Rank two globally generated vector bundles with $c_1 \leq 5$

LUDOVICA CHIODERA AND PHILIPPE ELLIA

ABSTRACT. We classify globally generated rank two vector bundles on \mathbb{P}^n , $n \geq 3$, with $c_1 \leq 5$. The classification is complete but for one case $(n = 3, c_1 = 5, c_2 = 12)$.

Keywords: Vector bundles, rank two, globally generated, projective space MS Classification 2010: 14F05, 14M15

1. Introduction.

Vector bundles generated by global sections are basic objects in projective algebraic geometry. Globally generated line bundles correspond to morphisms to a projective space, more generally higher rank bundles correspond to morphism to (higher) Grassmann varieties. For this last point of view (that won't be touched in this paper) see [10, 12, 13]. Also globally generated vector bundles appear in a variety of problems ([7] just to make a single, recent example).

In this paper we classify globally generated rank two vector bundles on \mathbb{P}^n (projective space over $k, \overline{k} = k, ch(k) = 0$), $n \geq 3$, with $c_1 \leq 5$. The result is:

THEOREM 1.1. Let E be a rank two vector bundle on \mathbb{P}^n , $n \geq 3$, generated by global sections with Chern classes $c_1, c_2, c_1 \leq 5$.

- 1. If $n \geq 4$, then E is the direct sum of two line bundles
- 2. If n = 3 and E is indecomposable, then

$$(c_1, c_2) \in S = \{((2, 2), (4, 5), (4, 6), (4, 7), (4, 8), (5, 8), (5, 10), (5, 12)\}.$$

If E exists there is an exact sequence:

$$0 \to \mathcal{O} \to E \to \mathcal{I}_C(c_1) \to 0 \ (*)$$

where $C \subset \mathbb{P}^3$ is a smooth curve of degree c_2 with $\omega_C(4-c_1) \simeq \mathcal{O}_C$. The curve C is irreducible, except maybe if $(c_1, c_2) = (4, 8)$: in this case C can be either irreducible or the disjoint union of two smooth conics.

3. For every $(c_1, c_2) \in S$, $(c_1, c_2) \neq (5, 12)$, there exists a rank two vector bundle on \mathbb{P}^3 with Chern classes (c_1, c_2) which is globally generated (and with an exact sequence as in 2.).

The classification is complete, but for one case: we are unable to say if there exist or not globally generated rank two vector bundles with Chern classes $c_1 = 5, c_2 = 12$ on \mathbb{P}^3 .

2. Rank two vector bundles on \mathbb{P}^3 .

2.1. General facts.

For completeness let's recall the following well known results:

LEMMA 2.1. Let E be a rank r vector bundle on \mathbb{P}^n , $n \geq 3$. Assume E is generated by global sections.

1. If
$$c_1(E) = 0$$
, then $E \simeq r.\mathcal{O}$

2. If
$$c_1(E) = 1$$
, then $E \simeq \mathcal{O}(1) \oplus (r-1).\mathcal{O}$ or $E \simeq T(-1) \oplus (r-n).\mathcal{O}$.

Proof. If $L \subset \mathbb{P}^n$ is a line then $E|L \simeq \bigoplus_{i=1}^r \mathcal{O}_L(a_i)$ by a well known theorem and $a_i \geq 0, \forall i$ since E is globally generated. It turns out that in both cases: $E|L \simeq \mathcal{O}_L(c_1) \oplus (r-1).\mathcal{O}_L$ for every line L, i.e. E is uniform. Then 1. follows from a result of Van de Ven ([14]), while 2. follows from IV. Prop. 2.2 of [4]. \square

LEMMA 2.2. Let E be a rank two vector bundle on \mathbb{P}^n , $n \geq 3$. If E has a nowhere vanishing section then E splits. If E is generated by global sections and doesn't split then $h^0(E) \geq 3$ and a general section of E vanishes along a smooth curve, C, of degree $c_2(E)$ such that $\omega_C(4-c_1) \simeq \mathcal{O}_C$. Moreover $\mathcal{I}_C(c_1)$ is generated by global sections.

