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SBV-like regularity for general

hyperbolic systems of conservation laws
in one space dimension

Stefano Bianchini and Lei Yu

Abstract. We prove the SBV regularity of the characteristic speed
of the scalar hyperbolic conservation law and SBV-like regularity of
the eigenvalue functions of the Jacobian matrix of flux function for
general hyperbolic systems of conservation laws. More precisely, for
the equation

ut + f(u)x = 0, u : R+ × R → Ω ⊂ RN ,

we only assume that the flux f is a C2 function in the scalar case
(N = 1) and Jacobian matrix Df has distinct real eigenvalues in the
system case (N ≥ 2). Using a modification of the main decay estimate
in [8] and the localization method applied in [17], we show that for
the scalar equation f ′(u) belongs to the SBV space, and for system of
conservation laws the i-th component of Dxλi(u) has no Cantor part,
where λi is the i-th eigenvalue of the matrix Df .
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1. Introduction

The study of the regularity of solutions to a general hyperbolic system of con-
servation laws

ut + f(u)x = 0, u : R+ × R → Ω ⊂ RN (1)

with initial data
u(t = 0) = u0 ∈ BV(R,Ω) (2)

is an important topic in the study of hyperbolic equations. In particular,
recently there have been interesting advances in the analysis of the structure
of the measure derivative Dxu(t) of BV solution to genuinely nonlinear scalar
equations and hyperbolic systems. The results obtained are that, in addition
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to the BV bounds, the solution enjoys the strong regularity property that no
Cantor part in the space derivative of u(t) appears out of a countable set of
times [1, 8, 17]: the fact that the measure Dxu(t) has only absolutely continuous
and jump part yields by definition that u(t) ∈ SBV(R).

The main idea of the proof is to find a positive bounded functional, which
is monotonically decreasing in time: then one shows that at each time a Cantor
part appears the functional has a jump downward, and hence one concludes
that the SBV regularity of u holds outside a countable set of times.

This paper concerns the extension of the results of [8] to the case where
the system is only strictly hyperbolic, i.e. no assumption on the nonlinear
structure of the eigenvalues λi of Df is done. Clearly, by just considering a
linearly degenerate eigenvalue, it is fairly easy to see that the solution u itself
cannot be in the SBV function space, so the regularity concerns some nonlinear
function of u.

We state the main theorems of this paper: in the following a BV function
on R will be considered defined everywhere by taking the right continuous
representative.

In the scalar case, one has

Theorem 1.1. Suppose that u ∈ BV(R+ × R) is an entropy solution of the
scalar conservation law (3). Then there exists a countable set S ⊂ R+ such
that for every t ∈ R+ \ S the following holds:

f ′(u(t, ·)) ∈ SBVloc(R).

After introducing the definition of i-th component of Dxλi(u) (see (16)),
we have the SBV-like regularity for the system case.

Theorem 1.2. Let u be a vanishing viscosity solution of the Cauchy problem
for the strictly hyperbolic system (6) with small BV norm. Then there exists
an at most countable set S ⊂ R+ such that i-th component of Dxλi(u(t, ·)) has
no Cantor part for every t ∈ R+ \ S and i ∈ {1, 2, . . . , N}.

Since in the genuinely nonlinear case u 7→ λi(u) is invertible along the i-th
admissible curves T i

s [u] (see Theorem 3.2 for the definition), it follows that
Theorem 4.1 is an extension of the results contained in [8] (and Theorem 1.1 is
an extension of the results contained in [17] when the source is 0). The example
contained in Remark 7.2 shows that the results are sharp.

The main point of the paper is the fact that the wave-front tracking ap-
proximation for the waves of a genuinely nonlinear family does not essentially
differ from the wave-front approximations of genuinely nonlinear systems: in
other words, the wave pattern of a genuinely nonlinear characteristic family for
a (approximate) solution in a general hyperbolic system has the same struc-
ture as if all characteristic families are genuinely nonlinear. Thus the analysis
carried out in [8] holds also in this case.
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The proof of the above two theorems is done as follows. To introduce the
argument in the easiest setting, in Section 2, we give a proof for the SBV
regularity of the characteristic speed for the general scalar conservation laws.
The proof is just a slight modification of the proof of [17, Theorem 1.1].

As one sees in the proof of Theorem 1.1, the main tool is to obtain the
SBV regularity when only one characteristic field is genuinely nonlinear (Corol-
lary 4.2). By inspection, the analysis of [8] relies on the wave-front tracking
approximation of [9], which assumes that all characteristic fields are genuinely
nonlinear or linearly degenerate. Thus we devote Sections 3.2, Section 5.1 to
introduce the wave-front tracking approximation for general systems [3].

The focus of Section 5.2 is the observation that the convergence and regu-
larity estimates of [Theorem 10.4][9] still holds for the i-th component of ux,
under the only assumption that the i-th characteristic field is genuinely nonlin-
ear: these estimates are needed in order to define the i-th (ε1, ε0)-shocks and
to pass to the limit the estimates concerning the interaction, cancellation and
jump measures. The latter is responsible for the functional controlling the SBV
regularity, Theorem 4.1.

After these estimates, for completeness we repeat the proof of the decay of
negative waves in Section 6.2. Finally we show how to adapt the strategy of
the scalar case in Section 7.

2. The scalar case

In this section, we restrict our attention to the scalar conservation laws and
motivate our general strategy with this comparatively simpler situation. Let us
consider the entropy solution to the hyperbolic conservation law in one space
dimension {

ut + f(u)x = 0 u : R+ × R → Ω ⊂ R, f ∈ C2(Ω, R),
u|t=0 = u0 u0 ∈ BV(R,Ω).

(3)

In [17], it is proved the SBV regularity result for the convex or concave flux
case.

Lemma 2.1. [17] Suppose f ∈ C2(R) and |f ′′(u)| > 0. Let u ∈ L∞(R) be
an entropy solution of the scalar conservation law (3). Then there exists a
countable set S ⊂ R such that for every τ ∈ R+ \ S the following holds:

u(τ, ·) ∈ SBVloc(R).

Further, by Volpert’s Chain Rule (see [2, Theorem 3.99]), it follows that
f ′(u(τ, ·)) ∈ SBVloc(R) for τ ∈ R+ \ S: actually, since f ′′ 6= 0, the two condi-
tions f ′(u(τ, ·)) ∈ SBVloc(R) and u(τ, ·) ∈ SBVloc(R) are equivalent.
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Following the same argument together with the analysis in [17], we can get
the SBV regularity of the slope of characteristics for the scalar conservation
law with general flux as stated in Theorem 1.1.

Proof of Theorem 1.1. Recall that if u ∈ BV(R+ × R) is an entropy solution,
then by the theory of entropy solutions, it follows that u(τ, ·) ∈ BV(R) is well
defined for every τ ∈ R+.

Define the sets

Jτ :=
{
x ∈ R : u(τ, x−) 6= u(τ, x+)

}
,

Fτ :=
{
x ∈ R : f ′′(u(τ, x)) = 0

}
,

C :=
{
(τ, ξ) ∈ R+ × R : ξ ∈ Jτ ∪ Fτ

}
.

Set also Cτ := Jτ ∪ Fτ as the τ -section of C.
Since the Cantor part Dcu(τ, ·) of Du(τ, ·) and the jump part Dju(τ, ·) of

Du(τ, ·) are mutually singular, then |Dcu(τ, ·)|(Jτ ) = 0. Using the fact that
f ′′(u(τ, ·)) = 0 on Fτ , by Volpert’s Chain Rule one obtains

|Dcf ′(u(τ, ·))|(Cτ ) ≤ |Dcf ′(u(τ, ·))|(Jτ ) + |Dcf ′(u(τ, ·))|(Fτ )
= |f ′′(u(τ, ·))Dcu(τ, ·)|(Jτ ) + |f ′′(u(τ, ·))Dcu(τ, ·)|(Fτ ) = 0.

Let (t0, x0) ∈ R+ × R \ C. Using the finite speed of propagation and the
maximum principle for entropy solutions and the fact that u(t0, x) is continuous
at x0 by the definition of C, it is possible to find a triangle of the form

T (t0, x0) :=
{

(t, x) : |x− x0| < b0 − λ̄(t− t0), 0 < t− t0 < b0/λ̄
}

(4)

such that |f ′′(u(t, x))| ≥ c0 > 0, for any (t, x) ∈ T (t0, x0). Here c0 depends on
(t0, x0) and λ̄ is the maximal speed of propagation, which depends only on the
L∞-bound of ut0 (and hence only depends on the L∞-bound of u by maximal
principle).

In particular, in T (t0, x0) the solution u of (3) coincides with the solution
of the following problem

wt + f(w)x = 0,

w(t0, x) =

{
u(t0, x) |x− x0| < b0,
1

2b0

∫ x0+b0
x0−b0

u(t0, y)dy |x− x0| ≥ b0.

By Lemma 2.1, w(t, ·) is SBV regular for any t > t0 out of a countable set of
times S(t0, x0). Write Tτ (t0, x0) := T (t0, x0) ∩ {t = τ}, thus u(τ, ·)xTτ (t0,x0)

and f ′(u(τ, ·))xTτ (t0,x0) are SBV for τ ∈]t0, t0 + b/λ̄[\S(t0, x0).
Let B be the set of all points of R+×R \C which are contained in at least

one of these triangles. (Notice that T (t0, x0) is a open set and does not contain
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the point (t0, x0).) Let {T (ti, xi)}i∈N be a countable subfamily of the triangles
covering B. From the previous observation on the function uxT (ti,xi), the set

Si :=
{
τ : u(τ, ·)xTτ (ti,xi) /∈ SBV(Tτ (ti, xi))

}
is at most countable.

