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Abstract. This is a survey covering sequential structures and their
applications to the foundations of probability theory. Sequential conver-
gence, convergence groups and the extension of sequentially continuous
maps belong to general topology and Trieste for long has been a center
of sequential topology. We begin with some personal reflections, con-
tinue with topological problems motivated by the extension of probability
measures, and close with some recent results related to the categorical
foundations of probability theory.
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1. Introduction

My PhD advisor Professor Josef Novák (1905 - 1999) and Professor Mario
Dolcher (1920 - 1997), the PhD advisor of Fabio Zanolin, have had a common
interest in sequential convergence and sequential topology (cf. [3]). Fabio
has solved some problems posed by Novák related to sequential convergence
spaces and groups ([37, 38]) and our personal meeting at the Prague Topological
Symposium in 1982 resulted in friendship, fruitful cooperation, and a series of
joint papers ([2, 12, 13, 14, 15, 16, 17, 18, 19]).

During my first visit of Italy in 1986, my homeland Slovakia (part of Czecho-
slovakia until 1993) and Italy have been separated by the Iron Curtain. That
time, due to the Helsinky Agreement in 1975, scientific contacts and even joint
research have been more easy and, thanks to a generous support by the Con-
siglio Nazionale delle Ricerche, I had both honor and pleasure to spend few
fantastic weeks within the mathematical community in Trieste. Besides inten-
sive joint research on convergence groups with Fabio, my plan was to present
some results of Novák and members of his research team. The topic was
“topological (sequential) aspects of the extension of measure”. While work-
ing on my colloquium presentation, I have solved the “product problem for
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sequential envelopes” (the product of sequential envelopes is equal to the se-
quential envelope of product, cf. [5]). The theory of sequential envelopes
and its applications to probability has been a big theme for people around
Novák ([5, 6, 9, 10, 25, 26, 29, 30, 31, 34]). Indeed, sequential envelopes
are epireflections similar to the Čech-Stone β-compactification, the Hewitt υ-
realcompactification, and the E-compactifications of S. Mrówka, for which the
product problems and their solutions are really “hard mathematics” (cf. [21]).
I remember being so happy, that even the bad news about Chernobyl looked
unimportant to me (that time the information was very limited).

At this point, let me provide some background information about Josef
Novák and his interest in the relationship between (sequential) topology and
probability. He was a student of Eduard Čech and hence a topologist by faith.
During WWII, Czech universities have been closed by the Nazi authorities and
Novák became involved in statistical applications. Continuity in applications
usually means sequential continuity, while the “real topology” means ultrafil-
ters, compactness, and the like. . . The idea of Novák was to utilize sequences
in general topology as much as possible (remember his construction of a regular
topological space every continuous function on which is constant). The exten-
sion of probability measures (in fact bounded sequentially continuous functions)
from a field A of subsets to the generated σ-field σ(A) served as a canonical
example in three directions.

1. Operations in A are sequentially continuous, hence we can study A as
a sequential convergence algebra (group) and σ(A) can be considered as its
sequential completion.

2. The sequential convergence in a field of sets is determined by probability
measures (a sequence {An}∞n=1 converges to A iff the sequence {p(An)}∞n=1 con-
verges to p(A) for all probability measures p) - a sequential version of complete
regularity of a topological space. The problem is to find suitable sequential
absolute properties of σ(A) analogous to absolute properties like compactness
or realcompactness.

3. Sequential convergence structures do not belong to the mainstream of
general topology, hence there was a need to develop a suitable classification of
such structures and to introduce characteristic properties guaranteeing relevant
constructions in the realm of sequential structures. Observe that sequences are
“short and meager”, so that analogous topological and sequential constructions
usually have different properties, for example, unlike βX and υX, the exten-
sion of bounded sequentially continuous functions and unbounded sequentially
continuous functions are equivalent constructions ([5]).

An interested reader can find more detailed information about sequential
structures in [6] and references therein.

In the present paper I will concentrate on the outcome of research related
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to the second of the three directions. Most of our joint research with Fabio
Zanolin concerned the other two directions. Here I mention two main themes
related to sequential convergence groups, also known as L-groups.

1. Free convergence groups. Beside being a natural construction, the free
group serves as a vehicle to transport properties of sequential convergence
spaces to L-groups (cf. [12, 14, 15, 16]).

