrices A for which this condition is
satisfied are

A =

a11 0 0
a21 a11 0
a31 a21 a11

 , a31 6= 0. (31)

Considerations very similar to the previous ones lead to the conclusion that
the second column is s.i. iff the matrix A has the following shape

A =

a11 a12 0
a21 a11 −a12

0 a21 a11

 , a12 6= 0. (32)

In case (31), after the coordinate change −a11Z + X = X ′, a21Z + Y =
Y ′, a31Z = Z ′ and dropping the apostrophes, the required matrix can be
written

M(I11) =

Y t + ZQ1 −X 0 0
ZQ2 Y −X 0
ZQ3 Z Y −X

 (33)

In case (32), after the coordinate change −a11Z + X = X ′, −a21Z + Y =
Y ′, a12Z = Z ′ and dropping the apostrophes, the required matrix can be
written

M(I12) =

Y t + ZQ1 −X Z 0
ZQ2 Y −X −Z
ZQ3 0 Y −X

 , t = β − 2. (34)

Let us observe that both schemes relative to I11 and I12 are supported at
at most t + 1 points lying on a triple line (X = 0 in our basis) and that their
multiplicity is e(I) = 3 + 3t ([6]).
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With a very similar computation it is possible to see that, apart from a
coordinate change, a lifting I2 of Ī2 belongs to S iff its H.B. matrix has the
following shape

M(I2) =

(X + Y )t + ZQ1 −X 0 0
ZQ2 X + Y −X 0
ZQ3 Z X −Y

 , (35)

where P1, P2, P3 are forms of degree t − 1 in K[X, Y, Z]. The corresponding
schemes, still of multiplicity e(I) = 3t + 3, are all supported at two different
lines (X = 0 and Y = 0). The intersection of the two lines is one of the points
in the support of the scheme; as a consequence, the ideals cannot be obtained
by lifting an ideal of type (28).

The characterization of the elements of S with α(I) > 3 is more difficult to
be faced, also for ideals generated in two degrees. In fact, the request of (28)
(and the analogous for the lifting of Ī2) are replaced by the requirement that a
system of non linear equations {Eu(aij , λv) = 0}, in a set {λv, v = 1, . . . , α−1}
of variables, admits no solutions. Such a condition defines the entries aij ’s of
the matrix A as the elements for which the ideal generated by the Eu’s is the
whole ring K[λ1, . . . , λα−1].
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