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ABSTRACT. Let X be a compact, connected complex manifold, and let
¢ € HY(X,Q) be a non-trivial class. The paper deals with the possibility
to construct a topological cycle I' on X, whose class is the Poincaré dual
of &, which is closely related in a precise sense to the complexr struc-
ture of X. The desired properties of I' allow to define a differentiable
relation into a suitable space of 1-jets. This relation shows that there is
a preliminary topological obstruction to construct such a I'. The main
result of the paper is that, in a relevant particular case, this obstruction
disappears.
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1. Introduction

Throughout the paper X will denote a compact, connected complex manifold
of dimension n .

Let £ € H'(X,Q) be non zero. By a classical theorem of Thom [5] there
is an integer N > 0 such that the Poincaré dual PD(N &) € H(X,Q) is the
fundamental class of an oriented differentiable submanifold I C X, of dimension
k = 2n—i ( by the way, the symbol C will denote nonstrict inclusion throughout
the paper). The set T is closed in X, hence compact. For our purposes the
relevant property is

f‘xfr =0. (1)
To prove this, let T" be an open tubolar neighborhood of I' inside X. Then
Z = X —T is a deformation retract of X —I", and it is sufficient to prove that
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&|, = 0. Denote the inclusion Z C X by h, and assume that h*(§) = €|, #0.
Therefore, since the Kronecker pairing

(,):H"(Z,Q) x Hi(Z,Q) — Q
is non degenerate, there is u € H;(Z,Q) such that (h*(£), u) # 0. But

(h*(&), u) = (&, hulu))

and it is well known that the right hand side agrees with the intersection
number of the k-cycles PD(§) = [I'] and h.(u) on X. Since these cycles can be
represented by disjoint chains, we conclude (£, h.(u)) = 0, contradiction.

Relation (1) implies also that for any subset S of X containing I' we have

£|xfs = 0.

We will say that such a subset of X is a support for . Actually, we are
interested to the possibility that I' is contained into a complex subspace Y C X,
i.e. that £ has supports which are of some interest from the point of view of
the Complex Geometry. Let us give a necessary condition for this.

By restricting the scalars, the complex n-dimensional vector space T, X
can be thought as a real 2n-dimensional vector space. This real vector space
is nothing but the tangent space at P of the differentiable manifold underlying
X. Recall that multiplication by i = v/—1 defines on T, X a complex structure
J:T,X — T,X, and a real subspace of T, X corresponds to a complex
subspace of the complex space T, X if and only if it is left invariant by J.

Now assume that I' is contained into some complex subspace Y C X. For
any point P € I' which is smooth for Y there is a chain of real tangent vector
spaces

T.I' CT,Y C T,X.

But T,Y is a complex subspace of T, X, hence
T.'+J(T.T) Cc T,.Y ¢ T, X.

Note that T,I'+ J(T,T') is in any case the smallest complex subspace of T, X
containing T, I". If the codimension of Y into X is assumed to be > p, then at
any point P € I'N Y, we have

dim (T, T+ J(T,I')) < n—p. (2)

Notice that by semi-continuity this relation is actually satisfied at every point
of T.
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To try to construct such a support Y for £, the idea is to start from a
I' obtained by Thom’s theorem, and then to deform somehow the inclusion
i: T — X to get, say, an immersion f : I' — X, which satisfies condition (2) at
any point, and moreover satisfies

fene = iwpr = [I] = PD(N§) € Hi(X,Q), (3)

where p. € H(T', Q) is the fundamental class of I' (recall that T' is oriented,
see [5, p. 28], where, however, this assumption is implicit ). Since (2) involves
tangent spaces to I' and X, the natural ambient to study how to deform the
inclusion I' C X is the space #'(I', X) of 1-jets of germs of maps ' — X,
of class ¢! at least. This space consists of all linear maps L : T.I' — T, X
for all possible choices of ¢ € T' and of x € X. There are canonical maps
s: Y, X)—>T and b: #Y(I',X) — X defined respectively by

s(L) = ¢ and b(L) == x.

Moreover, every map f : I' — X, of class €% with k > 1, lifts to the map

ST, X)

T — NI, X I
/f CH:;( ) / lb 0

r—m—X

of class €%~ , which makes the diagram on the right commutative. Note that
B fl is always an embedding when k > 2, even if f is not. We set

# = {Le 7' T,X)|dim (L(T,L)+J(L(T.T))) <n-p}. (5

In Gromov language (see e.g. [3]) such a Z is called a differential relation.
Condition (2) translates nicely into this new set-up, because, if f : ' — X is
an immersion, it amounts to require that ¢} (T') C #Z.