2. Coarse convergence groups. To define a compatible sequential conver-
gence (we assume unique limits) for a given group G, it is the same as to define
a suitable subgroup of GN (the group of all sequences converging to the neutral
element of G). This relates algebraic properties of G, resp. GN , and certain
properties of the convergence in question. Coarse convergence means that it
cannot be enlarged without ruining the compatibility (e.g. the uniqueness of
limits). The coarseness can be characterized by an algebraic condition, which
results in an nice interplay between algebra and sequential topology. Coarse
groups have interesting nontrivial properties (cf. [2, 13, 17, 19, 35]).

2. Measure extension theorem and more

In this section we outline the basic ideas of Josef Novák related to the extension
of probability measures and leading to the notion of sequential envelope (cf. [8]).

Theorem 2.1 (METHM – classical). Let A be a field of sets, let σ(A) be the
generated σ-field, and let p be a probability measure on A. Then there exists a
unique probability measure p on σ(A) such that p(A) = p(A) for all A ∈ A.

The proof (usually based on the outer measure) can be found in any treatise
on measure. However, additional properties of σ(A) are usually not mentioned
there. J. Novák pointed out that from the ”topological viewpoint” σ(A) can
be viewed as a maximal object over which all probability measures on A can
be extended.

In order to make the text more self-contained, we recall some facts about
fields of sets. Let X be a set. Then each subset A ⊆ X can be viewed as the
indicator function χA ∈ {0, 1}X , χA(x) = 1 if x ∈ A and χA(x) = 0 other-
wise. Moreover, a sequence {An}∞n=1 converges to A (i.e. A = lim sup An =
lim inf An) iff the sequence {χAn

}∞n=1 converges pointwise to χA. If A is a field
of subsets of X, then the generated σ-field σ(A) is the smallest sequentially
closed subset of {0, 1}X containing A and A is sequentially dense in σ(A) (i.e.
each A ∈ σ(A) can be reached by iterations, up to ω1 times, of adding sequen-
tial limits, starting with sequences from A). Observe that if two probability
measures on σ(A) coincide on A, then a topological argument guarantees that
they are identical. Let A, B be fields of subsets of X and let A ⊆ B. A sequence
{An}∞n=1 of sets in A is said to be P -Cauchy if for each probability measure
p on A the sequence {p(An)}∞n=1 is a Cauchy sequence of real numbers. If for
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each probability measure p on A there exists a probability measure p on B such
that p(A) = p(A) for all A ∈ A, then A is said to be P -embedded in B.

Theorem 2.2. The following are equivalent
(i) A = σ(A);
(ii) Each P -Cauchy sequence converges in A;
(iii) A is sequentially closed in each field of sets B in which A is P -embedded.

Proof. (i) implies (ii). Assume (i) and let {An}∞n=1 be a P -Cauchy sequence
in A. Since each x ∈ X represents a point-probability, the sequence {An}∞n=1

(pointwise) converges in {0, 1}X . From A = σ(A) it follows that A is sequen-
tially closed and hence {An}∞n=1 converges in A.

(ii) implies (iii). Let A be P -embedded in B and let {An}∞n=1 be a sequence
in A which converges in B. Since each p ∈ P (B) is sequentially continuous,
{An}∞n=1 is P -Cauchy and hence converges in A.

(iii) implies (i). From the classical METHM it follows that A is P -embedded
in σ(A). Thus (iii) implies that A sequentially closed in σ(A) and hence A =
σ(A). This completes the proof.

Theorem 2.3 (METHM – Novák). Let A be a field of subsets of X and let
σ(A) be the generated σ-field. Then σ(A) is a maximal field of subsets of X in
which A is P -embedded and sequentially dense.

Proof. The assertion follows from the preceding theorem. Let A be a field of
subsets of X. Assume that A is P -embedded and sequentially dense in a field B.
Clearly, A is P -embedded and sequentially dense in σ(B). Since the generated
σ-field of a field of subsets of X is the smallest sequentially closed system in
{0, 1}X containing the field in question, necessarily σ(B) = σ(A). Thus σ(A)
is maximal. This completes the proof.

Observe that σ-fields form a special class of fields of subsets. Indeed, A
= σ(A) means that A has the following absolute property with respect to the
extension of probability measures (cf. [7]): A is sequentially closed in each field
of subsets in which it is P -embedded (in this respect, this absolute property is
similar to the compactness).