Let C ′ := R+ × R \ (B ∪ C) and SC′ := {τ ∈ R+ : {t = τ} ∩ C ′ 6= ∅}.
It is obvious that for every t′ ∈ R+ \ SC′ , x′ ∈ R, either there is a triangle
T ∈ {T (ti, xi)}i∈N such that (t′, x′) ∈ T and u(t, ·)xT is SBV function out of
countable many times or (t′, x′) ∈ C.

We claim that the set SC′ is at most countable. Indeed, it is enough to
prove that the set SK := {τ ∈ R+ : {t = τ}∩C ′ ∩K 6= ∅} is at most countable
for every compact set K ⊂ R+ × R when the triangles T (t′, x′) have a base of
fixed length for every (t′, x′) ∈ C ′: it is fairly simple to see that in this case
the set SK is finite since (t′, x′) can not be contained in any other T (t′′, x′′) for
t′ 6= t′′ and (t′′, x′′) ∈ C ′.

For any τ not in the countable set

SC′ ∪
⋃
i∈N

Si,

one obtains the following inequality:

|Dcf ′(u(τ, ·))(R)| ≤ |Dcf ′(u(τ, ·))|

(⋃
i∈N

Tτ (ti, xi)

)
+|Dcf ′(u(τ, ·))|(Cτ ) = 0.

(5)

This concludes the proof.

By a standard argument in the theory of BV functions, we have the following
result.

Corollary 2.2. Let u ∈ L∞(R+ × R) be an entropy solution of the scalar
conservation law (3). Then f ′(u) ∈ SBVloc(R+ × R).

The difference is that now the function f ′(u) is considered as a function of
two variable.

Proof. The starting point is that up to a countable set of times, Df ′(u(t, ·))
has no Cantor part (Theorem 1.1). From the slicing theory of BV function ([2,
Theorem 3.107-108]), we know that the Cantor part of the 2-dimensional mea-
sure Dxf ′(u) is the integral with respect of t of the Cantor part of Df ′(u(t, ·)).
This concludes that Dxf ′(u) has no Cantor part, i.e. Dc

xf ′(u) = 0.
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By combining Volpert’s Chain Rule and the conservation law (3), one has

Dc
tu = −f ′(u)Dc

xu.

Using Volpert’s rule once again, one obtains

Dc
tf
′(u) = −f ′′(u)Dc

tu = −f ′′(u)f ′(u)Dc
xu = −f ′(u)Dc

xf ′(u) = 0,

which concludes that also Dtf(u) has no Cantor part.

Remark 2.3. In [17], it is proved that if f in (3) has only countable many
inflection points. i.e. the set

{u ∈ Ω : f ′′(u) 6= 0}

is at most countable, then the entropy solution of (3) is SBV regular. It is easy
to see that for general hyperbolic scalar conservation laws f ∈ C2 is not enough
to obtain the SBV regularity. In fact, we can consider f ′ ≡ constant, which
means (3) degenerates into a linear equation. Then the entropy solution u is
not SBV regular unless the initial data u0 is a SBV function.

3. Notations and settings for general systems

Throughout the rest of the paper, the symbol O(1) always denotes a quantity
uniformly bounded by a constant depending only on the system (1).

3.1. Preliminary notation

Consider the Cauchy problem{
ut + f(u)x = 0 u : R+ × R → Ω ⊂ RN , f ∈ C2(Ω, R),
u|t=0 = u0 u0 ∈ BV(R,Ω).

(6)

The only assumption is strict hyperbolicity in Ω: the eigenvalues {λi(u)}N
i=1 of

the Jacobi matrix A(u) = Df(u) satisfy

λ1(u) < · · · < λN (u), u ∈ Ω.

Furthermore, as we only consider the solutions with small total variation, it is
not restrictive to assume that Ω is bounded and there exist constants {λ̌j}N

j=0,
such that

λ̌k−1 < λk(u) < λ̌k, ∀u ∈ Ω, k = 1, . . . , N. (7)

Let {ri(u)}N
i=1 and {lj(u)}N

j=1 be a basis of right and left eigenvectors, depend-
ing smoothly on u, such that

lj(u) · ri(u) = δij and |ri(u)| ≡ 1, i = 1, . . . , N. (8)
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Definition 3.1. For i = 1, . . . , N , we say that the i-th characteristic field (or
i-th family) is genuinely nonlinear if

∇λi(u) · ri(u) 6= 0 for all u ∈ Ω,

and we say that the i-th characteristic field (or i-th family) is linearly degen-
erate if instead

∇λi(u) · ri(u) = 0 for all u ∈ Ω.

In the following, if the i-th characteristic field is genuinely nonlinear, instead
of (8) we normalize ri(u) such that

∇λi(u) · ri(u) ≡ 1. (9)

In [7], it is proved that if the total variation of u0 is sufficiently small, the
solutions of the viscous parabolic approximation equations{

ut + f(u)x = εuxx,

u(0, x) = u0(x),

are uniformly bounded, and the limit of uε as ε → 0 is called vanishing viscosity
solution of (6) and it is a BV function.

3.2. Construction of solutions to the Riemann problem

The Riemann problem is the Cauchy problem (6) with piecewise constant initial
data of the form

u0 =
{

uL x < 0,
uR x > 0. (10)

The solution to this problem is the key ingredient for building the front-tracking
approximate solution: the basic step is the construction of the admissible ele-
mentary curve of the k-th family for any given left state uL.

A working definition of admissible elementary curves can be given by means
of the following theorem.

Theorem 3.2 ([4, 7]). For every u ∈ Ω there exist

1. N Lipschitz continuous curves s 7→ T k
s [u] ∈ Ω, k = 1, . . . , N , satisfying

lim
s→0

d

ds
T k

s [u] = rk(u),

2. N Lipschitz functions (s, τ) 7→ σk
s [u](τ), with 0 ≤ τ ≤ s, k = 1, . . . , N ,

satisfying τ 7→ σk
s [u](τ) increasing and σk

0 [u](0) = λk(u)
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with the following properties.
When uL ∈ Ω, uR = T k

s [uL], for some s sufficiently small, the unique vanishing
viscosity solution of the Riemann problem (6)-(10) is defined a.e. by

u(t, x) :=


uL x/t < σk

s [uL](0),
T k

τ [uL] x/t = σk
s [uL](τ), τ ∈ I,

uR x/t > σk
s [uL](s).

where I :=
{
τ ∈ [0, s] : σk

s [uL](τ) 6= σk
s [uL](τ ′) for all τ ′ 6= τ

}
.

Remark 3.3. If i-th family is genuinely nonlinear, then the Lipschitz curve
T i

s [ū] can be written as

T i
s [ū] =

{
Ri[ū](s) s ≥ 0,

Si[ū](s) s < 0,

where Ri[ū], Si[ū] are respectively the rarefaction curve and the Rankine-Hugo-
niot curve of the i-th family with any given point ū in Ω. Some certain ele-
mentary weak solution, called rarefaction waves and shock waves can be defined
along the rarefaction curve and Rankine-Hugoniot curve, for example see [9].
The elementary curve T i

s [ū] is parametrized by

s = li(ū) · (T i
s [ū]− ū). (11)

The vanishing viscosity solution [7] of a Riemann problem for (6) is obtained
by constructing a Lipschitz continuous map

(s1, . . . , sN ) 7→ TN
sN

[
TN−1

sN−1

[
· · ·
[
T 1

s1
[uL ]

] ]]
= uR,

which is one to one from a neighborhood of the origin onto a neighborhood of
uL. Then we can uniquely determine intermediate states uL = ω0, ω1, . . . , ωN =
uR, and the wave sizes s1, s2, . . . , sN such that

ωk = T k
sk

[ωk−1], k = 1, . . . , N,

provided that |uL − uR| is sufficiently small.
By Theorem 3.2, each Riemann problem with initial datum

u0 =

{
ωk−1 x < 0,

ωk x > 0,
(12)

admits a vanishing viscosity solution uk, containing a sequence of rarefactions,
shocks and discontinuities of the k-th family: we call uk the k-th elementary
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composite wave. Therefore, under the strict hyperbolicity assumption, the gen-
eral solution of the Riemann problem with the initial data (10) is obtained by
piecing together the vanishing viscosity solutions of the elementary Riemann
problems given by (6)-(12).

Indeed, from the strict hyperbolicity assumption (7), the speed of each
elementary k-th wave in the solution uk is inside the interval [λ̌k−1, λ̌k] if s � 1,
so that the solution of the general Riemann problem (6)-(10) is then given by

u(t, x) =


uL x/t < λ̌0

uk(t, x) λ̌k−1 < x/t < λ̌k, k = 1, . . . , N,

uR x/t > λ̌N .

(13)

Remark 3.4. If the characteristic fields are either genuinely nonlinear or lin-
early degenerate, the admissible solution of Riemann problem (6)-(10) consists
of N family of waves. Each family contains either only one shock, one rar-
efaction wave or one contact discontinuity. However, the general solution of a
Riemann problem provided above may contain a countable number of rarefac-
tion waves, shock waves and contact discontinuities.