All this makes apparent that there is a priori a topological obstruction in
order to find a deformation f : I' — X of the inclusion i : I' — X which
satisfies (2) and (3). In fact, assume that there is such a f, and let us simply
denote by ¢ its lifting to _# (I, X); then p(I') C % . Hence, formally the map
¢ factorizes through the inclusion v : Z C _#(I', X), namely we have the
commutative diagram of topological spaces and continuous maps

2 —— JHT.X)

1k

'——X
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which yields in homology ( the fundamental class p. of I' was already introduced
above )

PD(NS) = [F] = fopp = b*(@*ﬂr) = Datlss frp = by O[“*("b*ﬂr)]’

Therefore, in order that the inclusion I' C X can be deformed to satisty (2), a
necessary condition is that the class [T] is the image via b, of a class supported

on % .

In this paper we discuss this topological obstruction in the simplest possible
case, namely when p = 1 (recall that p was introduced as the codimension into
X of a complex subspace Y of X containing I'). In this case condition (2)
specializes to

dimC(L(TCF)—i—J(L(TcF))) <n-1 (6)

and the differential relation # involved becomes
#={Le ", X)|dim.(L(T.T)+ J(L(T.I))) < n—1}.

To justify a further restriction in the statement of the main theorem below, let
me say that the paper arose from an attempt to understand from a differential
geometric point of view some aspects of the Hodge Conjecture. It is well known
that Hodge (p, p)-conjecture can be reduced to the case when dim(X) = 2p.
Therefore, it was natural for a first exploration to consider only the case when
t=dim(X)=k.

The main result of the paper is that in the particular case when p =1 and
i = dim(X) = k, the topological obstruction mentioned above disappears.
More precisely, we have

THEOREM 1.1. For X of arbitrary dimension n, let # C _#'(I', X) be defined
by (6) in the particular case i = dim(X) = k. Then Z is a deformation retract

of 1T, X).

Following some pioneering work of Thom [6], Gromov, Eliashberg and sev-
eral other people developed the theory of differential relations (see e.g. [3]).
This theory provides technical tools which should allow, in principle, to decide
whether the inclusion I' C X can be deformed as desired, or not.

However, it is well known that on a general smooth, projective hypersur-
face X C P4, of degree 5, there are non-trivial £ € H3(X,Q) which are not
supported by a divisor of X (see e.g. [7], Ch. 18). It would be of the highest
interest to understand from the point of view of the differential relations why
a 3-cycle I' corresponding to such a class £ cannot be deformed in the desired
way in this case.

Theorem 1.1 is proved in §4. The few, elementary facts about jets we will
need are recalled for the reader’s convenience in the second section. The study
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of the basic properties of #Z used to prove Theorem 1.1 is the content of §3.
Finally, the last section contains some details on the restriction of Z to the
fibres of (s,b) : _# (I, X) — I' x X, which perhaps are of independent interest.

From now on we will assume without further mention that k = dim(X) =n.

2. Some basic fact on 1-jets

We will consider only 1-jets, so we will always write in the sequel _# for
JNT,X), and #(U,V) for #'(U,V). For the basic definitions and prop-
erties of the spaces of jets the interested reader is referred e.g. to [2].

Let T' and X be differentiable varieties of class €”, where r > 1 is an
integer, or r = w, namely I" and X are real analytic varieties; we will mantain
this convention about r throughout the paper.

A structure of differential variety on the set ¢ (T, X) is given by the fol-
lowing atlas. Let (U,u',u?,...,u™) and (V,z', 2%, ...,2*") be as above; then
we can represent L by a 2n x n matrix with respect to the bases

0 0 0 0 0
%,ﬁ,...7w OfTCF and

a@J,...,m OszX

canonically associated to the given coordinate charts. To represent the entries
of this matrix we introduce new coordinates p;; , where 1 < ¢ < 2n and 1 <
j < n. Therefore, if we consider the canonical map

(5,0): F(I,X) =T x X (7)

on the subset #(U,V) := (s,b) (U x V) of #(T',X) we have the local
coordinates

uhu? o ut et et 2", 1<i<2n,1<j<n. (8)

We will need in the sequel the explicit expression for the change of local coor-
dinates in _¢. For this, consider coordinate charts (U’,v",v”,...,v™) onI" and
(V' y, ... y*) on X, such that UNU’ # @ and VNV’ # &. It is clear than
that