J. Novák showed that each bounded σ-additive measure on a ring of sets
A is sequentially continuous ([28]) and pointed out the topological aspects of
the extension of such measures on A over the generated σ-ring σ(A): it is of
a similar nature as the extension of bounded continuous functions on a com-
pletely regular topological space X over its Čech-Stone compactification βX
(or as the extension of continuous functions on X over its Hewitt realcompact-
ification υX). He developed a theory of sequential envelopes and (exploiting
the Measure Extension Theorem) he proved that σ(A) is the sequential enve-
lope of A with respect to the probabilities. However, the sequential continuity
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does not capture other properties (e.g. additivity) of probability measures. We
show that in the category ID of D-posets of fuzzy sets (such D-posets gener-
alize both fields of subsets and their fuzzy counterparts called bold algebras)
probabilities are morphisms and the extension of probabilities on A over σ(A)
is a completely categorical construction (an epireflection, see [1]).

Observation 2.4. Novák’s original construction of the sequential envelope of
a space X (a set carrying sequential convergence and the corresponding conver-
gence closure) with respect to a given class C0 of sequentially continuous func-
tions into [0, 1] follows the usual construction of β-compactification: embedding
X into the power [0, 1]C0 and taking the closure (instead of the product topology,
[0, 1]C0 carries the pointwise convergence, i.e. the categorical product conver-
gence, and instead of the topological closure we take the smallest sequentially
closed set containing the embedded X). In fact, this is a categorical construc-
tion of an epireflection of X, belonging to the category of space embeddable into
powers [0, 1]S, into the subcategory of spaces embeddable as sequentially closed
subspaces of powers [0, 1]S (cf. [5]).

Observation 2.5. In the realm of sequential convergence spaces, the sequen-
tially closed subspaces of categorical convergence powers [0, 1]S possess the qual-
ity of being absolutely sequentially closed with respect to the extension of sequen-
tially continuous functions of a given class, i.e., sequentially closed in every
larger space to which sequentially continuous functions of a given class can be
extended.

Observation 2.6. The category ID of D-posets of fuzzy sets is the result of
a quest for a natural domain of generalized random events in which “all goes
well”:

1. Both the classical Kolmogorovian probability theory, or CPT, and the
fuzzy probability theory, or FPT, initiated by A. L. Zadeh ([36]) “live as mini-
mal models having simple characteristic properties”.

2. Probability measures, observables (i.e. preimages of random variables)
and their fuzzy counterparts are morphisms.

3. Basic probability notions and constructions are categorical.

3. Notes on probability

In this section we present some notes about the foundations of probability. We
will put into a perspective CPT and FPT and show why in the category ID
“all goes well”.

A. N. Kolmogorov in his famous “Grundbegriffe” ([22]) has “mathematized”
probability via set-theoretic and maesure-theoretic constructions. Roughly,
random events are “measurable” subsets of the outcomes, and probability is a
measure (normed and σ-additive) on the random events. Observe that
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• Random events form a σ-complete lattice of sets;

• In fact, every random event, as a subset of Ω, is a propositional function
(Boolean logic).

In 1968 L. A. Zadeh ([36]) proposed to extend the classical probability to the
realm of fuzzy mathematics. His idea was to extend classical random events, i.e.
measurable {0, 1}-valued (propositional) functions, to fuzzy random events, i.e.
measurable [0, 1]-valued (propositional) functions, and the probability measure
to the integral with respect to a probability measure.

There are conceptual and theoretical differences and similarities between
randomness and fuzziness (cf. [24]).

• Both systems describe uncertainty with numbers in the unit interval [0, 1]
and both systems combine sets and propositions associatively, commuta-
tively, and distributively;

• The key distinction concerns how the systems deal with a thing A and
its opposite Ac;

• Classical logic and set theory assume that the law of noncontradiction
(the law of excluded middle) is never violated. That is what makes the
classical theory black or white;

• Fuzziness begins where Western logic ends. Fuzziness describes event
ambiguity. It measures the degree to which an event occurs, not whether
it occurs;

• Randomness describes the uncertainty of event occurrence. An event
occurs or not;

• At issue is the nature of the occurring event: whether it is uncertain in
any way, in particular whether it can be unambiguously distinguished
from its opposite.

In order to represent a classical object o

• We choose a set X of attributes;

• We identify o and the set Ao = {x ∈ X; o does have x}.

Observe that, in fact, o can be viewed as a propositional function o ∈ {0, 1}X

and x ∈ Ao iff the proposition o(x) is true. Clearly, x cannot be at the same
time in Ao and in its complement.