3.3. Cantor part of the derivative of characteristic for i-th
waves

Recalling the solution (13) to the Riemann problem (6)-(10), let λ̃i(uL, uR)
denote the i-th eigenvalue of the average matrix

A(uL, uR) =
∫ 1

0

A(θuL + (1− θ)uR)dθ, (14)

and l̃i(uL, uR), r̃i(uL, uR) are the corresponding left and right eigenvector sat-
isfying l̃i · r̃i = δij and |r̃j | ≡ 1, for every i, j ∈ {1, . . . , N}. Define thus

λ̃i(t, x) = λ̃i(u(t, x−), u(t, x+)), (15a)

r̃i(t, x) = r̃i(u(t, x−), u(t, x+)), (15b)

l̃i(t, x) = l̃i(u(t, x−), u(t, x+)). (15c)

Since the r̃i, l̃i have directions close to ri, li, one can decompose Dxu into
the sum of N measures:

Dxu =
N∑

k=1

vkr̃k.

where vi = l̃i · Dxu is a scalar valued measure which we call as i-th wave
measure [9].
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In the same way we can decompose the a.c. part Dac
x u, the Cantor part

Dc
xu and the jump part Djump

x u of Dxu as

Dac
x u =

N∑
k=1

vac
k r̃k, Dc

xu =
N∑

k=1

vc
kr̃k, Djump

x u =
N∑

k=1

vjump
k r̃k.

We call vc
i the Cantor part of vi and denote by

vcont
i := vc

i + vac
i = l̃i · (Dc

xu + Dac
x u)

the continuous part of vi. According to Volpert’s Chain Rule

Dxλi(u) = ∇λi(u)(Dac
x u + Dc

xu) + [λi(u+)− λi(u−)]δx,

and then
Dc

xλi(u) = ∇λi ·Dc
xu =

∑
k

(
∇λi · r̃k

)
vc

k.

We define the i-th component of Dxλi(u) as

[Dxλi(u)]i :=
(
∇λi · r̃i

)
vcont

i +
[
λi(u+)− λi(u−)

] |vjump
i (x)|∑

k |v
jump
k (x)|

, (16)

and the Cantor part of i-th component of Dxλi(u) to be

[Dc
xλi(u)]i :=

(
∇λi · r̃i

)
vc

i . (17)

4. Main SBV regularity argument

Following [8], the key idea to obtain SBV-like regularity for vi is to prove a
decay estimate for the continuous part of vi. We state here the main estimate
of our paper.

Theorem 4.1. Consider the general strictly hyperbolic system (6), and suppose
that the i-th characteristic field is genuinely nonlinear. Then there exists a
finite, non-negative Radon measure µICJ

i on R+ × R such that for t > τ > 0

∣∣vcont
i (t)

∣∣(B) ≤ O(1)
{
L(B)

τ
+ µICJ

i ([t− τ, t + τ ]× R)
}

(18)

for all Borel subset B of R.

Different from [8], we assume only one characteristic field to be genuinely
nonlinear and no other requirement on the other characteristic fields. Once
Theorem 4.1 is proved, then the SBV argument develops as follows [8].
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Suppose at time t = s, vi(s) has a Cantor part. Then there exists a L1-
negligible Borel set K with vcont

i (s)(K) > 0 and Djumpvi(s)(K) = 0. Then for
all s > τ > 0,

0 < |vi(s)|(K) = |vcont
i (s)|(K) ≤ O(1)

{
L1(K)

τ
+ µICJ

i ([s− τ, s + τ ]× R)
}

.

Since L1(K) = 0, we can let τ → 0, and deduce that µICJ
i ({s} × R) > 0. This

shows that the Cantor part appears at most countably many times because
µICJ

i is finite.
Then, we can have the following result which generalizes [8, Corollary 3.2]

to the case when only one characteristic field is genuinely nonlinear and no
assumption is made on the others.

Corollary 4.2. Let u be a vanishing viscosity solution of the Cauchy problem
for the strictly hyperbolic system (6), and assume that the i-th characteristic
field is genuinely nonlinear. Then vi(t) has no Cantor part out of a countable
set of times.

As we see in the scalar case, by proving the SBV regularity of the solution
under the genuinely nonlinearity assumption of one characteristic field, we can
deduce a kind of SBV regularity of the characteristic speed for general systems.

Unlike the scalar case, we do not have the maximum principle to guarantee
the small variation of u in the triangle T (t0, x0) defined in (4). However, in
the system case, we have the following estimates for the vanishing viscosity
solutions.

For a < b and τ ≥ 0, we denote by Tot.Var.{u(τ); ]a, b[} the total variation
of u(τ) over the open interval ]a, b[. Moreover, consider the triangle

∆τ,η
a,b :=

{
(t, x) : τ < t < (b− a)/2η, a + ηt < x < b− ηt

}
.

The oscillation of u over ∆τ,η
a,b will be denoted by

Osc.{u; ∆τ,η
a,b} := sup

{
|u(t, x)− u(t′, x′)| : (t, x), (t′, x′) ∈ ∆τ,η

a,b

}
.

We have the following results.

Theorem 4.3 (Tame Oscillation, [7]). There exists C ′ > 0 and η̄ > 0 such that
for every a < b and τ ≥ 0, one has

Osc.{u; ∆τ,η̄
a,b} ≤ C ′ · Tot.Var.{u(τ); ]a, b[}.

Adapting the proof of the scalar case, we can prove the main Theorem 1.2
of this paper: the proof of this theorem will be done in Section 7.
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5. Review of wave-front tracking approximation for
general system

To prove Theorem 4.1, we use the front tracking approximation in [3] which
extends the one in [9] to the general systems. Since the construction is now
standard, we only give a short overview about existence, compactness and con-
vergence of the approximation, pointing to the properties needed in our argu-
ment: more precisely, we will only consider how one constructs the approximate
wave pattern of the k-th genuinely nonlinear family (Section 5.1.2).

The main point is that, for general systems, the accurate/simplified/crude
Riemann solvers for the k-th wave coincides with the approximate/simpli-
fied/crude Riemann solvers when all families are genuinely nonlinear (see below
for the definition of accurate/simplified/crude Riemann solvers). This means
that the wave pattern of the k-th genuinely nonlinear family will have the
same structure as if all other families are genuinely nonlinear: by this, we
mean that shock-shock interaction generates shocks, the jump in characteristic
speed across k-th waves is proportional to their size, and one can thus use the
k-component of the derivative of λk (16) to measure the total variation of vk.

5.1. Description of the wave-front tracking approximation

The wave-front tracking approximation is an algorithm which produces piece-
wise constant approximate solutions to the Cauchy problem (6). Roughly
speaking, we first choose a piecewise constant function uε

0 which is a good
approximation to the initial data u0 such that

Tot.Var.{uε
0} ≤ Tot.Var.{u0}, ||uε

0 − u0||L1 < ε, (19)

and uε
0 only has finite jumps. Let x1 < · · · < xm be the jump points of uε

0.
For each α = 1, . . . ,m, we approximately solve the Riemann problem (see Sec-
tion 3.2, just shifting the center from (0, 0) to (0, xα)) with the initial data given
by the jump [uε

0(xα−), [uε
0(xα+)] by a function w(t, x) = φ(x−x0

t−t0
) where φ is

a piecewise constant function. The straight lines where the discontinuities are
located are called wave-fronts (or just fronts for shortness). The wave-fronts
can be prolonged until they interact with other fronts, then at the interaction
point, the corresponding Riemann problem is approximately solved and sev-
eral new fronts are generated forward. Then one tracks the wave-fronts until
they interact with other wave-fronts, etc... In order to avoid the algorithm to
produce infinite many wave-fronts in finite time, different kinds of approximate
Riemann solvers should be introduced.
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5.1.1. Approximate Riemann solver

Suppose at the point (t1, x1) a wave-front of size s′ belonging to k′-th family
interacts from the left with a wave-front of size s′′ belonging to k′′-th family
for some k′, k′′ ∈ {1, · · · , N} such that k′ < k′′ and (see Section 3.2 for the
definition of T k

s )
uM = T k′

s′ [uL], uR = T k′′

s′′ [uM ].

Assuming that |uL−uR| sufficiently small, at the interaction point, the Riemann
problem with the initial data given by the jump [uL, uR] will be solved by
approximate Riemann solver. There are two kinds of approximate Riemann
solvers defined for interactions between two physical wave-fronts.

• Accurate Riemann Solver : It replaces each elementary composite wave
of the exact Riemann solution (refers to uk in (13)) by an approximate
elementary wave which is a finite collection of jumps traveling with a
speed given by the average speed λ̃k (see (15a)), and the wave opening (i.e.
the difference in speeds between any two consecutive fronts) is less than
some small parameter ε controlling the accuracy of the approximation.

• Simplified Riemann Solver : It only generates approximate elementary
waves belonging to k′-th and k′′-th families with corresponding size s′ and
s′′ as the incoming ones if k′ 6= k′′, and approximate elementary waves of
size s′ + s′′ belonging to k′-th family if k′ = k′′. The simplified Riemann
solver collects the remaining new waves into a single nonphysical front,
traveling with a constant speed λ̂, strictly larger than all characteristic
speed λ̂. Therefore, usually the simplified Riemann solver generate less
outgoing fronts after interaction than the accurate Riemann solver.