U V)n U V)= ZUnNU,VnV') #+ .
On #(U’, V") the local coordinates are

1

v a"'avnvyla"'7y2n7Qhk71§h§2nalgkgnv
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and the change of local coordinates is given by the maps

oF = o (ut, . um), 1<k<n, 9)
yh = yh(xla"'ax2n)7 1§h§2na (10)
Oyt 0w
= —— —— Di; 1<h<2n,1<k<n. 11
qhk 1<i2<2n 9t 81}’“ Dij » >~ > zan, 1l > =N ( )
1<j<n

In particular, notice that, for fixed c € UNU’ and z € V NV, relations (11)
define a linear map. This implies that the map (7) realizes #(I', X) as a real
vector bundle over I' x X, of rank 2n? (by the way, if we consider higher order
jets,ie. #"(I',X) with r > 1, we can only say that (s,b) : #"(I',X) - I'x X
is an affine bundle). It is clear how this vector bundle trivializes; in fact, if
M denotes the real vector space of 2n x n matrices, then #(U,V) can be
identified with U x V' x M, and then (s,b) : _# (U,V) — U x V corresponds to
the projection U x V. x M — U x V.

Define the rank of the 1-jet (¢,x, L) as the rank of L. The map p which
associates to every 1-jet its rank is easily seen to be lower semicontinuous.
Hence, for any integer 7, with 0 <r <n, theset 7, := {je 7| p(j) <r}
is closed in _¢#. We will mostly restrict in the sequel to work on the open subset
% of ¢ of the jets of rank n .

3. The differential relation #

Let us now introduce some more standard notation which will be used freely
throughout the paper.

Consider coordinate charts (U, u',u?,...,u™) for T and (V,z', 22, ..., 2*")
for X. More precisely, we will always assume that V is a domain of holomorphic
coordinates (z',...,2") € C" on X, and that z" = 2" + iz"*" is the decom-
position of z" into its real and imaginary parts. Then the complex structure .J
is given by

Jo(xt o am e a?) s (™ T a2 (12)

Now assume that we have an immersion f : U — V'; we can write it in
coordinates. For any ¢ € U the image T, := d f.(T.T") of the differential map
d fc is generated inside T, , X by the columns of the jacobian matrix

O(xt,x?, ..., 2%™)

J. = O(ut,ur, ..., u") (c),

which is a 2n x n matrix. We write J_ in block form

7= (). (13)
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where both A, B are n X n real matrices, whose entries depend on c. Then
by (12) the subspace T. + J(T.) of T, X is generated by the columns of the

matrix
A —-B
B A

and relation (6) is verified at all points of U if and only if on U
det (g _B> =0. (14)

(13) and (14) suggest to organize the matrix (p;; ) in block form

(Pij),; = (jé) (15)

M= (g AB) : (16)

The determinant Dyy of 4 is a homogeneous polynomial, with coefficients in
Z , in the indeterminates p;; , of degree 2n.

We will check now that the loci defined on the various charts ¢ (U,V') by
the corresponding equations Dy = 0 patch toghether to define a closed subset
of #(I', X), which is the differential relation % .

The key point is to understand how the various maps Dy behave under a
change of coordinates. So, let U’ C T and V' C X denote as usual coordinate
charts such that UNU’' # @ and VNV’ # @. Thenon Z(UNU, VNV’
we have the restrictions of both Dy and Dyry» .

To simplify notations we will denote the jacobian matrices involved by

and to set

g = OWs ) gy 2 Ot
o(x,...,x2") o(vt,...,u")
Moreover, let us write the matrix .# in block form as
M= (P|SP), (17)

where the size of each block is 2n x n, and

0 -,
s= (1 )

is the matrix of the complex structure J (note that this matrix is the same
on every chart of X ). Finally, arrange the various gnr appearing in (11) in a
2n X n matrix 2. Equations (11) tell us that & and 2 are related by

L=UwPY.
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Then
(2|SQ) = (%3””1@5%@7).
Since X is a complex manifold, we can restrict to the case when all the changes

of coordinates (10) are holomorphic, hence their differentials are C-linear. In
matrix terms this is S% = %S, which yields

(% PV \SUPYV) = (UPVUSPYV) =U(P|SP) (70/ ;}) :

Taking determinants we get
det (2|S2) = det(%)det(.#)det(¥)?.
In terms of the functions D this relation becomes
Dyve = XNDyy, (18)

where

A= det(Z)det(¥)?: £(UNU,VNV')—=Rs. (19)
In fact, det(%) > 0 because X is canonically oriented. It is a simple exercise
to check that the functions A satisfy the cocycle condition.