In order to represent a fuzzy object o

• We choose a set X of attributes;
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• We identify o and the fuzzy set o ∈ [0, 1]X , where o(x) is the degree to
which o possesses the attribute x.

Observe that, in fact, o can be viewed as a “fuzzy propositional function”
o ∈ {0, 1}X and o(x) tells us how much o is true at x. It can happen, that at
some x both o and its complement oc = 1X − o are “partially true”, i.e., both
o(x) and oc(x) = 1− o(x) are positive numbers.

Question: Is it possible to build a generalized probability so that the CPT
and FPT are special cases?

Answer: Yes.

• We start with a set X of attributes and the system of potential generalized
random events [0, 1]X carrying the natural pointwise partial order;

• Any minimal model of generalized random events X ⊆ [0, 1]X has to
contain the maximal and minimal random events (constant functions 0X ,
1X) and has to be closed with respect to the relative complementation:
if u, v ∈ X and v ≤ u, i.e. v(x) ≤ u(x) for all x ∈ X, then u− v ∈ X ;

• If we assume that it is a σ-complete lattice (defined pointwise), then
there exists a σ-field A of subsets of X such that A ⊆ X ⊆M(A), where
M(A) is the family of all measurable functions ranging in [0, 1];

• If we assume that X is divisible, i.e., for each u ∈ X and each natural
number n there exists v ∈ X such that nv = u, and a σ-complete lattice,
then X = M(A).

The last two items are in fact deep results about the structure of “fuzzy
random events” (cf. [27, Theorem 5.1]). To sum up, random events in CPT
and random events in FPT are the minimal models of random events in a
reasonable generalized probability; divisibility characterizes the transition from
random events in CPT to random events in FPT.

4. From extension to epireflection

This section is devoted to bold algebras, distinguished domains of generalized
probability (cf. [33]). First, we recall some notions used in the sequel.

D-posets have been introduced in [23] in order to model events in quantum
probability. They generalize Boolean algebras, MV -algebras and other proba-
bility domains (cf. [4]) and provide a category in which generalized probability
measures, called states, become morphisms. Recall that a D-poset is a par-
tially ordered set X with the greatest element 1X , the least element 0X , and
a partial binary operation called difference, such that a	 b is defined iff b ≤ a,
and the following axioms are assumed:
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(D1) a	 0X = a for each a ∈ X;

(D2) If c ≤ b ≤ a, then a	 b ≤ a	 c and (a	 c)	 (a	 b) = b	 c.

A map h of a D-poset X into a D-poset Y which preserves the D-structure is
said to be a D-homomorphism. Consider the unit interval I = [0, 1] carrying the
natural order, algebraic operations and convergence. Define a partial operation
“	” as follows: for a, b ∈ I, b ≤ a, put a	b = a−b. Then I carrying the natural
(total) order, together with the partial operation is a D-poset. A sequentially
continuous D- homomorphism of X into I is said to be a state.

Fundamental to applications are D-posets of fuzzy sets, i.e. systems X ⊆
[0, 1]X carrying the coordinatewise partial order, coordinatewise convergence
of sequences, containing the top and bottom elements of IX , and closed with
respect to the partial operation difference defined coordinatewise. We always
assume that X is reduced, i.e., for x, y ∈ X, x 6= y, there exists u ∈ X such
that u(x) 6= u(y). Denote ID the category having (reduced) D-posets of fuzzy
sets as objects and having sequentially continuous D-homomorphisms as mor-
phisms. Objects of ID are subobjects of the powers IX .

Recall ([4, 7]) that a bold algebra is a system X ⊆ [0, 1]X containing the
constant functions 0X , 1X and closed with respect to the usual  Lukasiewicz
operations: for u, v ∈ X put (u ⊕ v)(x) = u(x) ⊕ v(x) = min{1, u(x) + v(x)},
u∗(x) = 1−u(x), x ∈ X. Bold algebras are MV -algebras representable as [0, 1]-
valued functions, MV -algebras generalize Boolean algebras and bold algebras
generalize in a natural way fields of sets (viewed as indicator functions). More
information concerning MV -algebras and probability on MV -algebras can be
found in [33]. If a bold algebra X ⊆ [0, 1]X is sequentially closed in [0, 1]X (with
respect to the coordinatewise sequential convergence), then X is a  Lukasiewicz
tribe (X is closed not only with respect to finite, but also with respect to
countable  Lukasiewicz sums, cf. [7, Corollary 2.8]). Let X ⊆ [0, 1]X be a bold
algebra. Then [0, 1]X is a  Lukasiewicz tribe containing X and the intersection
of all  Lukasiewicz tribes Y ⊆ [0, 1]X such that X ⊆ Y is a  Lukasiewicz tribe;
it will be called the induced  Lukasiewicz tribe and denoted by σ(X ). Each
bold algebra can be considered as on object of ID. Finally, each bold algebra
X ⊆ [0, 1]X is a lattice, where for u, v ∈ X we have (u ∨ v)(x) = u(x) ∨ v(x)
and (u ∧ v)(x) = u(x) ∧ v(x), x ∈ X.