Since the simplified Riemann solver produces nonphysical wave-fronts and
they can not interact with each other, one only needs an approximate Riemann
solver defined for the interaction between, for example, a physical front of the
k-th family with size s, connecting uM , uR and a nonphysical front (coming
from the left) connecting the left value uL and uM traveling with speed λ̂.

• Crude Riemann Solver generates a k-th front connecting uL and ũM =
T k

s [uL] traveling with speed λ̃i and a nonphysical wave-front joining ũM

and uR, traveling with speed λ̂. In the following, for simplicity, we just
say that the non-physical fronts belong to the (N + 1)-th characteristic
field.

Remark 5.1. We can assume that at each time t > 0, at most one interac-
tion takes place, involving exactly two incoming fronts, because we can slightly
change the speed of one of the incoming fronts if more than two fronts meet at
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the same point. It is sufficient to require that the error vanishes when ε → 0.
To simplify the analysis, we assume that the fronts satisfy the Rankine-Hugoniot
conditions exactly.

5.1.2. The approximate Riemann solvers for genuinely nonlinear
waves

If the k-th characteristic family is genuinely nonlinear, the elementary wave uk

is either a shock wave or a rarefaction wave. The key example of the accurate
Riemann solver is thus to consider how these two solutions are approximated.

If k-th elementary wave uk in (13) is just a single shock, for example

uk =

{
uL x/t < σ,

uR x/t > σ,

where σ is the speed of shock wave, then the approximated k-th wave coincides
the exact one (apart from the speed in case, see the above remark).

If uk is a rarefaction wave of the k-th family connecting the left value uL

and the right value uR, for example, if uR := T k
s [uL] and

uk =


uL x/t < λk(uL),
T k

s∗ [u
L] x/t ∈ [λk(uL), λk(uR)], x/t = λk(T k

s∗ [u
L]),

uR x/t > λk(uR),

where s∗ ∈ [0, s]. Then the approximation ũk is a rarefaction fan containing
several rarefaction fronts. More precisely, we can choose real numbers 0 = s0 <
s1 < · · · < sn = s, and define the points wi := T k

si
[uL], i = 0, . . . , n, with the

following properties,

wi+1 = T k
(si+1−si)

[wi],

and the wave opening of consecutive wave-fronts are sufficiently small, i.e.

σk
s [uL](si+1)− σk

s [uL](si) ≤ ε, ∀i = 0, . . . , n− 1.

where the function σk
s is defined in Theorem 3.2. We let the jump [ωi, ωi+1]

travel with the speed σ̃i := λ̃k(ωi, ωi+1) (15a), so that the rarefaction fan ũk

becomes

ũk =


uL x/t < σ̃1,

ωi σ̃i ≤ x/t < σ̃i+1, i = 1, . . . , n− 1,

uR x/t ≥ σ̃n.
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5.1.3. Interaction potential and BV estimates

Suppose two wave-fronts with size s′ and s′′ interact. In order to get the
estimate on the difference between the size of the incoming waves and the
size of the outgoing waves produced by the interaction, we need to define the
amount of interaction I(s′, s′′) between s′ and s′′.

When s′ and s′′ belong to different characteristic families (including N+1-th
family), set

I(s′, s′′) = |s′s′′|. (20)

If s′, s′′ belong to the same characteristic family, the definition of I(s′, s′′)
is more complicated (see [3, Definition 3]). We just mention that if s′, s′′ are
the sizes of two shocks which have the same sign, traveling with the speed σ′

and σ′′ respectively, then the amount of interaction takes the form

I(s′, s′′) = |s′s′′|
∣∣σ′ − σ′′

∣∣, (21)

i.e. the product of the size of the waves times the difference of their speeds (of
the order of the angle between the two shocks).

To control the amount of interaction, the following potential is introduced.
At each time t > 0 when no interaction occurs, and u(t, ·) has jumps at
x1, . . . , xm, we denote by

ω1, . . . , ωm, s1, . . . , sm, i1, . . . , im,

their left states, signed sizes and characteristic families, respectively: the sign
of sα is given by the respective orientation of dT k

s [u]/ds and rk, if the jump at
xα belongs to the k-th family. The Total Variation of u will be computed as

V (t) = V (u(t)) :=
∑
α

∣∣sα

∣∣.
Following [4], we define the Glimm wave interaction potential as follows:

Q(t) = Q(u(t)) :=
∑

iα>iβ
xα<xβ

∣∣sαsβ

∣∣
+

1
4

∑
iα=iβ<N+1

∫ |sα|

0

∫ |sβ |

0

∣∣σiβ
sβ [ωβ ](τ ′′)− σiα

sα
[ωα](τ ′)

∣∣dτ ′dτ ′′.

(22)

Denoting the time jumps of the total variation and the Glimm potential as

∆V (τ) = V (τ+)− V (τ−), ∆Q(τ) = Q(τ+)−Q(τ−),
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the fundamental estimates are the following ([3, Lemma 5]): in fact, when two
wave-fronts with size s′, s′′ interact,

∆Q(τ) = −O(1)I(s′, s′′), (23a)

∆V (τ) = O(1)I(s′, s′′). (23b)

Thus one defines the Glimm functional

Υ(t) := V (t) + C0Q(t) (24)

with C0 suitable constant, so that Υ decreases at any interaction. Using this
functional, one can prove that ε-approximate solutions exist and their total
variations are uniformly bounded (see [3, Section 6.1]).

5.1.4. Construction of the approximate solutions and their
convergence to exact solution

The construction starts at initial time t = 0 with a given ε > 0, by taking uε
0 as

a suitable piecewise constant approximation of initial data u0, satisfying (19).
At the jump points of uε

0, we locally solve the Riemann problem by accurate
Riemann solver. The approximate solution uε then can be prolonged until
a first time t1 when two wave-fronts interact. Again we solve the Riemann
problem at the interaction point by an approximate Riemann solver. Whenever
the amount of interaction (see Section 5.1.3 for the definition) of the incoming
waves is larger than some threshold parameter ρ = ρ(ε) > 0, we shall adopt the
accurate Riemann solver. Instead, in the case where the amount of interaction
of the incoming waves is less than ρ, we shall adopt simplified Riemann solvers.
And we will apply the crude Riemann solver if one of the incoming wave-
front is non-physical front. One can show that the number of wave-fronts in
approximate solution constructed by such algorithm remains finite for all times
(see [3, Section 6.2]).

We call such approximate solutions ε-approximate front tracking solutions.
At each time t when there is no interaction, the restriction uε(t) is a step
function whose jumps are located along straight lines in the (t, x)-plane.

Let {εν}∞ν=1 be a sequence of positive real numbers converging to zero.
Consider a corresponding sequence of εν-approximate front tracking solutions
uν := uεν of (6): it is standard to show that the functions t 7→ uν(t, ·) are
uniformly Lipschitz continuous in L1 norm, and the decay of the Glimm Func-
tional yields that the solutions uν(t, ·) have uniformly bounded total variation.
Then by Helly’s theorem, uν converges up to a subsequence in L1

loc(R+×R) to
some function u, which is a weak solution of (6).
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It can be shown that by the choice of the Riemann Solver in Theorem 3.2,
the solution obtained by the front tracking approximation coincides with the
unique vanishing viscosity solution [7]. Furthermore, there exists a closed do-
main D ⊂ L1(R,Ω) and a unique distributional solution u, which is a Lipschitz
semigroup D× [0,+∞[→ D and which for piecewise constant initial data coin-
cides, for a small time, with the solution of the Cauchy problem obtained piec-
ing together the standard entropy solutions of the Riemann problems. More-
over, it lives in the space of BV functions.

For simplicity, the pointwise value of u is its L1 representative such that
the restriction map t 7→ u(t) is continuous form the right in L1 and x 7→ u(t, x)
is right continuous from the right.

5.1.5. Further estimates

To each uν , we define the measure µI
ν of interaction and the measure µIC

ν of
interaction and cancellation concentrated on the set of interaction points as
follows. If two wave-fronts belonging to the families i, i′ ∈ {1, . . . , N + 1} with
size s′, s′′ interact at a point P , we define by

µI
ν({P}) := I(s′, s′′),

µIC
ν ({P}) := I(s′, s′′) +

{
|s′|+ |s′′| − |s′ + s′′| i = i′,
0 i 6= i′.

(25)

the measure of interaction and the measure of interaction-cancellation.
The wave size estimates ([3, Lemma 1]) yields balance principles for the

wave size of approximate solution. More precisely, given a polygonal region
Γ with edges transversal to the waves it encounters, denote by W i±

ν,in, W i±
ν,out

the positive (+) or negative (−) i-th waves in uν entering or exiting Γ, and
let W i

ν,in = W i+
ν,in − W i−

ν,in, W i
ν,out = W i+

ν,out − W i−
ν,out. Then the measure of

interaction and the measure of interaction-cancellation control the difference
between the amount of exiting i-th waves and the amount of entering i-th waves
w.r.t. the region as follows:

|W i
ν,out −W i

ν,in| ≤ O(1)µI
ν(Γ), (26a)

|W i±
ν,out −W i±

ν,in| ≤ O(1)µIC
ν (Γ). (26b)

The above estimates are fairly easy consequence of the interaction estimates
(23) and the definition of µI

ν , µIC
ν .