Therefore # can be defined coherently by the vanishing of the functions D
on the coordinate charts of #(T', X).

Let us analyze more closely the functions D. Elementary operations on the
matrix . in the block form (16) transform it into

o + iR 0 o + 1P 0
4 and finally into
s(o —iB) o —iB 0 A — B

Note that the rank of the first n columns in the above matrices changes only
when the last group of elementary operations is performed. Note also that
A + 1% and o/ — 1% have the same rank, hence

rk( M) = 2 k(o +iB). (20)

Moreover, det ( &/ +i% ) is a homogeneous polynomial in the indeterminates
Dij , with complex coefficients, of degree n. It is convenient to write it in the
form

E:=det(o +1#B) = R+1l, (21)
where R and I are both homogeneous polynomials with real coefficients, of
degree n . Therefore

o +i%B 0
Dyy = det = (R+il)(R—il) = R>+1%. (22)
0 A —iPB
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COROLLARY 3.1. Dyy is a homogeneous polynomial with real coefficients, in
the indeterminates p;j , of degree 2n . Moreover, as a function, Dyy > 0.

For future use we have also to analyze the behaviour of the maps D outside
Z. For this, set
F = _JgUV)-Z%.

The restriction of D = Dyy to % is a smooth map (actually, an algebraic one,
hence real-analytic) .# — Rs . It is elementary to check that such a D is a
surjective submersion.

COROLLARY 3.2. For any a > 0 the set D™1(a) is a smooth hypersurface of
Z.

Assume now that U,U’ and V, V' are domains of coordinate charts for T'
and X respectively, such that U NU’ # @ and VNV’ # &. We have the
restrictions of both Dyy and Dyrye on Z(UNU',V NV’'). But the map
A ZUNU,VNV')— R, defined in (19) is not constant in general, hence
the hypersurfaces Dg‘l, (a) and D[}}V, (a') of # do not glue, however a,a’ are
choosen.

The throubles with A disappear if we restrict to a fiber of (s,b). In fact,
take any ce UNU’ and x € VNV’ and set

= (s,b) " (c, ).
Because of (18) we then have
® N Dyl (Me,z)a) = @ N Dyy(a). (23)

Hence these hypersurfaces of ® =~ R2" are independent from the system of
local coordinates on 7 used to define them. They will play an important
role in the sequel, mainly bacause of the following proposition, quite similar to
Corollary 3.2. From now on we will denote by D both the restriction to ® of
the map Dyy , and the homogeneous polynomial which is the determinant of
the matrix (16).

PRrROPOSITION 3.3. For any a > 0 the subsets
D, = D7 (a)

of ® are smooth hypersurfaces, and ® — % is foliated by them when a runs into
R .
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Proof. Take any P € ®, such that D(P) > 0. Since D is homogeneous, of
degree 2n , by Euler formula we have

Hence the various

cannot be all zero. O

4. Proof of Theorem 1.1

The outline of the construction of a retraction map r : ¢ — Z is rather simple.
In fact, recall that _# has a structure of real vector bundle over I' x X, given
by the map (s,b), as was already remarked in §2. Hence r can be constructed
fiberwise. In any fiber ® there are the level hypersurfaces of the maps D.
Though the “levels” actually depend on the function D, hence on the local
coordinates used to define it, the hypersurfaces themselves do not because
of (18), and we can therefore consider the corresponding normal directions
field, with respect to some metric on ®. This metric will be supplyied by
a Riemannian structure on ¢, namely a smoothly varying positive definite
symmetric bilinear form on each fiber. It is well known that any vector bundle
over a smooth base can be endowed with such a structure.

The directions field mentioned above corresponds to several ( nowhere van-
ishing ) vector fields, e.g. the gradient of D. The integral curves of any of
these vector fields foliate & — %, and the key point is that every integral curve
“ends” on Z. Then, given any P € & — %, there is exactly one integral curve
containing it, and we can define r(P) to be the limit point of this curve into

X.

