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On repdigits as product of consecutive

Fibonacci numbers1

Diego Marques and Alain Togbé

Abstract. Let (Fn)n≥0 be the Fibonacci sequence. In 2000, F. Luca
proved that F10 = 55 is the largest repdigit (i.e. a number with only
one distinct digit in its decimal expansion) in the Fibonacci sequence.
In this note, we show that if Fn · · ·Fn+(k−1) is a repdigit, with at least
two digits, then (k, n) = (1, 10).
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1. Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2 = Fn+1 + Fn, for n ≥ 0,
where F0 = 0 and F1 = 1. These numbers are well-known for possessing amaz-
ing properties. In 1963, the Fibonacci Association was created to provide an
opportunity to share ideas about these intriguing numbers and their applica-
tions. We remark that, in 2003, Bugeaud et al. [2] proved that the only perfect
powers in the Fibonacci sequence are 0, 1, 8 and 144 (see [6] for the Fibono-
mial version). In 2005, Luca and Shorey [5] showed, among other things, that
a non-zero product of two or more consecutive Fibonacci numbers is never a
perfect power except for the trivial case F1 · F2 = 1.

Recall that a positive integer is called a repdigit if it has only one distinct
digit in its decimal expansion. In particular, such a number has the form
a(10m − 1)/9, for some m ≥ 1 and 1 ≤ a ≤ 9. The problem of finding all
perfect powers among repdigits was posed by Obláth [8] and completely solved,
in 1999, by Bugeaud and Mignotte [1]. One can refer to [3] and its extensive
annotated bibliography for additional references, history and related results.

In 2000, F. Luca [4], using elementary techniques, proved that F10 = 55
is the largest repdigit in the Fibonacci sequence. In a very recent paper, the
authors [7] used bounds for linear forms in logarithms à la Baker, in order to
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prove that there is no Fibonacci number of the form B · · ·B (concatenation of
B, m times), for m > 1 and B ∈ N with at most 10 digits.

In this note, we follow the same ideas by using elementary tools for searching
repdigits as product of consecutive Fibonacci numbers. More precisely, our
main result is the following.

Theorem 1.1. The only solution of the Diophantine equation

Fn · · ·Fn+(k−1) = a

(
10m − 1

9

)
, (1)

in positive integers n, k,m, a, with 1 ≤ a ≤ 9 and m > 1 is (n, k,m, a) =
(10, 1, 2, 5).

We need to point out that all relations which will appear in the proof of the
above result can be easily proved by elementary ways (mathematical induction,
the Fibonacci recurrence pattern, congruence properties etc). So, we will leave
them as exercises to the reader.

2. The proof

First, we claim that k ≤ 4. Indeed, we suppose the contrary, i.e. there exist at
least 5 consecutive numbers among n, ..., n+(k−1). Thus, 3|(n+i) and 5|(n+j),
for some i, j ∈ {0, ..., k − 1}. This implies that 2|Fn+i and 5|Fn+j leading to
an absurdity as 10|Fn · · ·Fn+(k−1) = a(10m−1)/9 and hence k ∈ {1, 2, 3, 4}. If
k = 1, Luca’s result [4, Theorem 1] ensures that (n, m, a) = (10, 2, 5). Hence,
we must prove that Eq. (1) has no solution for k ∈ {2, 3, 4}.

Note that a(102−1)/9 = a ·11 and a(103−1)/9 = a ·3 ·37 are not products
of at least two Fibonacci numbers, for 1 ≤ a ≤ 9. So, from now on, we can
assume that m ≥ 4.

a 1 2 3 4 5 6 7 8 9
a · ( 10m−1

9 ) 7 14 5 12 3 10 1 8 15 (mod 16)

Table 1: Residue classes modulo 16, for m ≥ 4.

Case k = 4. The sequence (FnFn+1Fn+2Fn+3)n≥1 has period 12 modulo 16.
In fact,

FnFn+1Fn+2Fn+3 ≡ 6, 14, 0, 8, 8, 0, 14, 6, 0, 0, 0, 0 (mod 16).
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So, by Table 1, it suffices to consider a = 2 and 8. Since 4 divides one of
the numbers n, n + 1, n + 2, n + 3, then

3 = F4|FnFn+1Fn+2Fn+3 = a

(
10m − 1

9

)
and so 3|(10m − 1)/9. Thus we deduce that 3|m (in what follows, we will use
this fact on several occasions).

For a = 2 and 8, one has n ≡ 2, 7 (mod 12) and n ≡ 4, 5 (mod 12), respec-
tively. Therefore FnFn+1Fn+2Fn+3 ≡ 0, 1 (mod 5). Thus, Eq. (1) is not valid,
since 2 ·

(
10m−1

9

)
≡ 2 (mod 5) and 8 ·

(
10m−1

9

)
≡ 3 (mod 5), for m ≥ 2. We

conclude that the assumption k = 4 is impossible.

