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Abstract. In the beginning of the 20th century, A. N. White-
head [39, 40] and T. de Laguna [9] proposed a new theory of space,
known as region-based theory of space. They did not present their ideas
in a detailed mathematical form. In 1997, P. Roeper [33] has shown
that the locally compact Hausdorff spaces correspond bijectively (up to
homeomorphism and isomorphism) to some algebraical objects which
represent correctly Whitehead’s ideas of region and contact relation,
generalizing in this way a previous analogous result of de Vries [10] con-
cerning compact Hausdorff spaces (note that even a duality for the cate-
gory of compact Hausdorff spaces and continuous maps was constructed
by de Vries [10]). Recently, a duality for the category of locally compact
Hausdorff spaces and continuous maps, based on Roeper’s results, was
obtained in [11] (it extends de Vries’ duality mentioned above). In this
paper, using the dualities obtained in [10, 11], we construct directly (i.e.
without the help of the corresponding topological spaces) the dual objects
of Euclidean spaces, spheres, tori and Tychonoff cubes; these algebraical
objects completely characterize the mentioned topological spaces. Thus,
a mathematical realization of the original philosophical ideas of White-
head [39, 40] and de Laguna [9] about Euclidean spaces is obtained.
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1. Introduction

The region-based theory of space is a kind of point-free geometry and can be
considered as an alternative to the well known Euclidean point-based theory
of space. Its main idea goes back to Whitehead [40] (see also [39]) and de
Laguna [9] and is based on a certain criticism of the Euclidean approach to the
geometry, where the points (as well as straight lines and planes) are taken as
the basic primitive notions. A. N. Whitehead and T. de Laguna noticed that
points, lines and planes are quite abstract entities which have not a separate
existence in reality and proposed to put the theory of space on the base of
some more realistic spatial entities. In Whitehead [40], the notion of a region is
taken as a primitive notion: it is an abstract analog of a spatial body; also some
natural relations between regions are regarded. In [39], Whitehead considered
some mereological relations like “part-of”, “overlap” and some others, while
in [40] he adopted from de Laguna [9] the relation of “contact” (“connectedness”
in Whitehead’s original terminology) as the only primitive relation between
regions except the relation “part-of”. The regular closed (or, equivalently,
regular open) subsets of a topological space X are usually considered as a
standard model of the regions in the point-based approach, and the standard
contact relation ρX between regular closed subsets of X is defined (again in the
point-based approach) as follows: FρXG⇔ F ∩G 6= ∅.

Let us note that neither Whitehead nor de Laguna presented their ideas in a
detailed mathematical form. This was done by some other mathematicians and
mathematically oriented philosophers who presented various versions of region-
based theory of space at different levels of abstraction. Here we can mention
Tarski [36], who rebuilt Euclidean geometry as an extension of mereology with
the primitive notion of a ball. Remarkable is also Grzegorczyk’s paper [27].
Models of Grzegorczyk’s theory are complete Boolean algebras of regular closed
sets of certain topological spaces equipped with the relation of separation which
in fact is the complement of Whitehead’s contact relation. On the same line
of abstraction is also the point-free topology [28]. Survey papers describing
various aspects and historical remarks on region-based theory of space are [5,
24, 31, 37].

Let us mention that Whitehead’s ideas about region-based theory of space
flourished and in a sense were reinvented and applied in some areas of com-
puter science: Qualitative Spatial Reasoning (QSR), knowledge representation,
geographical information systems, formal ontologies in information systems,
image processing, natural language semantics etc. The reason is that the lan-
guage of region-based theory of space allows the researches to obtain a more
simple description of some qualitative spatial features and properties of space
bodies. Survey papers concerning various applications are [6, 7] (see also the
special issues of “Fundamenta Informaticae” [14] and “Journal of Applied Non-
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classical Logics” [4]). One of the most popular among the community of QSR-
researchers is the system of Region Connection Calculus (RCC) introduced by
Randell, Cui and Cohn [32]. RCC attracted quite intensive research in the
field of region-based theory of space, both on its applied and mathematical
aspects. For instance it was unknown for some time which topological mod-
els correspond adequately to RCC; this fact stimulated the investigations of a
topological representation theory of RCC and RCC-like systems (see [13, 15]).
Another impact of region-based theory of space is that it stimulated the ap-
pearance of a new area in logic, namely “Spatial Logics” [2], called sometimes
“Logics of Space”.