By taking a subsequence and using the weak compactness of bounded mea-
sures, there exist measures µI and µIC on R+×R such that the following weak
convergence holds:

µI
ν ⇀ µI, µIC

ν ⇀ µIC. (27)
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5.2. Jump part of i-th waves

The derivative of uν is clearly concentrated on polygonal lines, being a piecewise
constant function with discontinuities along lines. Suppose the i-th family is
genuinely nonlinear. To select the wave fronts belonging to i-th family of uν

converging to the jump part of u, we use the following definition.

Definition 5.2 (Maximal (ε0, ε1)-shock front). [9] A maximal (ε0, ε1)-shock
front for the i-th family of an εν-approximate front-tracking solution uν is any
maximal (w.r.t. inclusion) polygonal line (t, γν(t)) in the (t, x)-plane, t0 ≤ t ≤
t1, satisfying:

(i) the segments of γν are i-shocks of uν with size |sν | ≥ ε0, and at least once
|sν | ≥ ε1;

(ii) the nodes are interaction points of uν ;

(iii) it is on the left of any other polygonal line which it intersects and which
have the above two properties.

Let Mν,i
(ε0,ε1) be the number of maximal (ε0, ε1)-shock front for the i-th fam-

ily. Denote

γν,i
(ε0,ε1),m :

[
tν,i,−
(ε0,ε1),m, tν,i,+

(ε0,ε1),m

]
→ R, m = 1, . . . ,Mν,i

(ε0,ε1),

as the maximal (ε0, ε1)-shock fronts for the i-th family in uν . Up to a subse-
quence, we can assume that Mν,i

(ε0,ε1) = M̄ i
(ε0,ε1) is a constant independent of ν

because the total variations of uν are bounded.
Consider the collection of all maximal (ε0, ε1)-shocks for the i-th family and

define

T ν,i
(ε0,ε1) =

M̄i
(ε0,ε1)⋃
m=1

Graph
(
γν,i
(ε0,ε1),m

)
,

and let {ε0k}k∈N, {ε1k}k∈N be two sequences satisfying 0 < 2kε0k ≤ ε1k ↘ 0.
Up to a diagonal argument and by a suitable labeling of the curves, one

can assume that for each fixed k, m the Lipschitz curves γν,i
(ε0k,ε1k),m

converge

uniformly to a Lipschitz curve γi
(ε0k,ε1k),m

. Let

T i :=
⋃
m,k

Graph
(
γi
(ε0k,ε1k),m

)
.

denote the collection of all these limiting curves in u.
For fixed (ε0, ε1), we write for shortness

l̃νi (t, x) := l̃i(uν(t, x−), uν(t, x+)) (28)
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and define
vν,jump

i,(ε0,ε1) := l̃νi · uν
xxT ν,i

(ε0,ε1)
. (29)

Following the same idea of the proof of [9, Theorem 10.4], the next lemma
holds if only the i-th characteristic field is genuinely nonlinear.

Lemma 5.3. The jump part of vi is concentrated on T i.
Moreover there exists a countable set Θ ⊂ R+ ×R, such that for each point

P = (τ, ξ) = (τ, γi
m(τ)) /∈ Θ

where i-th shock curve γi
m is approximated by the sequence of (ε0, ε1)-shock

fronts γν,i
(ε0,ε1),m of the approximate solutions uν , the following holds

lim
r→0+

lim sup
ν→∞

 sup
x<γ

ν,i

(ε0,ε1),m
(t)

(t,x)∈B(P,r)

∣∣uν(t, x)− u−
∣∣
 = 0, (30a)

lim
r→0+

lim sup
ν→∞

 sup
x>γ

ν,i

(ε0,ε1),m
(t)

(t,x)∈B(P,r)

∣∣uν(t, x)− u+
∣∣
 = 0. (30b)

Moreover, we can choose a sequence {νk}∞k=1 such that

vjump
i = weak∗− lim

k

N∑
i=1

vνk,jump
i,(ε0k,ε1k)

. (31)

The key argument of the proof is that we can use the tools of the proof
of [9, Theorem 10.4] because the wave structure of the i-th genuinely nonlinear
family has the following properties:

1. the interaction among two shocks of the i-th family generates only one
shock of the i-th family,

2. the strength of i-th waves can be measured by the jump of the i-th char-
acteristic speed λi,

3. the speed of i-th waves is very close to the average of the jump of λi

across the discontinuity.

These properties are a direct consequence of the behavior of the approximate
Riemann solvers on the i-th waves if the i-th family is genuinely nonlinear
(Section 5.1.2).

Before proving the lemma, we recall some definitions which will be used in
the proof.
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Definition 5.4 ([9], Definition 7.2). Let λ̂ be a constant larger than the absolute
value of all characteristic speed. We say a curve x = y(t), t ∈ [a, b] is space-like
if

|y(t2)− y(t1)| > λ̂(t2 − t1) for all a < t1 < t2 < b.

We recall that a minimal generalized i-characteristic is an absolutely con-
tinuous curve starting from (t0, x0) satisfying the differential inclusion

xν(t; t0, x0) := min
{

xν(t) : xν(t0) = x0 ,
ẋν(t) ∈

[
λi

(
uν(t, x(t) +

)
, λi

(
uν(t, x(t)−)

)] }
for a.e. t ≥ t0.

For any given (T, x̄) ∈ R, we consider the minimal (maximal) generalized
i-characteristic through (T, x̄), defined as

χ−(+)(t) = min(max){χ(t) : χ is a generalized i-characteristic, χ(T ) = x̄}.

From the properties of approximate solutions, we conclude that there is no
wave-front of i-th family crossing χ+ from the left or crossing χ− from the
right.

Sketch of the proof. Let Θ be the set defined by all jump points of the initial
datum, the atoms of µIC (see (27)). For any point P ∈ T i \Θ, if (30a) or (30b)
does not hold, then this means that the approximate solutions uν have some
uniform oscillation: Indeed, if (30a) not true , there exist Pν , Qν → P and
Pν , Qν on the left of γν,i

(ε0,ε1),m, PνQν is space-like such that

u(Pν) → u−

and
|uν(Pν)− uν(Qν)| ≥ ε,

for some constant ε > 0. It is not restrictive to assume that the direction
−−−→
PνQν

towards γν,i
(ε0,ε1),m. Let Λk(PνQν) be the total wave strength of fronts of k-th

family which across the segment PνQν . Then, one has Λj(PνQν) ≥ cε for some
j ∈ {1, · · · , d} and some constant c > 0. We consider three cases.

1 j >i, we take the minimal forward generalized j-characteristic χ+ through
Pν and maximal generalized j-characteristic χ− through Qν .

If χ+ and χ− interact with each other at Oν before hitting γν,i
(ε0,ε1),m, we

consider the region Γν bounded by PνQν , χ+ and χ−. Since no fronts
can leave Γν through χ+ and χ−. By (20) and (25), one obtains that
there exists a constant c1 > 0 such that µIC

ν (Γν) ≥ c1ε
2.

If χ+ interacts with γν,i
(ε0,ε1),m at Aν and χ− interact γν,i

(ε0,ε1),m at Bν , we

consider the region Γν bounded by PνQν , χ+, χ− and γν,i
(ε0,ε1),m. Then
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either there exists a constant 0 < c′0 < 1 such that µIC
ν (Γν) > c′0ε or there

exists a constant 0 < c′′0 < 1 such that fronts with total strength lager
than c′′0ε0 hit AνBν . By (20) and the fact that each front on γν,i

(ε0,ε1),m

has strength less than −ε0, we determine that µIC
ν (Γ̄ν) ≥ c0εε0 on the

closure of Γν .

Thus, let B(P, rν) be a ball with center at P containing Γν with radius
rν → 0 as ν → 0. This implies that µIC({P}) > 0 against the assumption
P /∈ Θ.

2 j < i, we consider the minimal backward generalized j-characteristic
through the point Pν and the maximal backward generalized j-charac-
teristic through the point Qν . Then by the similar argument for the case
j > i, we get µIC({P}) > 0 against the assumptions.

3 j = i and for any j′ 6= i, 1 ≤ j′ ≤ N, Λj′(PνQν) → 0 as ν →∞. In this
case, suppose that PνQν intersects the curve γν,i

(ε0,ε1),m at Bν . Because of
genuine nonlinearity, the minimal generalized i-characteristic χ through
Pν will hit γν,i

(ε0,ε1),m if no previous large interactions or cancellations

occur on γν,i
(ε0,ε1),m. We consider the triangle region Γν bounded by the

segment PνBν , the curve γν,i
(ε0,ε1),m and χ. Since no fronts of ith-family

can exit from Γν through χ, one obtains µIC
ν (Γν) uniformly positive which

contradicts the assumption µIC(P ) = 0.

Therefore, we conclude that (30a) is true. And (30b) is similar to prove.
For P /∈ T i ∪Θ, if vjump

i (P ) > 0, i.e. P is a jump point of u, by the similar
argument of Step 8 in the proof of [9, Theorem 10.4], the waves present in the
approximate solutions are canceled, and thus µIC(P ) > 0. It is impossible since
P /∈ Θ. This concludes that vjump

i is concentrated on T i, because by (30) the
jumps in the approximate solutions are vanishing in a neighborhood of every
P /∈ T i ∪Θ.