Case k = 3. The period of (FnFn+1Fn+2)n≥1 modulo 16 is 12. Actually, we
have

FnFn+1Fn+2 ≡ 2, 6, 14, 8, 8, 8, 2, 6, 14, 0, 0, 0 (mod 16) .

Again, by looking at Table 1, we deduce that a = 2 or 8.
First, we suppose that a = 2. Thus, one has n ≡ 3, 9 (mod 12). If n ≡

3 (mod 12), then FnFn+1Fn+2 ≡ 25, 29, 22, 18, 30 (mod 31). Since 3|m then
4|(n + 1) and we get

2
(

10m − 1
9

)
≡ 5, 14, 24, 11, 0 (mod 31).

Thus Eq. (1) is not true in this case. In the case of n ≡ 9 (mod 12), we have
4 - (n + j), for j ∈ {0, 1, 2}. Thus 3 - m and we split the proof in two subcases:

• m ≡ 1 (mod 3): In this case, 2(10m − 1)/9 ≡ 14 (mod 32), but on the
other hand FnFn+1Fn+2 ≡ 30 (mod 32);

• m ≡ 2 (mod 3): Then 2(10m−1)/9 ≡ 4, 1 (mod 7), while FnFn+1Fn+2 ≡
2, 5 (mod 7).

So, we have no solutions in the case a = 2.
Second, we take a = 8. One has n ≡ 4, 5, 6 (mod 12). In the case of

n ≡ 4 (mod 12), we have FnFn+1Fn+2 ≡ 0, 1, 4 (mod 5). Since 4|n, then
3|m yields 8(10m − 1)/9 ≡ 3 (mod 5). When n ≡ 6 (mod 12), we obtain
FnFn+1Fn+2 ≡ 0, 6, 9 (mod 15). Again 3|m, because 4|(n + 2) and so 8(10m −
1)/9 ≡ 3 (mod 15). Therefore, a possible solution may appear for n ≡ 5
(mod 12). In this case, 3 - m, so we have the following two cases:

• m ≡ 1 (mod 3) implies 8(10m−1)/9 ≡ 15, 4, 5, 17, 9, 8 (mod 19). On the
other hand, FnFn+1Fn+2 ≡ 0, 12, 7 (mod 19);
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• m ≡ 2 (mod 3) yields 8(10m − 1)/9 ≡ 7, 10 (mod 13), while

FnFn+1Fn+2 ≡ 9, 2, 0, 11, 4, 0, 0 (mod 13).

Thus, we also have no solution for k = 3.

Case k = 2. Since

FnFn+1 ≡ 1, 2, 6, 15, 8, 8, 1, 10, 14, 15, 0, 0 (mod 16),

we need to consider a = 2, 6, 7, 8, and 9. For a = 6, we have n ≡ 8 (mod 12) and
then FnFn+1 ≡ 0, 2, 4 (mod 5), while 6(10m− 1)/9 ≡ 1 (mod 5). When a = 9,
one has n ≡ 10 (mod 12) and therefore Eq. (1) becomes FnFn+1 = 10m−1 ≡ 0
(mod 9). However, FnFn+1 ≡ 8 (mod 9), for n ≡ 10 (mod 12). In the case of
a = 7, one gets n ≡ 1, 7 (mod 12) (and then 4 - n). On the other hand, Eq.
(1) implies that 7|Fn or 7|Fn+1 and thus n ≡ 0 (mod 8) or n ≡ −1 (mod 8).
Therefore, n ≡ 7 (mod 12) and n ≡ −1 (mod 8). We then get n ≡ 7 (mod 24)
leading to FnFn+1 ≡ 0, 1, 3 (mod 5), but 7(10m−1)/9 ≡ 2 (mod 5). For a = 2,
one has n ≡ 9 (mod 12) and so 4 - (n + j), for j ∈ {0, 1}. Thus 3 - m and
then 2(10m − 1)/9 ≡ 2 (mod 5), but FnFn+1 ≡ 0, 1, 3 (mod 5). For a = 8, we
have n ≡ 5, 6 (mod 12). If n ≡ 5 (mod 12), similarly as in previous cases, we
deduce that 3 - m.

• m ≡ 1 (mod 3) implies 8(10m−1)/9 ≡ 5, 2, 8 (mod 9), however FnFn+1≡
4 (mod 9);

• m ≡ 2 (mod 3) yields 8(10m − 1)/9 ≡ 2, 4 (mod 7), again Eq. (1) is not
valid, since FnFn+1 ≡ 1, 5 (mod 7).

We finish by considering the case n ≡ 6 (mod 12). Again 3 - m and so 8(10m−
1)/9 ≡ 3 (mod 5), while FnFn+1 ≡ 0, 2, 4 (mod 5). In conclusion, Eq. (1) has
no solution for k > 1.
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