The ideas of de Laguna and Whitehead lead naturally to the following
general programme (or general region-based theory of space):

• for every topological space X belonging to some class C of topological
spaces, define in topological terms:

(a) a family R(X) of subsets ofX that will serve as models of Whitehead’s
“regions” (and call the elements of the family R(X) regions of X);

(b) a relation ρX on R(X) that will serve as a model of Whitehead’s re-
lation of “contact” (and call the relation ρX a contact relation on R(X));

• choose some (algebraic) structure which is inherent to the families R(X)
and contact relations ρX , for X ∈ C, fix some kind of morphisms between
the obtained (algebraic) objects and build in this way a category A;

• find a subcategory T of the category of topological spaces and continuous
maps which is equivalent or dually equivalent to the category A trough
a (contravariant) functor that assigns to each object X of T the chosen
(algebraic) structure of the family of all regions of X.

If all of this is done then, in particular, the chosen (algebraic) structure
of the regions of any object X of T is sufficient for recovering completely
(of course, up to homeomorphism) the whole space X. Hence, in this way,
a “region-based theory” of the objects and morphisms of the category T is
obtained.

Of course, during the realization of this programme, one can find the cate-
gory A starting with the category T , if the later is the desired one.

The M. Stone [35] duality between the category of Boolean algebras and
their homomorphisms and the category of compact zero-dimensional Hausdorff
spaces and continuous maps can be regarded as a first realization of this pro-
gramme, although M. Stone came to his results guided by ideas which are com-
pletely different from those of Whitehead and de Laguna. In M. Stone’s theory,
the clopen (= closed and open) subsets of a topological space serve as models
of the regions; here, however, the contact relation ρ is hidden, because it can be
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defined by the Boolean operations (indeed, we have that aρb ⇐⇒ a ∧ b 6= 0).
The localic duality (see, e.g., [28, Corollary II.1.7]) between the category of
spatial frames and functions preserving finite meets and arbitrary joins and
the category of sober spaces and continuous maps can also be regarded as a re-
alization of the ideas of the general region-based theory of space: in it the open
subsets of a topological space serve as models of the regions and, as above, the
contact relation ρ between the regions is hidden because it can be recovered
by the lattice operations (indeed, we have that aρb ⇐⇒ a ∧ b 6= 0). The
de Vries duality [10] for the category HC of compact Hausdorff spaces and
continuous maps is the first realization of the ideas of the general region-based
theory of space in their full generality and strength (and again, as it seems,
de Vries was unaware of the papers [9] and [40]): the models of the regions
in de Vries’ theory are the regular closed sets and, in contrast to the case
of the Stone duality and localic duality, the contact relation between regions,
which is in the basis of de Vries’ duality theorem, cannot be derived from the
Boolean structure on the regions. (Note that in [10], instead of the Boolean
algebra RC(X) of regular closed sets, the Boolean algebra RO(X) of regular
open sets was regarded (RO(X) and RC(X) are isomorphic); also, instead of
the relation ρX on the set RC(X) which was described above (let us recall it:
FρXG ⇐⇒ F ∩G 6= ∅), de Vries used in [10] the so-called “compingent rela-
tion” between regular open sets whose counterpart for RC(X) is the relation
�X , defined by F �X G ⇐⇒ F ⊆ int(G), for F,G ∈ RC(X); the relations
ρX and �X are inter-definable.) It is natural to try to extend de Vries’ Duality
Theorem to the category HLC of locally compact Hausdorff spaces and con-
tinuous maps. An important step in this direction was done by P. Roeper [33].
Being guided by the ideas of de Laguna [9] and Whitehead [40], he proved that
there is a bijective correspondence between all (up to homeomorphism) locally
compact Hausdorff spaces and all (up to isomorphism) algebras of some sort
called by him “region-based topologies” (we call them complete LC-algebras).
The notion of a complete LC-algebra, introduced by Roeper [33], is an ab-
straction of the triples (RC(X), ρX , CR(X)), where X is a locally compact
Hausdorff space and CR(X) is the ideal of all compact regular closed subsets
of X. P. Roeper [33] showed that every complete LC-algebra can be realized as
a triple (RC(X), ρX , CR(X)), where X is a uniquely (up to homeomorphism)
determined locally compact Hausdorff space. In [11], using Roeper’s result,
we obtained a duality between the category HLC and the category DHLC
of complete LC-algebras and appropriate morphisms between them; it is an
extension of de Vries’ duality mentioned above; the dual object of a locally
compact Hausdorff space X is the triple (RC(X), ρX , CR(X)) which will be
called the Roeper triple of the space X. Let us note that the famous Gelfand
duality [20, 21, 22, 23] also gives an algebraical description of (locally) compact
Hausdorff spaces but it is not in the spirit of the ideas of Whitehead and de
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Laguna.

A description of the dual object of the real line under the localic duality
(i.e., a description of the frame (or locale) determined by the topology of the
real line) without the help of the real line was given by Fourman and Hy-
land [19] (see, also, Grayson [26] and Johnstone [28, IV.1.1-IV.1.3]), assuming
the set of rationals as given. As we have seen above, the ideas of the localic
duality are in the spirit of the ideas of the general region-based theory of space
but, nevertheless, they are far from the well-known and commonly accepted
interpretations of the original philosophical ideas of Whitehead [39, 40] and de
Laguna [9] given in [27] and [33] (see also [32]).