LEMMA 2.3. Let E be a non split rank two vector bundle on \mathbb{P}^3 with $c_1 = 2$. If E is generated by global sections then E is a null-correlation bundle.

Proof. We have an exact sequence: $0 \to \mathcal{O} \to E \to \mathcal{I}_C(2) \to 0$, where C is a smooth curve with $\omega_C(2) \simeq \mathcal{O}_C$. It follows that C is a disjoint union of lines. Since $h^0(\mathcal{I}_C(2)) \geq 2$, $d(C) \leq 2$. Finally d(C) = 2 because E doesn't split. \square

This settles the classification of rank two globally generated vector bundles with $c_1(E) \leq 2$ on \mathbb{P}^3 .

2.2. Globally generated rank two vector bundles with $c_1 = 3$.

The following result has been proved in [10] (with a different and longer proof).

PROPOSITION 2.4. Let E be a rank two globally generated vector bundle on \mathbb{P}^3 . If $c_1(E) = 3$ then E splits.

Proof. Assume a general section vanishes in codimension two, then it vanishes along a smooth curve C such that $\omega_C \simeq \mathcal{O}_C(-1)$. Moreover $\mathcal{I}_C(3)$ is generated by global sections. We have $C = \cup_{i=1}^r C_i$ (disjoint union) where each C_i is smooth irreducible with $\omega_{C_i} \simeq \mathcal{O}_{C_i}(-1)$. It follows that each C_i is a smooth conic. If $r \geq 2$ let $L = \langle C_1 \rangle \cap \langle C_2 \rangle$ ($\langle C_i \rangle$ is the plane spanned by C_i). Every cubic containing C contains L (because it contains the four points $C_1 \cap L$, $C_2 \cap L$). This contradicts the fact that $\mathcal{I}_C(3)$ is globally generated. Hence r = 1 and $E = \mathcal{O}(1) \oplus \mathcal{O}(2)$.

2.3. Globally generated rank two vector bundles with $c_1 = 4$.

Let's start with a general result:

LEMMA 2.5. Let E be a non split rank two vector bundle on \mathbb{P}^3 with Chern classes c_1, c_2 . If E is globally generated and if $c_1 \geq 4$ then:

$$c_2 \le \frac{2c_1^3 - 4c_1^2 + 2}{3c_1 - 4}.$$

Proof. By our assumptions a general section of E vanishes along a smooth curve, C, such that $\mathcal{I}_C(c_1)$ is generated by global sections. Let U be the complete intersections of two general surfaces containing C. Then U links C to a smooth curve, Y. We have $Y \neq \emptyset$ since E doesn't split. The exact sequence of liaison: $0 \to \mathcal{I}_U(c_1) \to \mathcal{I}_C(c_1) \to \omega_Y(4-c_1) \to 0$ shows that $\omega_Y(4-c_1)$ is generated by global sections. Hence $\deg(\omega_Y(4-c_1)) \geq 0$. We have $\deg(\omega_Y(4-c_1)) = 2g' - 2 + d'(4-c_1)$ ($g' = p_a(Y)$, $d' = \deg(Y)$). So $g' \geq \frac{d'(c_1-4)+2}{2} \geq 0$ (because $c_1 \geq 4$). On the other hand, always by liaison, we have: $g' - g = \frac{1}{2}(d'-d)(2c_1-4)$ ($g = p_a(C)$, $d = \deg(C)$). Since $d' = c_1^2 - d$ and $g = \frac{d(c_1-4)}{2} + 1$ (because $\omega_C(4-c_1) \simeq \mathcal{O}_C$), we get: $g' = 1 + \frac{d(c_1-4)}{2} + \frac{1}{2}(c_1^2 - 2d)(2c_1 - 4) \geq 0$ and the result follows.