Let us fix on ¢ a Riemannian structure M. On ® = (s,b)"!(c,z) we fix
an ortonormal basis with respect to the metric M(c,z). On ® we will use the
coordinates g;; given by the dual basis, instead of the p;; introduced previously,
to simplify somewhat the computations. In the new coordinates the function
D has still the form (22), namely

D= R*>+1?, (24)
where R and I are both homogeneous polynomials of degree n in the variables

qij - Therefore, D is homogeneous, of degree 2n . Moreover, the set ¢ = @ NZ%
is defined into ® by the equation D =0.
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We are interested to the family of ortogonal curves to the level hypersurfaces
of the function D . Hence, by definition, the more general system of differential
equations with integral curves the family of curves we want is

dqij
dt

= vVD, (25)

where VD denotes the gradient vector field of D, and v is a nowhere vanishing
real function defined in a suitable open set of ®, to be determined in order
that any solution of (25) satisfies some desired property.

Notice that VD vanishes exactly along . In fact, (24) implies that V.D
vanishes along %, and at any point where VD vanishes, D vanishes as well by
Euler formula. This allows us to consider the following specialization of (25)
on ® - %

d qij VD

— . 2
it VD[ (26)

The reason for (26) is that the relation of our integral curves with the level
hypersurfaces of D makes reasonable to try to parametrize the integral curves,
at least locally, by the “level” itself. More precisely, if ¢(t) is a function
R — & whose image is an integral curve, then we want the following relation
to be identically satisfied

D(p(t)) = t. (27)

To determine the function v in (25) such that (27) will be satisfied, we
differentiate (27), where ¢(t) is assumed to be a solution of (25), thus getting

v | VD|*=1.

Conversely, let ¢(t) be a solution of (26). Then,

and there is a real constant C such that
D(p(t)) =t+C.

But the system (26) is autonomous, and we can safely assume that C' =0.

LEMMA 4.1. Every solution ¢ of (26) is mazimally defined on (0,+00). More-
over, the function t —|| p(t) ||? is strictly increasing, and

lim [ o(t) || = oo. (28)

t——+oo
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Proof. Take any P € ® not in ¢, and set t, = D(P). Moreover, let ¢(t) be
the solution of (26) such that ¢(t,) = P. It is customary to consider VD as a
column vector; if P is considered as a row vector, then by Euler formula we get

P-VD(P) = 2nD(P) = 2nt, > 0

and Schwarz inequality yields
2nty = |P-VD(P)| < || P VD(P) || .
Hence
VD(P) 1 1

= < P .
‘IIVD(P) R

Therefore, if a is any real number such that 0 < a < t,, then for every P’ €
® — ¢ such that D(P’) > a, the following inequality is satisfied

1
~ 2na

Pl

VD( P’
|| VD(

This shows that ¢(t) is defined on any [t,,t,] C R, where a < t, < t, < t,,
hence on [t;,00). Since a > 0 is arbitrary, we conclude that every solution
of (26) is defined on (0, +00) .

Moreover, we have by Euler formula and (26) (here *¢(t) denotes the trans-
posed of the column vector o(t))

a . VD) . Die(t)
i e ® =250 1 gpiamy e = " TeDem e~

for every ¢, hence t || p(t) ||? is a strictly increasing function.

Finally, set 2, := D~ !(a) for every a > 0. Note that, if b > 0 is another
real number, then the ubiquitous Euler formula yields also the diffeomorphism

b\ 2n
Do — Dy given by P»—>(> pP.
a

Therefore, if we set pg = inf {|| P || | P € %, } (clearly p, > 0), then p, and

Ly are related by
"
My = () Ha
a

and (28) follows because ¢(t) € Z; for any t > 0 by (27), hence

o) I = pe -
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It remains to analyze the behaviour of the solutions of (26) when t — 07 .
The key point is disposed by the following result ( for the proof see [4] ).

THEOREM 4.2. Let D : ® — R be a real-analytic function > 0. Then, for every
P € € there is a neighborhood Wy of P inside ® such that for every Q € W,
the solution q, of the Cauchy problem q,(0) = Q for the system of first order
ODE

(45) = —VD (20

is defined in [0,00) , has finite length, and converges uniformly to a point of €
when t — oo. Moreover, if Q € W, then q,(t) € W, for everyt>0.

REMARK 4.3. To keep close to [4] we stated the above theorem with the orienta-
tion of the integral curves reversed with respect to our conventions. Moreover,
notice for future use that this result is local, namely it is sufficient to consider
the restriction of D to any neighborhood L of a given P € €. In this case the
solution q, will converge to a point of ¢ N L whent — oo.

Consider, now, an arbitrary solution ¢ of (26). Since t —| ¥(t) || is a
strictly increasing function, for every fixed b > 0 we have || ¥(t) ||<|| ¥(b) ||
whenever t < b. Let K denote the intersection of ¥ with the closed ball B of
vectors with norm <|| () ||; then K is compact and there are finitely many
points P,, ..., P; € K such that

K CcWp U...UWp,,

where any Wp, is an open neighborhood of P; like in Theorem 4.2.