In this paper we construct directly the dual objects of Euclidean spaces,
spheres, tori and Tychonoff cubes under the dualities obtained in [10, 11],
i.e. we construct the complete LC-algebras isomorphic to the Roeper triples
(see [33]) of these spaces without the help of the corresponding spaces, assuming
the set of natural numbers as given. For doing this, we first obtain some direct
descriptions of the DHLC-sums of complete LC-algebras and the DHC-sums
of complete NC-algebras (where DHC is the de Vries category dual to the
category HC, and the objects of the category DHC are the complete NC-
algebras) using the dualities obtained in [10] and [11]. Let us note explicitly
that, as it follows from the results of de Vries [10] and Roeper [33], the Euclidean
spaces, spheres, tori and Tychonoff cubes can be completely reconstructed as
topological spaces from the algebraical objects which we describe in this paper.
Therefore, our results can be regarded as a mathematical realization of the
original philosophical ideas of Whitehead [39, 40] and de Laguna [9] about
Euclidean spaces; this realization is in accordance with the Grzegorczyk’s [27]
and Roeper’s [33] mathematical interpretations of these ideas.

We now fix the notation.

If C denotes a category, we write X ∈ |C| if X is an object of C, and
f ∈ C(X,Y ) if f is a morphism of C with domain X and codomain Y .

All lattices are with top (= unit) and bottom (= zero) elements, denoted
respectively by 1 and 0. We do not require the elements 0 and 1 to be distinct.

If (X, τ) is a topological space and M is a subset of X, we denote by
cl(X,τ)(M) (or simply by cl(M) or clX(M)) the closure of M in (X, τ) and
by int(X,τ)(M) (or briefly by int(M) or intX(M)) the interior of M in (X, τ).
The Alexandroff compactification of a locally compact Hausdorff non-compact
space X will be denoted by αX. The positive natural numbers are denoted by
IN+, the real line (with its natural topology) – by R, the n-dimensional sphere
(with its natural topology) – by Sn (here n ∈ IN+).
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2. Preliminaries

Definition 2.1. An algebraic system (B, 0, 1,∨,∧, ∗, C) is called a contact
Boolean algebra or, briefly, contact algebra (abbreviated as CA or C-algebra)
([13]) if the system (B, 0, 1,∨,∧, ∗) is a Boolean algebra (where the operation
“complement” is denoted by “ ∗ ”) and C is a binary relation on B, satisfying
the following axioms:
(C1) If a 6= 0 then aCa;
(C2) If aCb then a 6= 0 and b 6= 0;
(C3) aCb implies bCa;
(C4) aC(b ∨ c) iff aCb or aCc.
We shall simply write (B,C) for a contact algebra. The relation C is called
a contact relation. When B is a complete Boolean algebra, we will say that
(B,C) is a complete contact Boolean algebra or, briefly, complete contact
algebra (abbreviated as CCA or CC-algebra). If a ∈ B and D ⊆ B, we will
write “aCD” for “(∀d ∈ D)(aCd)”.

We will say that two C-algebras (B1, C1) and (B2, C2) are CA-isomorphic iff
there exists a Boolean isomorphism ϕ : B1 −→ B2 such that, for each a, b ∈ B1,
aC1b iff ϕ(a)C2ϕ(b). Note that in this paper, by a “Boolean isomorphism”
we understand an isomorphism in the category Bool of Boolean algebras and
Boolean homomorphisms.

A contact algebra (B,C) is called a normal contact Boolean algebra or,
briefly, normal contact algebra (abbreviated as NCA or NC-algebra) ([10, 18])
if it satisfies the following axioms which are very similar to the Efremovič [16]
axioms of proximity spaces (we will write “− C” for “not C”):
(C5) If a(−C)b then a(−C)c and b(−C)c∗ for some c ∈ B;
(C6) If a 6= 1 then there exists b 6= 0 such that b(−C)a.
A normal CA is called a complete normal contact Boolean algebra or, briefly,
complete normal contact algebra (abbreviated as CNCA or CNC-algebra) if
it is a CCA. The notion of a normal contact algebra was introduced by Fe-
dorchuk [18] under the name Boolean δ-algebra as an equivalent expression
of the notion of a compingent Boolean algebra of de Vries (see its definition
below). We call such algebras “normal contact algebras” because they form a
subclass of the class of contact algebras and naturally arise in normal Hausdorff
spaces.

Note that if 0 6= 1 then the axiom (C2) follows from the axioms (C6)
and (C4).

For any CA (B,C), we define a binary relation “ �C” on B (called non-
tangential inclusion) by “ a �C b ↔ a(−C)b∗ ”. Sometimes we will write
simply “ �” instead of “ �C”.