We are left with the proof of (31). At jump point (t, γi
(ε0,ε1),m(t)) ∈ T i \Θ,

according to (30a), (30b), there exist a sequence (tν , γν,i
(ε0,ε1),m(t)(tν)) such that(

t, γi
(ε0,ε1),m(t)

)
= lim

ν→∞

(
tν , γν,i

(ε0,ε1),m(t)(tν)
)

(32)

and its left and right values converges to the left and right values of the jump
in (t, γi

(ε0,ε1),m(t)).
Since f ∈ C2, by the definition (14) the matrix A(uL, uR) depends con-

tinuously on the value (uL, uR), and since its eigenvalues are uniformly sepa-
rated the same continuity holds for its eigenvalues λ̃k(uL, uR), left eigenvectors
l̃k(uL, uR) and right eigenvectors r̃k(uL, uR). Using the notation (15a) and (28),
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one obtains
l̃i
(
t, γi

(ε0,ε1),m(t)
)

= lim
ν

l̃νi
(
tν , γν,i

(ε0,ε1),m(tν)
)
, (33)

and similar limits hold for r̃i, λ̃i.
Up to a subsequence {νk}, from the convergence of the graphs of T νk,i

(ε0k,ε1k)

to T i and (30a), (30b), it is fairly easy to prove that

DuxT i= weak∗− lim
k→∞

Duνkx
T

νk,i

(ε0
k

,ε1
k
)

. (34)

According to (29), (33) and (34), one concludes the weak convergence of
vνk,jump

i,(ε0k,ε1k)
to vjump

i .

6. Proof of Theorem 4.1

6.1. Decay estimate for positive waves

The Glimm Functional for BV functions to general systems has been obtained
in [4], and when u is piecewise constant, it reduced to (22): and we will write it
as Q also the formulation of the functional given in [4]. Moreover, for the same
constant C0 > 0 of the Glimm Functional Υ(t) (24), the sum Tot.Var.(u) +
C0Q(u) is lower semi-continuous w.r.t the L1 norm (see [9, Theorem 10.1]).

For any Radon measure µ, we denote [µ]+ and [µ]− as the positive and
negative part of µ according to Hahn-Jordan decomposition. The same proof
of the decay of the Glimm Functional Υ(t) yields that for every finite union of
the open intervals J = I1 ∪ · · · ∪ Im

[vi]±(J) + C0Q(u) ≤ lim inf
ν→∞

{
[vν

i ]±(J) + C0Q(uν)
}

, i = 1, . . . , n, (35)

as uν → u in L1.
In [9, 10] the authors prove a decay estimate for positive part of the i-th

wave measure under the assumption that i-th characteristic field is genuinely
nonlinear and the other characteristic fields are either genuinely nonlinear or
linearly degenerate. In [12], a sharp decay estimate for positive waves is also
given under the same assumptions as those in [9, 10]. By inspection, one can
verify that the proof also works (with a little modification) under no assump-
tions on the nonlinearity on the other characteristic fields, since the essential
requirements of strict hyperbolicity and of the controllability of interaction
amounts by Glimm Potential still hold: the main variation is that one should
replace the original Glimm Potential in [9] with the generalized one given in [4].

We thus state the following theorem, which is the analog of [9, Theo-
rem 10.3].
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Theorem 6.1. Let the system (1) be strictly hyperbolic and the i-th character-
istic field be genuinely non-linear. Then there exists a constant C ′′ such that,
for every 0 ≤ s < t and every solution u with small total variation obtained as
the limit of wave-front tracking approximation, the measure [vi(t)]+ satisfies

[vi(t)]+(B) ≤ C ′′
{
L1

t− s
(B) + [Q(s)−Q(t)]

}
(36)

for every B Borel set in R.

The estimate (36) gives half of the bound (18). In this section, we always
assume that the i-th family is genuinely nonlinear.

6.2. Decay estimate for negative waves

To simplify the notation, we omit the index (ε0, ε1) in vν,jump
i,(ε0,ε1) in the rest

of the proof. In order to get the uniform estimate for the continuous part
vν,cont

i := vν
i − vν,jump

i , we need to consider the distributions

µν
i := ∂tv

ν
i + ∂x(λ̃ν

i vν
i ), µν,jump

i := ∂tv
ν,jump
i + ∂x(λ̃ν

i vν,jump
i ).

6.2.1. Estimate for the source

Let ym : [τ−m, τ+
m] → R, m = 1, . . . , Lν , be time-parameterized segments whose

graphs are the i-th wave-fronts of uν and define

uL
m := u(t, ym(t)−), uR

m = u(t, ym(t)+), t ∈]τ−m, τ+
m[.

For any test function φ ∈ C∞
c (R+ × R) one obtains

−
∫

R+×R
φdµν

i =
Lν∑

m=1

[
φ(τ+

m, ym(τ+
m))− φ(τ−m, ym(τ−m)

]
l̃i · (uR

m − uL
m). (37)

For any m, since the i-th characteristic field is genuinely nonlinear, one has

|l̃i(uL, uR)− li(uL)| = O(1)|uR
m − uL

m|,

where uR
m = T i

si
[uL

m] for some size si. Then it follows from (11) that

si
∼= l̃i · (uR

m − uL
m). (38)

Let {(tk, xk)}k be the collection of points where the i-th fronts interact. The
computation (37) yields that µν

i concentrates on the interaction points, i.e.

µν
i =

∑
k

pkδ(tk,xk),
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where pk is the difference between the strength of the i-th waves leaving at
(tk, xk) and the i-th waves arriving at (tk, xk). We estimate the quantity pk

depending on the type of interaction:
Since in [8], it is proved that the total size of nonphysical wave-fronts are

of the same order of εν , when decomposing uν
x, we only consider the physical

fronts. If at (tk, xk), two physical fronts with i-th component size s′i, s′′i interact
and generate an i-th wave or a rarefaction fan with total size si =

∑
m sm

i ,
from (37) and (38), one has

pk
∼= si − s′i − s′′. (39)

Notice that s′ or s′′ or both may vanish in (39) if one of incoming physical
fronts does not belong to the i-th family.

According to the estimate in [3, Lemma 1], the difference of sizes between
the incoming and outgoing waves of the same family is controlled by the amount
of interaction (see Section 5.1.3), so that one concludes

|µν
i |({(tk, xk)}) ≤ O(1)I(si, s

′
i)

and thus
|µν

i |({tk} × R) ≤ O(1){Υν(t−k )−Υν(t+k )}.

This yields
|µν

i |(R+ × R) ≤ O(1)Υν(0),

i.e. |µν
i | is a finite Radon measure.

6.2.2. Estimate for the jump part

Let γi
m : [τ−m, τ+

m] → R, m = 1, . . . , M̄ i
(ε0,ε1), be the curves whose graphs are the

segments supporting the fronts of uν belonging to T ν,i
(ε0,ε1), and write

uL
m := u

(
t, γi

m(t)−
)
, uR

m := u
(
t, γi

m(t) +
)
, t ∈]τ−m, τ+

m[.

For any test function φ ∈ C∞
c (R+×R) by direct computation one has as in (37)

−
∫

R+×R
φdµν,jump

i =

M̄i
(ε0,ε1)∑
m=1

[
φ(τ+

m, ym(τ+
m))− φ(τ−m, ym(τ−m)

]
l̃i · (uR − uL),

which yields

µν,jump
i =

∑
k

qkδ(τk,xk),
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where (τk, xk) are the nodes of the jumps in T ν,i
(ε0,ε1) and the quantities qk can

be computed as follows: if the i-th incoming waves have sizes s′ and s′′, and
the outgoing i-th shock has size s, then (see [8])

qk
∼=



−s′ (tk, xk) terminal point of a front not merging
into another front,

s (tk, xk) initial point of a maximal front,
s− s′ − s′′ (tk, xk) is a triple point of T ν,i

(ε0,ε1) ,

s− s′ (tk, xk) interaction point of a front with waves
not belonging to T ν,i

(ε0,ε1).

(40)

In fact, since s ≤ 0 on shocks the second case of (40) implies qk ≤ 0. For
the triple point, one has that

qk ≤ µIC
ν (τk, xk).

When a shock front in T ν,i
(ε0,ε1) interacts with a front not belonging to T ν,i

(ε0,ε1),
there are three situations:

• It interacts with a rarefaction front of i-th family, then one has by the
interaction estimates

qk ≤ µIC
ν (τk, xk).

• It interacts with a front of different family, then also one gets

qk ≤ µI
ν(τk, xk).

• It interacts with a shock of i-th family which does not belong to T ν,i
(ε0,ε1),

then
qk ≤ 0.

Suppose now that (τk, xk) is a terminal point of an (ε0, ε1)-shock front γm.
By the definition of (ε0, ε1)-shock, for some t ≤ τk the shock front γm has size
s0 ≤ −ε1, and at (τk, xk) the size s1 of the outgoing i-th front must be not
less than −ε0 as a result of interaction between two wave-fronts belonging to
different family or cancellation between two wave-fronts belonging to the same
family along γk. Hence we obtain

ε1 − ε0 ≤ |s0| − |s1| ≤ O(1)µIC
ν (γk).

This yields

qk
∼=− s1 + (s1 + qk)

≤ ε0

ε1 − ε0
(ε1 − ε0) +O(1)µI

ν(tk, xk) ≤ O(1)ε0

ε1 − ε0
µIC

ν (γk) +O(1)µI
ν(tk, xk).