Now we have:

PROPOSITION 2.6. Let E be a rank two globally generated vector bundle on \mathbb{P}^3 . If $c_1(E)=4$ and if E doesn't split, then $5 \leq c_2 \leq 8$ and there is an exact sequence: $0 \to \mathcal{O} \to E \to \mathcal{I}_C(4) \to 0$, where C is a smooth irreducible elliptic curve of degree c_2 or, if $c_2=8$, C is the disjoint union of two smooth elliptic quartic curves.

Proof. A general section of E vanishes along C where C is a smooth curve with $\omega_C = \mathcal{O}_C$ and where $\mathcal{I}_C(4)$ is generated by global sections. Let $C = C_1 \cup ... \cup C_r$ be the decomposition into irreducible components: the union is disjoint, each C_i is a smooth elliptic curve hence has degree at least three.

By Lemma 2.5 $d = \deg(C) \le 8$. If $d \le 4$ then C is irreducible and is a complete intersection which is impossible since E doesn't split. If d = 5, C is smooth irreducible.

Claim: If $8 \ge d \ge 6$, C cannot contain a plane cubic curve.

Assume $C = P \cup X$ where P is a plane cubic and where X is a smooth elliptic curve of degree d-3. If d=6, X is also a plane cubic and every quartic containing C contains the line $\langle P \rangle \cap \langle X \rangle$. If $deg(X) \geq 4$ then every quartic, F, containing C contains the plane $\langle P \rangle$. Indeed F|H vanishes on P and on the $deg(X) \geq 4$ points of $X \cap \langle P \rangle$, but these points are not on a line so F|H=0. In both cases we get a contradiction with the fact that $\mathcal{I}_C(4)$ is generated by global sections. The claim is proved.

It follows that, if $8 \ge d \ge 6$, then C is irreducible except if $C = X \cup Y$ is the disjoint union of two elliptic quartic curves.

Now let's show that all possibilities of Proposition 2.6 do actually occur. For this we have to show the existence of a smooth irreducible elliptic curve of degree d, $5 \le d \le 8$ with $\mathcal{I}_C(4)$ generated by global sections (and also that the disjoint union of two elliptic quartic curves is cut off by quartics).

LEMMA 2.7. There exist rank two vector bundles with $c_1 = 4, c_2 = 5$ which are globally generated. More precisely any such bundle is of the form $\mathcal{N}(2)$, where \mathcal{N} is a null-correlation bundle (a stable bundle with $c_1 = 0, c_2 = 1$).

Proof. The existence is clear (if \mathcal{N} is a null-correlation bundle then it is well known that $\mathcal{N}(k)$ is globally generated if $k \geq 1$). Conversely if E has $c_1 = 4, c_2 = 5$ and is globally generated, then E has a section vanishing along a smooth, irreducible quintic elliptic curve (cf 2.6). Since $h^0(\mathcal{I}_C(2)) = 0$, E is stable, hence $E = \mathcal{N}(2)$.

LEMMA 2.8. There exist smooth, irreducible elliptic curves, C, of degree 6 with $\mathcal{I}_C(4)$ generated by global sections.

Proof. Let X be the union of three skew lines. The curve X lies on a smooth quadric surface, Q, and has $\mathcal{I}_X(3)$ globally generated (indeed the exact sequence $0 \to \mathcal{I}_Q \to \mathcal{I}_X \to \mathcal{I}_{X,Q} \to 0$ twisted by $\mathcal{O}(3)$ reads like: $0 \to \mathcal{O}(1) \to \mathcal{I}_C(3) \to \mathcal{O}_Q(3,0) \to 0$). The complete intersection, U, of two general cubics containing X links X to a smooth curve, C, of degree 6 and arithmetic genus 1. Since, by liaison, $h^1(\mathcal{I}_C) = h^1(\mathcal{I}_X(-2)) = 0$, C is irreducible. The exact sequence of liaison: $0 \to \mathcal{I}_U(4) \to \mathcal{I}_C(4) \to \omega_X(2) \to 0$ shows that $\mathcal{I}_C(4)$ is globally generated.

In order to prove the existence of smooth, irreducible elliptic curves, C, of degree d = 7, 8, with $\mathcal{I}_C(4)$ globally generated, we have to recall some results due to Mori ([11]).