The function D has a minimum on B—( Wp,U.. .UWp, ), and this minimum
is > 0, because this set is compact and disjoint from % . Then, for a > 0
sufficiently small (and a < b), we get

DoNB C Wp U...UWp,. (30)

But every hypersurface 2, of ® can be used to assign the initial condition
for the solutions of (26), uniformly with respect to the time ¢. In fact, we have
the straightforward consequence of (27).

COROLLARY 4.4. For any fized real number a > 0, every solution ¢ of (26)
intersects 9, in exactly one point.

Therefore (30) implies that ¢(a) € Wp, for a suitable i. Then Theorem 4.2
applied to ¢ (cum grano salis!) yields

lim ¥(t) € €.

t— 0t
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We are in position now to define a map p: & — € — €, the first step
toward the retraction r: ¢ — Z. In fact, if Q € ® — € is arbitrary, let ¢ be
the unique solution of (26) such that o(D(Q)) = Q. We set

p(Q) = lim_o(1).

t— 0t
LEMMA 4.5. The map p is continuous.

Proof. For the proof we need another lemma. To state it, let us introduce a
small piece of notation. If P is any point of & — %, and D(P) = a, we will
denote by ¢, the unique solution of (26) such that ¢, (a) = P.

LEMMA 4.6. For any fized real number ¢ > 0
X:(0,+00) X Do — & —F given by Xt P) = ¢.(1)

1s a homeomorphism. It follows, in particular, that for any two strictly positive
real numbers a, b, the hypersurfaces 9, and Py of ® are homeomorphic via

P p.(b) for every Pe,.

Proof. Corollary 4.4 implies that x is bijective. Moreover, x is the restriction
0 (0,400) X Z. of

(0,40) X (P —-€¢) — (P-7), defined by (¢, P) — ¢, (1), (31)

which gives the flow of the vector field at the R.H.S. of (26), and it is well
known that this map is continuous. Finally, x~!: ® — ¢ — (0,+00) x Z, is
given by

Pi— (D(P), ¢,(c))
and to show that it is continuous it is sufficient to check that P — ¢, (c) is
such. But this is a standard consequence of the theorem of the continuous
dependence of solutions on initial data. O

To conclude the proof of Lemma 4.5, for an arbitrary P € ®—%, set Q = p(P).
Here we use the fact that Theorem 4.2 is of local nature. In fact, for any
neighborhood L of @, we can consider the neighborhood W, C L as in the
statement of Theorem 4.2, referred now to D|, . Then, for b > 0 sufficiently
small we have ¢, (b) € W, . Fix one of such b.

Let M denote an open neighborhood of ¢, (b) into 2, such that

McWw,. (32)
If D(P)=aand 0<n<a isreal, then Lemma 4.6 tells us that
L ={Red®-F¢|a—-n<DR)<a+n and ¢,(b)e M}

is an open neighborhood of P inside ® — €. Then p(.¥) C L by Theorem 4.2
because of (32), and the proof of Lemma 4.5 is complete. O
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REMARK 4.7. I believe that p : & — € — € is surjective, but I don’t know
how to prove this. Notice however that, as a straightforward consequence of
Theorem 4.2, the set p(® — €) is dense inside €.

LEMMA 4.8. The map p : ® — € — € can be extended to a continuous map
0o : ® — € by setting p,(P) =P when P € €.

Proof. 1t remains to check the continuity at the points of %. But this follows
immediately from Theorem 4.2. O

The next step is the extension of p, to a coordinate neighborhood of _¢#.
For this, let U and V be the usual coordinate neighborhoods for I' and X
respectively. Then we can define

pi: FUV)— Z(UV)NZR

by assuming that it acts fiberwise (the fibres are those of (s, b)) like the map
po defined above. Since the restriction of #(I', X) to U x V' is a trivial vector
bundle, p, is continuous.