464 S. BIANCHINI AND L. YU

Since the end points correspond to disjoint maximal i-th fronts, due to gen-
uinely nonlinearity, it follows that∑

(tk,xk) end point

qk ≤ O(1)µIC
ν (R+ × R),

so that it is a uniformly bounded measure. We thus conclude that the distri-
bution

µ̄ν := −µν,jump
i +O(1)µIC

ν +
∑

(tk,xk) end point

qkδ(tk,xk)

is non-negative, so it is a Radon measure and thus also µν,jump
i is a Radon

measure.
In order to obtain a lower bound, one considers the Lipschitz continuous

test function

φα(t) := χ[0,T+α](t)−
t− T

α
χ[T,T+α](t), α > 0,

which is allowed because vν
i is a bounded measure. Since µ̄ is non-negative,

one obtains

µ̄ν
(
[0, T ]× R

)
≤
∫

R+×R
φαdµ̄

= −
∫

R+×R
φαdµν,jump

i +O(1)
∫

R+×R
φαdµIC

ν +
∑

(tk,xk) end point

qkφα(tk)

≤
∫

R+×R

[
(φα)t + λ̃ν

i (φα)x

]
d
[
vν,jump

i (t)
]
dt +

[
vν,jump

i (0)
]
(R)

+O(1)µIC
ν

(
[0, T + α]× R

)
≤ − 1

α

∫ T+α

T

[
vν,jump

i (t)
]
(R)dt +

[
vν,jump

i (0)
]
(R) +O(1)µIC

ν

(
[0, T + α]× R

)
.

Letting α ↘ 0 and since [vν,jump
i (R)](0) is negative, one concludes

µ̄ν
(
[0, T ]× R

)
≤ −

[
vν,jump

i (T )
]
(R) +O(1)µIC

ν

(
[0, T + α]× R

)
≤ O(1)Υν(0).

We conclude this section by writing the uniform estimate

−O(1)Υν(0) ≤ µν,jump
i ≤ O(1)µIC

ν .

In particular, the definitions of the measures µν
i , µν,jump

i give the following
balances for the i-th waves across the horizontal lines:[

vν
i (t+)

]
(R)−

[
vν

i (t−)
]
(R) = µν

i

(
{t} × R

)
, (41a)[

vν,jump
i (t+)

]
(R)−

[
vν,jump

i (t−)
]
(R) = µν,jump

i

(
{t} × R

)
. (41b)

The limits are taken in the weak topology. Notice that we can always take that
t 7→ vν

i (t), vν,jump
i (t) is right continuous in the weak topology.
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6.2.3. Balances of waves in the region bounded by generalized
characteristics

Given an interval I = [a, b], we define the region A
ν,(t0,τ)
[a,b] bounded by the

minimal i-th characteristics a(t), b(t) of uν starting at (t0, a) and (t0, b) by

A
ν,(t0,τ)
[a,b] :=

{
(t, x) : t0 < t ≤ t0 + τ, a(t) ≤ x ≤ b(t)

}
,

and its time-section by I(t) := [a(t), b(t)]. Let J := I1 ∪ I2 ∪ · · · ∪ IM be the
union of the disjoint closed intervals {Ii}M

i=1, and set

J(t) := I1(t) ∪ · · · ∪ IM (t), A
ν,(t0,τ)
J :=

M⋃
m=1

A
ν,(t0,τ)
Im

.

We will now obtain wave balances in regions of the form A
ν,(t0,τ)
J . Due to the

genuinely non-linearity of the i-th family, the corresponding proof in [8] works,
we will repeat it for completeness.

The balance on the region A
ν,(t0,τ)
J has to take into account also the con-

tribution of the flux Φν
i across boundaries of the segments Im(t): due to the

definition of generalized characteristic and the wave-front approximation, it
follows that Φν

i is an atomic measure on the characteristics forming the border
of A

ν,(t0,τ)
J , and moreover a positive wave may enter the domain A

ν,(t0,τ)
J only

if an interaction occurs at the boundary point (t̂, x̂), which gives the estimate

Φν
i

(
{(t̂, x̂)}

)
≤ O(1)µIC

i

(
{(t̂, x̂)}

)
. (42)

One thus obtains that[
vν

i (τ)
]
(J(τ))−

[
vν

i (t0)
]
(J) = µν

i

(
A

ν,(t0,τ)
J

)
+ Φν

i

(
A

ν,(t0,τ)
J

)
+O(1)εν , (43)

where the last term depends on the errors due to the wave-front approximation
(a single rarefaction front may exit the interval Im at t0).

The same computation can be done for the jump part vν,jump
i , obtaining[

vν,jump
i (τ)

]
(J(t))−

[
vν,jump

i (t0)
]
(J)

= µν,jump
i

(
A

ν,(t0,τ)
J

)
+ Φν,jump

i

(
A

ν,(t0,τ)
J

)
.

(44)

Since the flux Φν,jump
i only involves the contribution of (ε0, ε1)-shocks, it is

clearly non-positive.
Subtracting (44) to (43), one finds the following equation for vν,cont

i :[
vν,cont

i (τ)
]
(J(τ))−

[
vν,cont

i (t0)
]
(J)

=
(
µν

i − µν,jump
i

)(
Aν,τ

J

)
+
(
Φν

i − Φν,jump
i

)(
A

ν,(t0,τ)
J

)
+O(1)εν .
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Denote the difference between the two fluxes by

Φν,cont
i := Φν

i − Φν,jump
i .

Since Φν,jump
i removes only some terms in the negative part of Φν

i , one concludes
that

Φν
i − Φν,jump

i ≤
[
Φν

i

]+ ≤ µIC
ν . (45)

Setting
µICJ

i,ν := µIC
ν +

∣∣µν,jump
i

∣∣,
and using the estimate |µν

i | ≤ O(1)µIC
ν , one has

µν
i − µν,jump

i ≤ O(1)µICJ
i,ν . (46)

6.2.4. Decay estimate

Due to the semigroup property of solutions, it is sufficient to prove the estimate
for the measure [vν,cont

i (t = 0)]−. Consider thus a closed interval I = [a, b] and
let z(t) := b(t)− a(t) where

a(t) := xν(t; 0, a), b(t) := xν(t; 0, b)

and the minimal forward characteristics stating at t = 0 from a and b. For
L1-a.e. t one has

ż(t) = λ̃i(t, b(t))− λ̃i(t, a(t)).

By introducing a piecewise Lipschitz continuous non-decreasing potential Φ to
control the waves on the other families [9], with Φ(0) = 1, one obtains∣∣∣ż(t) + ξ(t)−

[
vν

i (t)
]
(I(t))

∣∣∣ ≤ O(1)εν + Φ̇(t)z(t), (47)

where

ξ(t) :=
(
λ̃i(t, a(t)+)− λ̃i(t, a(t)−)

)
+
(
λ̃i(t, b(t)+)− λ̃i(t, b(t)−)

)
.

We consider two cases.
Case 1. If

ż(t)− Φ̇(t)z(t) <
1
4
[
vν,cont

i (0)
]
(I)

for all t > 0, then

d

dt

[
e−

∫ t
0 Φ̇(s)dsz(t)

]
= e−

∫ t
0 Φ̇(s)ds

{
ż(t)− Φ̇(t)z(t)

}
<

e−
∫ t
0 Φ̇(s)ds

4
[
vν,cont

i (0)
]
(I).
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Integrating the above inequality from 0 to τ and remembering that Φ(0) = 1
and vν,jump

i (0) is non-positive, one has

−L1(I) = −z(0) ≤ e−
∫ τ
0 Φ̇(s)dsz(τ)− z(0)

≤ 1
4

∫ τ

0

e−
∫ t
0 Φ̇(s)dsdτ

[
vν,cont

i (0)
]
(I)

≤ 1
4
τ
[
vν,cont

i (0)
]
(I),

which reads as

−
[
vν,cont

i (0)
]
(I) ≤ 4

L1(I)
τ

.

Case 2. Assume instead that

ż(t̄)− Φ̇(t̄)z(t̄) ≥ 1
4
[
vν,cont

i (0)
]
(I) (48)

at some time t̄ > 0. From (29) and the fact that the i-th family is genuinely
nonlinear and the fronts in T ν,i

(ε0,ε1) satisfy Rankine-Hugoniot conditions (up to
a negligible error), we have

vν,jump
i (t, a(t)) = λi(t, a(t)+)− λi(t, a(t)−),

Then by the assumption of genuine nonlinearity, we conclude that

ξ(t) ≥ 3
4

[[
vν,jump

i (t)
]
(a(t)) +

[
vν,jump

i (t)
]
(b(t))− 2ε1

]
≥ 3

4

[[
vν,jump

i (t)
]
(I(t))− 2ε1

]
.

(49)

As vν,jump is non-positive, (47) and (49) yield that

ż(t)− Φ̇z(t) ≤
[
vν,cont

i (t)
]
(I(t)) +

[
vν,jump

i (t)
]
(I(t))− ξ(t) +O(1)εν

≤
[
vν,cont

i (t)
]
(I(t)) +O(1)εν + 2ε1.

Recall the assumption (48), at time t̄, we get[
vν,cont

i (0)
]
(I)/4 ≤

[
vν,cont

i (t̄)
]
(I(t̄)) +O(1)εν + 2ε1.

By the balance for vν,cont we get in Section 6.2.3, one obtains[
vν,cont

i (0)
]
(I)/4 ≤

[
vν,cont

i (0)
]
(I) + µICJ

ν

(
A

ν,(0,t̄)
I

)
+O(1)εν + 2ε1.