According to [11] Remark 4, Prop. 6, there exists a smooth quartic surface $S \subset \mathbb{P}^3$ such that $Pic(S) = \mathbb{Z}H \oplus \mathbb{Z}X$ where X is a smooth elliptic curve of degree d ($7 \le d \le 8$). The intersection pairing is given by: $H^2 = 4$, $X^2 = 0$, H.X = d. Such a surface doesn't contain any smooth rational curve ([11, p. 130]). In particular: (*) every integral curve, Z, on S has degree ≥ 4 with equality if and only if Z is a planar quartic curve or an elliptic quartic curve.

LEMMA 2.9. With notations as above, $h^0(\mathcal{I}_X(3)) = 0$.

Proof. A curve $Z \in |3H - X|$ has invariants $(d_Z, g_Z) = (5, -2)$ (if d = 7) or (4, -5) (if d = 8), so Z is not integral. It follows that Z must contain an integral curve of degree < 4, but this is impossible.

LEMMA 2.10. With notations as above |4H - X| is base point free, hence there exist smooth, irreducible elliptic curves, X, of degree d, $7 \le d \le 8$, such that $\mathcal{I}_X(4)$ is globally generated.

Proof. Let's first prove the following: Claim: Every curve in |4H - X| is integral.

If $Y \in |4H - X|$ is not integral then $Y = Y_1 + Y_2$ where Y_1 is integral with $deg(Y_1) = 4$ (observe that deg(Y) = 9 or 8).

If Y_1 is planar then $Y_1 \sim H$, so $4H - X \sim H + Y_2$ and it follows that $3H \sim X + Y_2$, in contradiction with $h^0(\mathcal{I}_X(3)) = 0$ (cf 2.9).

So we may assume that Y_1 is a quartic elliptic curve, i.e. (i) $Y_1^2 = 0$ and (ii) $Y_1.H = 4$. Setting $Y_1 = aH + bX$, we get from (i): 2a(2a + bd) = 0. Hence (α) a = 0, or (β) 2a + bd = 0.

- (α) In this case $Y_1 = bX$, hence (for degree reasons and since S doesn't contain curves of degree < 4), $Y_2 = \emptyset$ and Y = X, which is integral.
- (β) Since $Y_1.H=4$, we get 2a+(2a+bd)=2a=4, hence a=2 and bd=-4 which is impossible $(d=7 \text{ or } 8 \text{ and } b\in \mathbb{Z}).$

This concludes the proof of the claim.

Since $(4H-X)^2 \ge 0$, the claim implies that 4H-X is numerically effective. Now we conclude by a result of Saint-Donat (cf. [11, Theorem 5]) that |4H-X| is base point free, i.e. $\mathcal{I}_{X,S}(4)$ is globally generated. By the exact sequence: $0 \to \mathcal{O} \to \mathcal{I}_X(4) \to \mathcal{I}_{X,S}(4) \to 0$ we get that $\mathcal{I}_X(4)$ is globally generated. \square

REMARK 2.11. If d=8, a general element $Y \in |4H-X|$ is a smooth elliptic curve of degree 8. By the way $Y \neq X$ (see [1]). The exact sequence of liaison: $0 \to \mathcal{I}_U(4) \to \mathcal{I}_X(4) \to \omega_Y \to 0$ shows that $h^0(\mathcal{I}_X(4)) = 3$ (i.e. X is of maximal rank). In case d=8 Lemma 2.10 is stated in [2], however the proof there is incomplete, indeed in order to apply the enumerative formula of [8] one

has to know that X is a connected component of $\bigcap_{i=1}^{3} F_i$; this amounts to say that the base locus of |4H - X| on F_1 has dimension ≤ 0 .

To conclude we have:

LEMMA 2.12. Let X be the disjoint union of two smooth, irreducible quartic elliptic curves, then $\mathcal{I}_X(4)$ is generated by global sections.