To extend p, to the desired map r : ¢ — %, the only delicate point
is the following verification. Assume that U’ and V'’ are other coordinate
neighborhoods for I' and X such that UNU’ # & and VNV’ # &. Then we
have also

de FUV) — UV N %

and we have to check that

p1|J(UﬁU/,va’) = p/1|/(umul,vmv’) : (33)
Here we exploit the fact that both p;, and p) are defined fiberwise. So, let
® = (s,b)7!(c,x) be an arbitrary fiber contained into Z (U NU',V NV’).
The two coordinate neighborhoods of ¢ containing ® give us the two maps
D,D’: ® — R related by

D' = X\D

because of (18), where A, = A(c, z) (see (19)). Therefore

vD' 1 VD

vD =)\, VD d —— = — —
‘ M VDR T NIVD P

(34)

The system of ODE (26) for the local coordinates corresponding to U’ and V'

is then do!
i 1 VD
8y _ —_— (35)
dt X || VD |2
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Now, let Q € ® — %, ad assume that D(Q) = a, hence D'(Q) = A\, a. With the
notation introduced in the proof of Lemma 4.5, let ¢/, be the solution of (35)
such that ¢, (Aga) = Q. It is easily checked that the map

pt) = ¢, (Aot) : (0, +00) = &~ 7

satisfies identically (26) thanks to the (34). Moreover, since ¢(a) = @, we can
conclude
Po(t) = ¢, (Ao t) for every ¢t > 0. (36)

Hence,
pi(Q) = lim ¢, (t) = lim ¢ (t) = p(Q)

t—0+ t—0+

and the equality (33) is completely proved.

Therefore, by (33) we can define amap r : _# — Z by just requiring that its
restriction to any coordinate neighborhood # (U, V') of ¢ is the corresponding
p. - It is clear that such an 7 is continuous, and that, if the inclusion Z C _#
is denoted by u, then rowu = idg.

To complete the proof of Theorem 1.1 it remains to show that wor is homo-
topic to id y . Since r was substantially defined fiberwise, it seems reasonable
to try to construct in this way also an homotopy

H:01]x F— ¢ (37)

between wor and id 4.

Then, let &, € and p, be as usual, and denote by 7 the inclusion € C ®.
For every P € ®—% we have ¢, : (0,400) — ®—%. This map can be extended
to a continuous map

Pp:[0,4+00) = @ by setting ¢, (0) = p(P).

Moreover, if P € € we will define ¢, : [0,+00) — ® to be the constant map
with value P. After these preparations, we set

h:[0,1] x®—® where h(7,P) := ¢.(7D(P)). (38)
The relations
h,(].,,) :id]}’hia h(077) :'éopm

follow from the definition. It remains to check that A is continuous. Only the
continuity at a point (7,, P) where 7, > 0 and P € ¥ deserves some comment.
In this case h(7,, P) = P, so let U be an arbitrary neighborhood of P. As usual,
we will consider a neighborhood W, of P like in the statement of Theorem 4.2,
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and such that W, C U . Moreover, let a > 0 be such that 7, —a > 0. Finally,
let b > 0 such that L := W, N %, # &. We set

b

V::{Qe@|Q€WP,D(Q)< ~, i Q¢¢ then %(b)eL}.

To
Thanks to Lemma 4.6, V' is an open neighborhood of P. Assume, now, that
TE(To—a,To+a),and Q € V.If Q € €, then

hMr,Q)=Qe W, CU.

If Q ¢ €, then h(7,Q) = ¢, (7 D(Q)) . Therefore, the definition of V' yields
both the relations 7 D(Q) < b and ¢, (b) € L C W, . Hence h(1,Q) € W, C
U by the last sentence of Theorem 4.2, and we conclude that the map h in (38)
is continuous.

As with the definition of the retraction r, the key point to define the ho-
motopy (37) is the verification that the map (38) actually does not depend on
the choice of the local coordinate system _# (U,V) of # containing the fiber
Phi . In fact, with the usual notations,

holds trivially true if 7 = 0 or P € €. Otherwise, by (36),

W(r,P) = ¢, (1 D'(P)) = ¢, (1 X D(P)) = ¢,(r D(P)) = h(r,P).

Therefore we can define fiberwise the map (37), and it is continuous.
The proof of Theorem 1.1 is now complete.

5. Some geometric property of &%

To understand & it is useful to first focus on the geometry of
€ =dNZA

where, as usual, Phi is any fibre of the map (s,b) : Z'(I,X) > 'x X. In
particular, we are interested in the dimension of %, and in the structure of
its singular locus. To this aim, it is easier to first study the affine variety %¢
defined in C2"* by the same equations than %', namely

R=0 1=0 (39)

because of (21). Then one can investigate the set of real points of %t , which
is in fact €.
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The geometry of ¢ becomes perfectly clear if we replace the equations (39)
used to define it, by those we get from the following change of variables in the
ring of polynomials B := C[p;;|1 <i<2n, 1<j <n]. For every pair of
integers h, k such that 1 < h k <n, set