Combining the conclusion for the two cases one gets the uniform bound r.w.t
ν

−
[
vν,cont

i (0)
]
(I) ≤ O(1)

{
L1(I)

t
+ µICJ

ν

(
A

ν,(0,t)
I

)
+ ε1 + εν

}
.
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This gives the estimate (18) for the case of a single interval for the approximate
solution.

By analogous computation for the region which is a finite union of intervals,
as we have done in Section 6.2.3, one obtains the same bound as above, and
since vν,cont

i is a Radon measure, the same result holds for any Borel sets, i.e.

−
[
vν,cont

i (0)
]
(B) ≤ O(1)

{
L1(B)

t
+ µICJ

ν

(
A

ν,(0,t)
B

)
+ ε1 + εν

}
,

where B is any Borel set in R and

A
ν,(0,t)
B :=

{(
τ, xν(τ ; 0, x0)

)
: x ∈ B, 0 < τ ≤ t

}
.

As the solution is independent on the choice of the approximation, we can
consider a particular converging sequence {uν}ν≥1 of εν-approximate solutions
with the following additional properties:

Q(uν(0, ·)) → Q(u0).

By lower semi-continuity of [vi(0)]− + C0Q(u(0)) (35), one gets

[vi(0)]− + C0Q(u(0)) ≤ weak∗ − lim inf
ν→∞

{
[vν

i (0)]− + C0Q(uν(0))
}

. (50)

Since vjump
i (0) has only negative part, from (50) and (31), up to a subse-

quence, one obtains for any open set U ⊂ R,[
vcont

i (0)
]−(U)

= [vi(0)]−(U) +
[
vjump

i (0)
]
(U)

≤ lim inf
ν→∞

{[
vν

i (0)
]−(U) + C0Q(uν(0))

}
− C0Q(u(0)) + lim

ν→∞

[
vν,jump

i (0)
]
(U)

= lim inf
ν→∞

{[
vν,cont

i (0)
]−(U) + C0Q(uν(0))

}
− C0Q(u(0))

≤ lim inf
ν→∞

O(1)
{
L1(U)

t
+ µν,ICJ

i

(
A

ν,(0,t)
U

)
+ ε1 + εν +Q(uν(0))−Q(u(0))

}
≤ O(1)

{
L1(U)

t
+ µICJ

i

(
[0, t]× R

)}
,

where µICJ
i is defined as weak∗-limit of measure µν,ICJ

i (up to a subsequence).
Then the outer regularity of Radon measure yields the inequality for any Borel
set.

The above estimate together with Theorem 6.1 gives (18).
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7. SBV regularity for the i-th component of the i-th
eigenvalue

This last section concerns the proof of Theorem 1.2, adapting the strategy of
Section 2.

Proof of Theorem 1.2. As in the scalar case, we define the sets

Jτ :=
{
x ∈ R : uL(τ, x) 6= uR(τ, x)

}
,

Fτ :=
{
x ∈ R : ∇λi(u(τ, x)) · ri(u(τ, x)) = 0

}
,

C :=
{
(τ, ξ) ∈ R+ × R : ξ ∈ Jτ ∪ Fτ

}
, Cτ := Jτ ∪ Fτ .

By definition of continuous part∣∣vcont
i (τ)

∣∣(Jτ ) = 0,

and since

∇λi

(
u(τ, Fτ \ Jτ )

)
· ri

(
u(τ, Fτ \ Jτ )

)
= 0,

we conclude that∣∣∇λi(u) · ri(u)vcont
i (τ)|(Cτ )

=
∣∣∇λi(u) · ri(u)vcont

i (τ)
∣∣(Jτ ) +

∣∣∇λi(u) · ri(u)vcont
i (τ)

∣∣(Fτ \ Jτ )
= 0.

For any (t0, x0) ∈ R+ × R \ C, there exist strictly positive b0 = b0(x0, t0),
c0 = c0(x0, t0) such that ∣∣∇λi · ri(u(t0, x))

∣∣ ≥ c0 > 0

for every x in the open interval I0 :=] − b0 + x0, x0 + b0[, because u(t0, x) is
continuous at x0 /∈ Ct0 . Hence by Theorem 4.3, we know that there is a triangle

T0 :=
{

(t, x) : |x− x0| < b′0 − η̄(t− t0), 0 < t− t0 < b′0/η̄
}

with the basis I ′0 :=]− b′0 + x0, x0 + b′0[⊂ I0, such that∣∣∇λi · ri(u(t0, x))
∣∣ ≥ c0

2
> 0, (51)

by taking b′0 � 1 in order to have that the total variation remains sufficiently
small.
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Since uxT0 coincides with the solution to
∂tw + f(w)x = 0,

w(x, t0) =

{
ut0(x) |x− x0| < b′0,
1

2b′0

∫ x0+b′0
x0−b′0

ut0(y)dy |x− x0| ≥ b0,

(52)

and by taking b′0 sufficiently small, we still have that (51) holds for the range of
w. In particular w is SBV outside a countable number of times, and the same
happens for u in T0.

As in the scalar case, one thus verifies that there is a countable family of
triangles {Ti}∞i=1 covering the complement of C outside a set whose projection
on the t-axis is countable. The same computation of the scalar case concludes
the proof: for any τ chosen as in (5)∣∣(∇λi · ri)vc

i

∣∣(R) ≤
∣∣(∇λi · ri)vc

i

∣∣(Cτ )

+
∣∣(∇λi · ri)vc

i

∣∣(⋃
i

Ti ∩ {t = τ}
)

= 0.

Recall the definition (17), we can finally conclude that the i-th component of
Dxλi(u(t, ·)) has no Cantor part for every t ∈ R+\S and i ∈ {1, 2, . . . , N}.

Similar to the scalar case, it is easy to get the following corollary from the
Theorem 1.2 and (16).

Corollary 7.1. Suppose u be a vanishing viscosity solution of the Cauchy
problem for the strictly hyperbolic system (1)-(2). Let u be the vanishing vis-
cosity solution of the problem (1), (2). Then the scalar measure [Dxλi(u)]i has
no Cantor part in R+ × R.

Remark 7.2. As we mentioned in the introduction, it no longer holds the SBV
regularity of admissible solution to the general strictly hyperbolic system of con-
servation laws.

Consider the following equations{
ut = 0,

vt + ((1 + v + u)v)x = 0.

Since Dxλ2((u, v)) = Dxu+2Dxv, then it is clear that Dxλ2 can have a Cantor
part since the first equation is just trivial which means that the component u is
not SBV regular if the initial data is not.
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While from Theorem 4.1 we know that the Cantor part of the second com-
ponent of Dxλ2(u),

[Dc
xλ2(u)]2 =

(
Duλ2 · r2

)(
l2 ·Dc

x(u, v)
)

=
2

1 + u + 2v

(
vDc

xux + (1 + u + 2v)Dc
xv
)

vanishes. (Notice that since the Cantor part of (Dxu, Dxv) concentrates on the
set of continuous points of (u, v), we do not need to specify the coefficients at
the jump points of (u, v).)

References

[1] L. Ambrosio and C. De Lellis, A note on admissible solutions of 1d scalar
conservation laws and 2d Hamilton-Jacobi equations, J. Hyperbolic Differ. Equ.
1 (2004), 813–826.

[2] L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and
free discontinuity problems, Oxford Clarendon Press, 2000.

[3] F. Ancona and A. Marson, Existence theory by front tracking for general
nonlinear hyperbolic systems, Arch. Ration. Mech. Anal. 185 (2007), 287–340.

[4] S. Bianchini, Interaction estimates and Glimm functional for general hyperbolic
systems, Discrete Contin. Dyn. Syst. 9 (2003), 133–166.

[5] S. Bianchini, On the Riemann problem for non-conservative hyperbolic systems,
Arch. Ration. Mech. Anal. 166 (2003), 1–26.

[6] S. Bianchini, SBV regularity of genuinely nonlinear hyperbolic systems of con-
servation laws in one space dimension, Acta Math. Sci. 32 (2012), 380–388.

[7] S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hy-
perbolic systems, Ann. of Math. 161 (2005), 223–342.

[8] S. Bianchini and L. Caravenna, SBV regularity for genuinely nonlin-
ear, strictly hyperbolic systems of conservation laws in one space dimension,
arXiv:1111.6246v1, November 2011.

[9] A. Bressan, Hyperbolic systems of conservation laws: the one-dimensional
Cauchy problem, Oxford Lecture Series in Mathematics and its Applications,
Oxford University Press, USA, 2000.

[10] A. Bressan and R.M. Colombo, Decay of positive waves in nonlinear systems
of conservation laws, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), 133–
160.

[11] A. Bressan and P.G. LeFloch, Structural stability and regularity of entropy
solutions to hyperbolic systems of conservation laws, Indiana Univ. Math. J. 48
(1999), 43–84.

[12] A. Bressan and T. Yang, A sharp decay estimate for positive nonlinear waves,
SIAM J. Math. Anal. 36 (2004), 659–677.

[13] C. M. Dafermos, Generalized characteristics and the structure of solutions of
hyperbolic conservation laws, Indiana Univ. Math. J. 26 (1977), 1097–1119.

[14] C. M. Dafermos, Hyperbolic conservation laws in continuum physics, Springer-
Verlag, Berlin, 2009.



472 S. BIANCHINI AND L. YU

[15] C. De Lellis, Hyperbolic equations and SBV functions, Journées équations aux
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