Denote FSD the full subcategory of ID the objects of which are fields of
sets and CFSD its full subcategory consisting of σ-fields. It is known (cf. [32])
that sequentially continuous D-homomorphisms of a field of sets ranging in I
are exactly σ-additive probability measures.

Denote BID the full subcategory of ID whose objects are bold algebras (the
morphisms are exactly sequentially continuous D-morphisms). Let CBID be



FROM PROBABILITY TO SEQUENCES AND BACK 293

the subcategory of BID consisting of  Lukasiewicz tribes (remember, a bold
algebra X ⊆ IX is a tribe iff X is a sequentially closed in IX).

Theorem 4.1. Let X ⊆ IX be a bold algebra and let σ(X ) ⊆ IX be the induced
 Lukasiewicz tribe. Let h be a sequentially continuous D-homomorphism of X
into a  Lukasiewicz tribe Y. Then h can be uniquely extended to a sequentially
continuous D-homomorphism hσ of σ(X ) into Y.

Proof. Let Y = σ(Y) ⊆ IY . For each y ∈ Y , let pry be the y-th projection
of IY to the factor space I{y}. Then each composition pry ◦ h is a state on
X and (cf. [7, Proposition 2.1]) it can be uniquely extended to a state pry ◦ h
on σ(X ). Since IY is a categorical product, there is a unique ID-morphism
hσ of σ(X ) into IY such that pry ◦ hσ = pry ◦ h. Clearly, for each u ∈ X and
each y ∈ Y we have pry ◦ h(u) = (pry ◦ h)(u). Hence hσ(u) = h(u) for each
u ∈ X . A topological argument shows that hσ maps σ(X ) into Y = σ(Y) and
that hσ is uniquely determined (indeed, the pointwise convergence has unique
limits, X is sequentially dense in σ(X ), hσ is sequentially continuous and hence
hσ(σ(X )) ⊆ σ((h(X )) ⊆ σ(Y) = Y, (cf. [30]).

Remark 4.2. If Y is the unit interval [0,1] carrying the canonical D-structure,
then the previous theorem becomes the usual ”State Extension Theorem” for
bold algebras.

Remark 4.3. Note that the embedding of a bold algebra X into σ(X ) is an
epimorphism (two morphisms on σ(X ) agreeing on X are identical). This is
a standard topological fact following from the uniqueness of limits, sequential
continuity of morphisms, and the sequential density of X in σ(X ) (cf. [30]).

Corollary 4.4. The subcategory CBID is an epireflective subcategory of BID.

Observe ([1]) that an epireflector is (roughly) a nice functor sending each
object having some fundamental properties to the unique object in the subcat-
egory of objects having some extreme properties, its epireflection, and sending
each morphism to the unique morphism of the epireflection of its domain into
the epireflection of its range (e.g. the completion of a metric space is an epire-
flection into complete metric spaces).

Corollary 4.5. The subcategory CFSD is an epireflective subcategory of FSD.

Proof. Let A ⊆ {0, 1}X be a field of subset of X and let σ(A) be the generated
σ-field. Let h be an ID-morphism of A into a σ-field B = σ(B). Clearly,
it suffices to prove that h can be uniquely extended to an ID-morphism hσ

of σ(A) into B. But σ(A) and B are the induced  Lukasiewicz tribes and the
assertion follows from Theorem 4.1.
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As stated earlier, in the category ID the extension of probability measures
on a field of subsets over the generated σ-field becomes a purely categorical
construction. Moreover, the categorical approach leads to a better understand-
ing of the foundations of probability theory (cf. [11, 20, 27]). Finally, observe
that the sequential continuity of morphisms plays an an important role.
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Hrabovská cesta 1, 034 01 Ružomberok, Slovak Republic
E-mail: fric@saske.sk

Received June 13, 2012
Revised September 28, 2012