The relations C and � are inter-definable. For example, normal contact
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algebras could be equivalently defined (and exactly in this way they were in-
troduced (under the name of compingent Boolean algebras) by de Vries in [10])
as a pair of a Boolean algebra B = (B, 0, 1,∨,∧, ∗) and a binary relation � on
B subject to the following axioms:

(�1) a� b implies a ≤ b;
(�2) 0 � 0;
(�3) a ≤ b� c ≤ d implies a� d;
(�4) a� c and b� c implies a ∨ b� c;
(�5) If a� c then a� b� c for some b ∈ B;
(�6) If a 6= 0 then there exists b 6= 0 such that b� a;
(�7) a� b implies b∗ � a∗.

Note that if 0 6= 1 then the axiom (�2) follows from the axioms (�3),
(�4), (�6) and (�7).

Obviously, contact algebras could be equivalently defined as a pair of a
Boolean algebra B and a binary relation � on B subject to the axioms (�1)-
(�4) and (�7).

It is easy to see that axiom (C5) (resp., (C6)) can be stated equivalently in
the form of (�5) (resp., (�6)).

Example 2.2. Recall that a subset F of a topological space (X, τ) is called
regular closed if F = cl(int(F )). Clearly, F is regular closed iff it is the closure
of an open set.

For any topological space (X, τ), the collection RC(X, τ) (we will often
write simply RC(X)) of all regular closed subsets of (X, τ) becomes a complete
Boolean algebra (RC(X, τ), 0, 1,∧,∨, ∗) under the following operations:

1 = X, 0 = ∅, F ∗ = cl(X \ F ), F ∨G = F ∪G,F ∧G = cl(int(F ∩G)).

The infinite operations are given by the formulae:∨
{Fγ | γ ∈ Γ} = cl

(⋃
{Fγ | γ ∈ Γ}

) (
= cl

(⋃
{int(Fγ) | γ ∈ Γ}

))
,

and ∧
{Fγ | γ ∈ Γ} = cl

(
int
(⋂

{Fγ | γ ∈ Γ}
))

.

It is easy to see that setting Fρ(X,τ)G iff F ∩ G 6= ∅, we define a con-
tact relation ρ(X,τ) on RC(X, τ); it is called a standard contact relation. So,
(RC(X, τ), ρ(X,τ)) is a CCA (it is called a standard contact algebra). We
will often write simply ρX instead of ρ(X,τ). Note that, for F,G ∈ RC(X),
F �ρX

G iff F ⊆ intX(G).
Clearly, if (X, τ) is a normal Hausdorff space then the standard contact

algebra (RC(X, τ), ρ(X,τ)) is a complete NCA.
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A subset U of (X, τ) such that U = int(cl(U)) is said to be regular open.
The set of all regular open subsets of (X, τ) will be denoted by RO(X, τ) (or
briefly, by RO(X)).

The following notion is a lattice-theoretical counterpart of Leader’s notion
of a local proximity ([30]):

Definition 2.3 ([33]). An algebraic system B l = (B, 0, 1,∨,∧, ∗, ρ, IB) is called
a local contact Boolean algebra or, briefly, local contact algebra (abbreviated
as LCA or LC-algebra) if (B, 0, 1,∨,∧, ∗) is a Boolean algebra, ρ is a binary
relation on B such that (B, ρ) is a CA, and IB is an ideal (possibly non proper)
of B, satisfying the following axioms:
(BC1) If a ∈ IB, c ∈ B and a �ρ c then a �ρ b �ρ c for some b ∈ IB (see
Definition 2.1 for “ �ρ”);
(BC2) If aρb then there exists an element c of IB such that aρ(c ∧ b);
(BC3) If a 6= 0 then there exists b ∈ IB \ {0} such that b�ρ a.

We shall simply write (B, ρ, IB) for a local contact algebra. We will say that
the elements of IB are bounded and the elements of B\IB are unbounded. When
B is a complete Boolean algebra, the LCA (B, ρ, IB) is called a complete local
contact Boolean algebra or, briefly, complete local contact algebra (abbreviated
as CLCA or CLC-algebra).

We will say that two local contact algebras (B, ρ, IB) and (B1, ρ1, IB1) are
LCA-isomorphic if there exists a Boolean isomorphism ϕ : B −→ B1 such
that, for a, b ∈ B, aρb iff ϕ(a)ρ1ϕ(b), and ϕ(a) ∈ IB1 iff a ∈ IB. A map
ϕ : (B, ρ, IB) −→ (B1, ρ1, IB1) is called an LCA-embedding if ϕ : B −→ B1

is an injective Boolean homomorphism (i.e. Boolean monomorphism) and,
moreover, for any a, b ∈ B, aρb iff ϕ(a)ρ1ϕ(b), and ϕ(a) ∈ IB1 iff a ∈ IB.