Proof. Let
$$X = C_1 \sqcup C_2$$
. We have: $0 \to \mathcal{O}(-4) \to 2.\mathcal{O}(-2) \to \mathcal{I}_{C_1} \to 0$, twisting by \mathcal{I}_{C_2} , since $C_1 \cap C_2 = \emptyset$, we get: $0 \to \mathcal{I}_{C_2}(-4) \to 2.\mathcal{I}_{C_2}(-2) \to \mathcal{I}_X \to 0$ and the result follows.

Summarizing:

PROPOSITION 2.13. There exists an indecomposable rank two vector bundle, E, on \mathbb{P}^3 , generated by global sections and with $c_1(E)=4$ if and only if $5 \le c_2(E) \le 8$ and in these cases there is an exact sequence:

$$0 \to \mathcal{O} \to E \to \mathcal{I}_C(4) \to 0$$

where C is a smooth irreducible elliptic curve of degree $c_2(E)$ or, if $c_2(E) = 8$, the disjoint union of two smooth elliptic quartic curves.

2.4. Globally generated rank two vector bundles with $c_1 = 5$.

We start by listing the possible cases:

PROPOSITION 2.14. If E is an indecomposable, globally generated, rank two vector bundle on \mathbb{P}^3 with $c_1(E) = 5$, then $c_2(E) \in \{8, 10, 12\}$ and there is an exact sequence:

$$0 \to \mathcal{O} \to E \to \mathcal{I}_C(5) \to 0$$

where C is a smooth, irreducible curve of degree $d = c_2(E)$, with $\omega_C \simeq \mathcal{O}_C(1)$. In any case E is stable. *Proof.* A general section of E vanishes along a smooth curve, C, of degree $d = c_2(E)$ with $\omega_C \simeq \mathcal{O}_C(1)$. Hence every irreducible component, Y, of C is a smooth, irreducible curve with $\omega_Y \simeq \mathcal{O}_Y(1)$. In particular $\deg(Y) = 2g(Y) - 2$ is even and $\deg(Y) \geq 4$.

- 1. If d = 4, then C is a planar curve and E splits.
- 2. If d = 6, C is necessarily irreducible (of genus 4). It is well known that any such curve is a complete intersection (2,3), hence E splits.
- 3. If d=8 and C is not irreducible, then $C=P_1 \sqcup P_2$, the disjoint union of two planar quartic curves. If $L=\langle P_1 \rangle \cap \langle P_2 \rangle$, then every quintic containing C contains L in contradiction with the fact that $\mathcal{I}_C(5)$ is generated by global sections. Hence C is irreducible.
- 4. If d=10 and C is not irreducible, then $C=P\sqcup X$, where P is a planar curve of degree 4 and where X is a degree 6 curve (X is a complete intersection (2,3)). Every quintic containing C vanishes on P and on the 8 points of $X\cap \langle P\rangle$, since these 8 points are not on a line, the quintic vanishes on the plane $\langle P\rangle$. This contradicts the fact that $\mathcal{I}_C(5)$ is globally generated.
- 5. If d = 12 and C is not irreducible we have three possibilities:
 - (a) $C = P_1 \sqcup P_2 \sqcup P_3$, P_i planar quartic curves
 - (b) $C = X_1 \sqcup X_2$, X_i complete intersection curves of types (2,3)
 - (c) $C = Y \sqcup P, \ Y$ a canonical curve of degree 8, P a planar curve of degree 4.
 - (a) This case is impossible (consider the line $\langle P_1 \rangle \cap \langle P_2 \rangle$).
 - (b) We have $X_i = Q_i \cap F_i$. Let Z be the quartic curve $Q_1 \cap Q_2$. Then $X_i \cap Z = F_i \cap Z$, i.e. X_i meets Z in 12 points. It follows that every quintic containing C meets Z in 24 points, hence such a quintic contains Z. Again this contradicts the fact that $\mathcal{I}_C(5)$ is globally generated.
 - (c) This case too is impossible: every quintic containing C vanishes on P and on the points $\langle P \rangle \cap Y$, hence on $\langle P \rangle$.