Znk = Prk+iDhtng s Whi = iDhk+Phtnk = {(Phk —iPhtnk) = Zpk - (40)

Under this change of variables B becomes C[Zq,..., Znn, Wity ..., Wan].
By (40) the generic n x n matrices

% = (Z,;) and ¥ = (W)
are related to the matrices o/, Z introduced in (16) by the obvious relations
X =d+1%B and —iW = o —1iB.
Hence by (21) (possibly up to a constant factor # 0 for the second case)
det(Z) =det(o +i%B) = E and det(#)=FE.
The meaning of these relations is as follows. The change of variables (40)

induces a change of coordinates

2n2 2n2

w:C, —C,, . (41)

Pij 2w

Let w(P) = ((2),(w)). Then the coordinates (p;;) of P € c*™ satisfy the
equation E =0 if and only if

rk(Z(z)) <n.

Therefore, if we set

Y= {(2) €CL | rk(Z(2)) <n}
(42)
n2
V' i={(2) €C, | rk(#(w)) <n}
we can conclude that
Cg(c =Y xY'. (43)
In fact, Dyy = E - E because of (22). Moreover, if P € _# (U, V) annihilates
E,ie. if E(P) =0, then we have also E(P) = 0, and conversely.

Moreover, Y and Y’ are generic determinantal varieties by (42), so that
they are irreducible and reduced (see e.g. [1], Ch. II, §§ 2 and 3). Hence %¢
is also irreducible and reduced, of dimension 2n? — 2 because Y, Y’ are both

n2
hypersurfaces of C .
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Finally, from (43) it is also easily seen that
Sing(6c) = Sing(Y)xY" U Y x Sing(Y'), (44)
where (see e.g. [1])
Sing(Y) = {(2) € C,

and similarly for Y’. We can summarize all this as

rk(Z(z)) <n—1} (45)

THEOREM 5.1. The variety 6¢ is irreducible and reduced, of dimension 2n? —2.
Its singular locus is given by (44), and has codimension 2 inside 6¢ .

We are ready to start the study of the set € of real points of 6. We will

712 'n,2
use (39) as equations for both ¥ and %¢, inside R*" and C’ respectively.
Then, the jacobian criterion yields

Sing(€¢) = € N Sing(6c) or, equivalently o = ¢ N (%) (46)

sSm
To get a better understanding of the above relations, and to exploit them, we
have to be able to detect real points of ¢ when they are given in the coordinates
z,w . For this, consider the following set-up, where 7 is the conjugation map,
and w was defined in (41)

n n w n2
R ¢C, ——>C,_, 2 %
|
n? n? n2
R < (CP«;] w Czw 2 %c
Then set ) R
§:=woyow l:C —C. .
n2
It is clear that, for every P € (Cpij , we have
P =P < §(w(P)) = w(P). (47)

It is easily checked that the map § is given in coordinates by
0 (Zi1s e vy Znns Wity e ooy W) = (EWayy - oo, 8Win, 4 2115 -+ -5 8 Znn) - (48)

This allows us to write condition (47) explicitly, namely a point Q@ = w(P) =
(Z11s« -y Znns Wiy« -, Wyy ) is such that Q = 6(Q) if and only if all the follo-
wing conditions are satisfied
2y = 1Wy Wy = 125,
(49)

Znn = 1Wnn, Wpn = 1Zpn -
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Note that the conditions of one block are equivalent to those of the other block.

At this point we are able to describe explicitly the points of ¥ by means of
the map
u:Y - % given by (2)— ((2)]i(2)). (50)

In fact, by (49) the matrix ((z)|7(%2)) represents a real point of é¢, hence
a point of ¥. Notice that the restriction p to % of the canonical projection
%c = Y xY' —Y is such that

pou = idy . (51)

Now, if (2) € Yam, i.e. by (42) and (45), if rk(Z(z)) = n — 1, then
u((2)) € (6c)sm - Hence u((2)) € €wm because of (46).

On the other hand, if P = ((2)]i(Z)) € %sm then it is also a point of
(€c)sm, hence rk(Z(2)) =n—-1 and p(((2)]|i(Z))) € Ysm. By (51) the
point P of %, then comes via u from a smooth point of Y.

To summarize, we have constructed a real-analytic, bijective map
u: Yom — Gom

with real-analytic inverse. Since Y is an integral variety over C, of dimension
n? — 1, we can conclude

PROPOSITION 5.2. € is a real-analytic variety, of dimension 2(n? —1).
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