Remark 2.4. Note that if (B, ρ, IB) is a local contact algebra and 1 ∈ IB then
(B, ρ) is a normal contact algebra. Conversely, any normal contact algebra
(B,C) can be regarded as a local contact algebra of the form (B,C,B).

Definition 2.5 ([38]). Let (B, ρ, IB) be a local contact algebra. Define a binary
relation “Cρ,IB” on B by

aCρ,IBb iff aρb or a, b 6∈ IB. (1)

It is called the Alexandroff extension of ρ relatively to the LCA (B, ρ, IB) (or,
when there is no ambiguity, simply, the Alexandroff extension of ρ).

The following lemma is a lattice-theoretical counterpart of a theorem from
Leader’s paper [30].

Lemma 2.6 ([38]). Let (B, ρ, IB) be a local contact algebra. Then (B,Cρ,IB),
where Cρ,IB is the Alexandroff extension of ρ, is a normal contact algebra.
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Notation. Let (X, τ) be a topological space. We denote by CR(X, τ) the
family of all compact regular closed subsets of (X, τ). We will often write
CR(X) instead of CR(X, τ).

Proposition 2.7 ([33]). Let (X, τ) be a locally compact Hausdorff space. Then
the triple (RC(X, τ), ρ(X,τ), CR(X, τ)) (see Example 2.2 for ρ(X,τ)) is a com-
plete local contact algebra; it is called a standard local contact algebra.

The next theorem was proved by Roeper[33] (but its particular case concern-
ing compact Hausdorff spaces and NC-algebras was proved by de Vries [10]).

Theorem 2.8 (P. Roeper [33] for locally compact spaces and de Vries [10] for
compact spaces). There exists a bijective correspondence Ψt between the class
of all (up to homeomorphism) locally compact Hausdorff spaces and the class
of all (up to isomorphism) CLC-algebras; its restriction to the class of all (up
to homeomorphism) compact Hausdorff spaces gives a bijective correspondence
between the later class and the class of all (up to isomorphism) CNC-algebras.

Let us recall the definition of the correspondence Ψt mentioned in the above
theorem: if (X, τ) is a locally compact Hausdorff space then

Ψt(X, τ) = (RC(X, τ), ρ(X,τ), CR(X, τ)) (2)

(see Proposition 2.7 for the notation).

Definition 2.9 (De Vries [10]). Let HC be the category of all compact Haus-
dorff spaces and all continuous maps between them.

Let DHC be the category whose objects are all complete NC-algebras and
whose morphisms are all functions ϕ : (A,C) −→ (B,C ′) between the objects
of DHC satisfying the conditions:
(DVAL1) ϕ(0) = 0;
(DVAL2) ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b), for all a, b ∈ A;
(DVAL3) If a, b ∈ A and a�C b, then (ϕ(a∗))∗ �C′ ϕ(b);
(DVAL4) ϕ(a) =

∨
{ϕ(b) | b�C a}, for every a ∈ A,

and let the composition “�” of two morphisms ϕ1 : (A1, C1) −→ (A2, C2) and
ϕ2 : (A2, C2) −→ (A3, C3) of DHC be defined by the formula

ϕ2 � ϕ1 = (ϕ2 ◦ ϕ1)̌ , (3)

where, for every function ψ : (A,C) −→ (B,C ′) between two objects of DHC,
ψˇ : (A,C) −→ (B,C ′) is defined as follows:

ψ (̌a) =
∨
{ψ(b) | b�C a}, (4)

for every a ∈ A.
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De Vries [10] proved the following duality theorem:

Theorem 2.10 ([10]). The categories HC and DHC are dually equivalent.

In [11], an extension of de Vries’ Duality Theorem to the category of locally
compact Hausdorff spaces and continuous maps was obtained. Let us recall its
formulation.

Definition 2.11 ([11]). Let HLC be the category of all locally compact Haus-
dorff spaces and all continuous maps between them.

Let DHLC be the category whose objects are all complete LC-algebras and
whose morphisms are all functions ϕ : (A, ρ, IB) −→ (B, η, IB′) between the
objects of DHLC satisfying conditions
(DLC1) ϕ(0) = 0;
(DLC2) ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b), for all a, b ∈ A;
(DLC3) If a ∈ IB, b ∈ A and a�ρ b, then (ϕ(a∗))∗ �η ϕ(b);
(DLC4) For every b ∈ IB′ there exists a ∈ IB such that b ≤ ϕ(a);
(DLC5) ϕ(a) =

∨
{ϕ(b) | b ∈ IB, b�ρ a}, for every a ∈ A;

let the composition “�” of two morphisms ϕ1 : (A1, ρ1, IB1) −→ (A2, ρ2, IB2)
and ϕ2 : (A2, ρ2, IB2) −→ (A3, ρ3, IB3) of DHLC be defined by the formula