We conclude that if d = 12, C is irreducible.

The normalized bundle is E(-3), since in any case $h^0(\mathcal{I}_C(2)) = 0$ (every smooth irreducible subcanonical curve on a quadric surface is a complete intersection), E is stable.

Now we turn to the existence part.

LEMMA 2.15. There exist indecomposable rank two vector bundles on \mathbb{P}^3 with Chern classes $c_1 = 5$ and $c_2 \in \{8, 10\}$ which are globally generated.

Proof. Let $R = \bigsqcup_{i=1}^s L_i$ be the union of s disjoint lines, $2 \le s \le 3$. We may perform a liaison (s,3) and link R to $K = \bigsqcup_{i=1}^s K_i$, the union of s disjoint conics. The exact sequence of liaison: $0 \to \mathcal{I}_U(4) \to \mathcal{I}_K(4) \to \omega_R(5-s) \to 0$ shows that $\mathcal{I}_K(4)$ is globally generated (n.b. $5-s \ge 2$).

Since $\omega_K(1) \simeq \mathcal{O}_K$ we have an exact sequence: $0 \to \mathcal{O} \to \mathcal{E}(2) \to \mathcal{I}_K(3) \to 0$, where \mathcal{E} is a rank two vector bundle with Chern classes $c_1 = -1, c_2 = 2s - 2$. Twisting by $\mathcal{O}(1)$ we get: $0 \to \mathcal{O}(1) \to \mathcal{E}(3) \to \mathcal{I}_K(4) \to 0$ (*). The Chern classes of $\mathcal{E}(3)$ are $c_1 = 5, c_2 = 2s + 4$ (i.e. $c_2 = 8, 10$). Since $\mathcal{I}_K(4)$ is globally generated, it follows from (*) that $\mathcal{E}(3)$ too, is generated by global sections. \square

Remark 2.16.

- If E is as in the proof of Lemma 2.15 a general section of E(3) vanishes along a smooth, irreducible (because h¹(E(-2)) = 0) canonical curve, C, of genus 1 + c₂/2 (g = 5,6) such that I_C(5) is globally generated. By construction these curves are not of maximal rank (h⁰(I_C(3)) = 1 if g = 5, h⁰(I_C(4)) = 2 if g = 6). As explained in [9] 4 this is a general fact: no canonical curve of genus g, 5 ≤ g ≤ 6 in P³ is of maximal rank. We don't know if this is still true for g = 7.
- 2. According to [9] the general canonical curve of genus 6 lies on a unique quartic surface.
- 3. The proof of 2.15 breaks down with four conics: $\mathcal{I}_K(4)$ is no longer globally generated, every quartic containing K vanishes along the lines L_i (5-s=1). Observe also that four disjoint lines always have a quadrisecant and hence are an exception to the normal generation conjecture (the omogeneous ideal is not generated in degree three as it should be).

REMARK 2.17. The case $(c_1, c_2) = (5, 12)$ remains open. It can be shown that if E exists, a general section of E is linked, by a complete intersections of two quintics, to a smooth, irreducible curve, X, of degree 13, genus 10 having $\omega_X(-1)$ as a base point free g_5^1 . One can prove the existence of curves $X \subset \mathbb{P}^3$, smooth, irreducible, of degree 13, genus 10, with $\omega_X(-1)$ a base point free pencil and lying on one quintic surface. But we are unable to show the existence of such a curve with $h^0(\mathcal{I}_X(5)) \geq 3$ (or even with $h^0(\mathcal{I}_X(5)) \geq 2$). We believe that such bundles do not exist.

3. Globally generated rank two vector bundles on \mathbb{P}^n , $n \geq 4$.

For $n \geq 4$ and $c_1 \leq 5$ there is no surprise:

PROPOSITION 3.1. Let E be a globally generated rank two vector bundle on \mathbb{P}^n , $n \geq 4$. If $c_1(E) \leq 5$, then E splits.