ϕ2 � ϕ1 = (ϕ2 ◦ ϕ1)̌ , (5)

where, for every function ψ : (A, ρ, IB) −→ (B, η, IB′) between two objects of
DHLC, ψˇ : (A, ρ, IB) −→ (B, η, IB′) is defined as follows:

ψ (̌a) =
∨
{ψ(b) | b ∈ IB, b�ρ a}, (6)

for every a ∈ A.
(We used here the same notation as in Definition 2.9 for the composition

between the morphisms of the category DHLC and for the functions of the type
ψˇ because the NC-algebras can be regarded as those LC-algebras (A, ρ, IB) for
which A = IB, and hence the right sides of the formulae (6) and (4) coincide
in the case of NC-algebras.)

It can be shown that condition (DLC3) in Definition 2.11 can be replaced
by any of the following four constrains:

(DLC3′) If a, b ∈ IB and a�ρ b, then (ϕ(a∗))∗ �η ϕ(b).
(DLC3S) If a, b ∈ A and a�ρ b, then (ϕ(a∗))∗ �η ϕ(b).
(LC3) If, for i = 1, 2, ai ∈ IB, bi ∈ A and ai �ρ bi, then ϕ(a1 ∨ a2) �η

ϕ(b1) ∨ ϕ(b2).
(LC3S) If, for i = 1, 2, ai, bi ∈ A and ai �ρ bi, then ϕ(a1∨a2) �η ϕ(b1)∨ϕ(b2).

Theorem 2.12 ([11]). The categories HLC and DHLC are dually equivalent.
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The duality, constructed in Theorem 2.12 and denoted by Ψt : HLC −→
DHLC, is an extension of the Roeper’s correspondence Ψt defined by (2) (i.e.
the definition of the contravariant functor Ψt on the objects of the category
HLC coincides with the definition of the Roeper’s correspondence).

We will also need a lemma from [8]:

Lemma 2.13. Let X be a dense subspace of a topological space Y . Then the
functions r : RC(Y ) −→ RC(X), F 7→ F ∩ X, and e : RC(X) −→ RC(Y ),
G 7→ clY (G), are Boolean isomorphisms between Boolean algebras RC(X) and
RC(Y ), and e ◦ r = idRC(Y ), r ◦ e = idRC(X).

For the notions and notation not defined here see [1, 17, 28, 34].

3. Sums in the categories DHLC and DHC

In [12], we described the DHLC-products of complete local contact algebras.
Here we will describe the DHLC-sums of finite families of complete local con-
tact algebras and the DHC-sums of arbitrarily many complete contact algebras
using the notion of a sum of a family of Boolean algebras (see [25]) which is
known also as a free product (see [29]). (We will denote the sum of a family
{Aγ | γ ∈ Γ} of Boolean algebras by

⊕
γ∈ΓAγ (as in [29]).) Note that the sums

(resp., finite sums) in the category DHC (resp., DHLC) surely exist because
the dual category HC (resp., HLC) of all compact (resp., locally compact)
Hausdorff spaces and continuous maps has products (resp., finite products).

Let us recall the definition of the notion of a sum of a family (Ai)i∈I of
Boolean algebras (see, e.g. [29]): a pair (A, (ei)i∈I) is a sum of (Ai)i∈I if A is
a Boolean algebra, each ei is a homomorphism from Ai into A and, for every
family (fi)i∈I of homomorphisms from Ai into any Boolean algebra B, there is
a unique homomorphism f : A −→ B such that f ◦ ei = fi for i ∈ I. It is well
known that every family of Boolean algebras has, up to isomorphism, a unique
sum. Recall, as well, that a family (Bi)i∈I of subalgebras of a Boolean algebra
A is independent if, for arbitrary n ∈ IN+, pairwise distinct i(1), . . . , i(n) ∈ I
and non-zero elements bi(k) of Bi(k), for k = 1, . . . , n, bi(1) ∧ . . . ∧ bi(n) > 0 in
A. The following characterization of the sums holds (see, e.g., [29]):

Proposition 3.1. Let A be a Boolean algebra and, for i ∈ I, ei : Ai −→ A a
homomorphism; assume that no Ai is trivial. The pair (A, (ei)i∈I) is a sum of
(Ai)i∈I iff each of (a) through (c) holds:

(a) each ei : Ai −→ A is an injection,
(b) (ei(Ai))i∈I is an independent family of subalgebras of A,
(c) A is generated by

⋃
i∈I ei(Ai).

Moreover, if (A, (ei)i∈I) is a sum of (Ai)i∈I then
(d) ei(Ai) ∩ ej(Aj) = {0, 1}, for i 6= j.
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We start with a proposition which should be known, although I was not
able to find it in the literature. Recall that a topological space X is called
semiregular if RO(X) is a base of X. By a completion of a Boolean algebra A,
we will understand the MacNeille completion of A.

Proposition 3.2. Let {Xγ | γ ∈ Γ} be a family of semiregular topological
spaces and X =

∏
{Xγ | γ ∈ Γ}. Then the Boolean algebra RC(X) is isomor-

phic to the completion of
⊕

γ∈ΓRC(Xγ).

Proof. Let, for every γ ∈ Γ, πγ : X −→ Xγ be the projection. Using the fact
that πγ is an open map (and, thus, the formulae cl(π−1

γ (M)) = π−1
γ (cl(M))

and int(π−1
γ (M)) = π−1

γ (int(M)) hold for every M ⊆ Xγ) (see, e.g., [17]), it
is easy to show, that the map ϕγ : RC(Xγ) −→ RC(X), F 7→ π−1

γ (F ), is a
complete monomorphism for every γ ∈ Γ. Set Aγ = ϕγ(RC(Xγ)), for every
γ ∈ Γ, and let A be the subalgebra of RC(X) generated by

⋃
{Aγ | γ ∈ Γ}.

It is easy to check that, for every finite non-empty subset Γ0 of Γ, we have
that if aγ ∈ Aγ \ {0} for every γ ∈ Γ0, then

∧
{aγ | γ ∈ Γ0} 6= 0 (i.e. the

family {Aγ | γ ∈ Γ} is an independent family (see, e.g., [29])). Thus, by [29,
Proposition 11.4], we get that A =

⊕
γ∈ΓRC(Xγ). Since RO(Xγ) is a base of

Xγ , for every γ ∈ Γ, we obtain that A is a dense subalgebra of RC(X). Thus,
RC(X) is the completion of A.

The proof of this proposition shows that the following is even true:

Corollary 3.3. Let {Xγ | γ ∈ Γ} be a family of semiregular topological spaces
and X =

∏
{Xγ | γ ∈ Γ}. Let, for every γ ∈ Γ, Bγ be a subalgebra of RC(Xγ)

such that {int(F ) | F ∈ Bγ} is a base of Xγ . Then the Boolean algebra RC(X)
is isomorphic to the completion of

⊕
γ∈ΓBγ .

Definition 3.4. Let n ∈ N+ and let, for every i = 1, . . . , n, (Ai, ρi, IBi) be a
CLCA. Let

(A, (ϕi)n
i=1) =

n⊕
i=1

Ai,

where, for every i ∈ {1, . . . , n},

ϕi : Ai −→ A

is the canonical complete monomorphism, and let Ã be the completion of A.
We can suppose, without loss of generality, that A ⊆ Ã. Set

E =

{
n∧

i=1

ϕi(ai) | ai ∈ IBi

}

and let ĨB be the ideal of Ã generated by E (thus,

ĨB = {x ∈ Ã | x ≤ e1 ∨ . . . ∨ en for some n ∈ IN+ and e1, . . . , en ∈ E}).
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For every two elements a =
∧n

i=1 ϕi(ai) and b =
∧n

i=1 ϕi(bi) of E, set

aρ̃b⇔ (aiρibi,∀i ∈ {1, . . . , n}).

Further, for every two elements c and d of ĨB, set

c(−ρ̃)d⇔
(
∃k, l ∈ N+ and ∃c1, . . . , ck, d1, . . . , dl ∈ E such that

c ≤
k∨

i=1

ci, d ≤
l∨

j=1

dj and ci(−ρ̃)dj , ∀i = 1, . . . , k and ∀j = 1, . . . , l
)
.

Finally, for every two elements a and b of Ã, set

aρ̃b⇔ (∃c, d ∈ ĨB such that c ≤ a, d ≤ b and cρ̃d).

Then the triple (Ã, ρ̃, ĨB) will be denoted by
⊕n

i=1(Ai, ρi, IBi).

Theorem 3.5. Let n ∈ IN+ and A = {(Ai, ρi, IBi) | i = 1, . . . , n} be a family
of CLCAs. Then

⊕n
i=1(Ai, ρi, IBi) is a DHLC-sum of the family A.

Proof. As the Duality Theorem 2.12 shows, for every i ∈ {1, . . . , n} there exists
a Xi ∈ |HLC| such that the CLCAs (RC(Xi), ρXi , CR(Xi)) and (Ai, ρi, IBi)
are LCA-isomorphic. Let X =

∏n
i=1Xi. Then we have, in the notation of

Definition 3.4, that the Boolean algebras RC(X) and Ã are isomorphic (see
Proposition 3.2). Also, again in the notation of Definition 3.4, (A, (ϕi)n

i=1) is
isomorphic to (

⊕n
i=1RC(Xi), (ψi)n

i=1), where ψi : RC(Xi) −→ RC(X), F 7→
π−1

i (F ), and πi : X −→ Xi is the projection, for every i ∈ {1, . . . , n} (this
follows from Proposition 3.1). Thus, the set E from Definition 3.4 corresponds
to the following set:

E′ =

{
n∧

i=1

ψi(Fi) | Fi ∈ CR(Xi)

}
.