Proof. It is enough to treat the case n=4. A general section of E vanishes along a smooth (irreducible) subcanonical surface, $S: 0 \to \mathcal{O} \to E \to \mathcal{I}_S(c_1) \to 0$. By [5], if $c_1 \leq 4$, then S is a complete intersection and E splits. Assume now $c_1=5$. Consider the restriction of E to a general hyperplane E. If E doesn't split, by 2.14 we get that the normalized Chern classes of E are: $c_1=-1$, $c_2 \in \{2,4,6\}$. By Schwarzenberger condition: $c_2(c_2+2) \equiv 0 \pmod{12}$. The only possibilities are $c_2=4$ or $c_2=6$. If $c_2=4$, since E is stable (because E|H is, see 2.14), we have ([3]) that E is a Horrocks-Mumford bundle. But the Horrocks-Mumford bundle (with $c_1=5$) is not globally generated.

The case $c_2 = 6$ is impossible: such a bundle would yield a smooth surface $S \subset \mathbb{P}^4$, of degree 12 with $\omega_S \simeq \mathcal{O}_S$, but the only smooth surface with $\omega_S \simeq \mathcal{O}_S$ in \mathbb{P}^4 is the abelian surface of degree 10 of Horrocks-Mumford.

Remark 3.2. For n > 4 the results in [6] give stronger and stronger (as n increases) conditions for the existence of indecomposable rank two vector bundles generated by global sections.

Putting everything together, the proof of Theorem 1.1 is complete.

References

- [1] V. BEORCHIA AND PH. ELLIA, Normal bundle and complete intersections, Rend. Sem. Mat. Univ. Politec. Torino 48 (1990), 553–562.
- [2] J. D'ALMEIDA, Une involution sur un espace de modules de fibrés instantons, Bull. Soc. Math. France 128 (2000), 577-584.
- [3] W. DECKER, Stable rank 2 vector bundles with Chern classes $c_1 = -1, c_2 = 4$, Math. Ann. **275** (1986), 481–500.
- [4] Ph. Ellia, Sur les fibrés uniformes de rang n+1 sur \mathbb{P}^n , Mém. Soc. Math. France $\mathbf{7}$ (1982).
- PH. ELLIA, D. FRANCO, AND L. GRUSON, On subcanonical surfaces of P⁴, Math. Z. 251 (2005), 257–265.
- [6] Ph. Ellia, D. Franco, and L. Gruson, Smooth divisors of projective hypersurfaces, Comment. Math. Helv. 83 (2008), 371–385.
- [7] M.L. Fania and E. Mezzetti, Vector spaces of skew-symmetric matrices of constant rank, Linear Algebra Appl. 434 (2011), 2383–2403.
- [8] W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb., no. 2, Springer, Berlin, 1984.
- [9] L. GRUSON AND CH. PESKINE, Genre des courbes de l'espace projectif, Lecture Notes in Math. 687 (1978), 31–59.
- [10] S. Huh, On triple Veronese embeddings of \mathbb{P}^n in the Grassmannians, Math. Nachr. **284** (2011), 1453–1461.
- [11] S. MORI, On degrees and genera of curves on smooth quartic surfaces in P³, Nagoya Math. J. 96 (1984), 127–132.
- [12] J.C. SIERRA AND L. UGAGLIA, On double Veronese embeddings in the Grassmannian G(1, N), Math. Nachr. 279 (2006), 798–804.

- [13] J.C. SIERRA AND L. UGAGLIA, On globally generated vector bundles on projective spaces, J. Pure Appl. Algebra 213 (2009), 2141–2146.
- $[14]\,$ A. Van de Ven, On uniform vector bundles, Math. Ann. 195 (1972), 245–248.

Authors' addresses:

Ludovica Chiodera Dipartimento di Matematica Università di Ferrara via Machiavelli 35, 44100 Ferrara, Italy E-mail: ludovica.chiodera@unife.it

Philippe Ellia Dipartimento di Matematica Università di Ferrara via Machiavelli 35, 44100 Ferrara, Italy E-mail: phe@unife.it

> Received November 30, 2011 Revised April 2, 2012