Let F ∈ E′. Then there exist Fi ∈ CR(Xi), for i = 1, . . . , n, such that F =∧n
i=1 ψi(Fi). Set Ui = intXi

(Fi), for i = 1, . . . , n. Then F =
∧n

i=1 π
−1
i (Fi) =

clX(
⋂n

i=1 intX(π−1
i (Fi))) = clX(

⋂n
i=1 π

−1
i (Ui)) = cl(

∏n
i=1 Ui) =

∏n
i=1 Fi (note

that we used [17, 1.4.C,2.3.3] here). Hence, for every F,G ∈ E′, where F =∏n
i=1 Fi and G =

∏n
i=1Gi, we have that

FρXG⇔ F ∩G 6= ∅ ⇔ (Fi∩Gi 6= ∅,∀i = 1, . . . , n) ⇔ (FiρXi
Gi,∀i = 1, . . . , n).

Further, since {
∏n

i=1 Ui | Ui ∈ RO(Xi),∀i = 1, . . . , n} is a base of X and X is
regular, we obtain that CR(X) coincides with the ideal of RC(X) generated
by E′. The fact that every two disjoint compact subsets of X can be separated
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by open sets implies that if F,G ∈ CR(X) then F (−ρX)G (i.e. F ∩ G = ∅)
iff there exists finitely many elements F1, . . . , Fk, G1, . . . , Gl ∈ E′ such that
F ⊆

⋃k
i=1 Fi, G ⊆

⋃l
i=1Gi and Fi ∩ Gj = ∅ (i.e. Fi(−ρX)Gj) for all i =

1, . . . , k and all j = 1, . . . , l. Finally, since (RC(X), ρX , CR(X)) is an LCA (see
2.7), we have (by (BC2)) that for any F ′, G′ ∈ RC(X), F ′ρXG

′ ⇔ ∃F,G ∈
CR(X) such that F ⊆ F ′, G ⊆ G′ and FρXG. All this shows that the triple
(Ã, ρ̃, ĨB) from 3.4 is an LCA which is LCA-isomorphic to (RC(X), ρX , CR(X)).
Now, using Theorem 2.12 and the facts that Ψt(X) = (RC(X), ρX , CR(X)),
Ψt(Xi) = (RC(Xi), ρXi , CR(Xi)) for all i = 1, . . . , n, and X is a HLC-product
of the family {Xi | i = 1, . . . , n}, we get that (RC(X), ρX , CR(X)) is a DHLC-
sum of the family {(RC(Xi), ρXi

, CR(Xi)) | i = 1, . . . , n}. Thus (Ã, ρ̃, ĨB) is a
DHLC-sum of the family {(Ai, ρi, IBi) | i = 1, . . . , n}.

Definition 3.6. Let J be a set and let, for every j ∈ J , (Aj , ρj) be a CNCA.
Let

(A, (ϕj)j∈J) =
⊕
j∈J

Aj ,

where, for every j ∈ J ,
ϕj : Aj −→ A

is the canonical complete monomorphism, and let Ã be the completion of A.
We can suppose, without loss of generality, that A ⊆ Ã. Set

E =

{∧
i∈I

ϕi(ai) | I ⊆ J, |I| < ℵ0, ai ∈ Ai,∀i ∈ I

}
.

For every two elements a =
∧

i∈I1
ϕi(ai) and b =

∧
i∈I2

ϕi(bi) of E, set

aρ̃b⇔ (aiρibi,∀i ∈ I1 ∩ I2).

Further, for every two elements c and d of Ã, set

c(−ρ̃)d⇔
(
∃k, l ∈ N+ and ∃c1, . . . , ck, d1, . . . , dl ∈ E such that

c ≤
k∨

i=1

ci, d ≤
l∨

j=1

dj and ci(−ρ̃)dj , ∀i = 1, . . . , k and ∀j = 1, . . . , l
)
.

Then the pair (Ã, ρ̃) will be denoted by
⊕

j∈J(Aj , ρj).

Theorem 3.7. Let A = {(Aj , ρj) | j ∈ J} be a family of complete normal
contact algebras. Then

⊕
j∈J(Aj , ρj) is a DHC-sum of the family A.

Proof. The proof is similar to that one of Theorem 3.5. In it de Vries’ Duality
Theorem 2.10 instead of Theorem 2.12 can be used.
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4. A Whiteheadian-type description of Euclidean spaces

Notation. We will denote by Z the set of all integers with the natural order,
by I the unit interval [0, 1] with its natural topology and by I′ – the open
interval (0, 1) with its natural topology, by IN the set of natural numbers, by J
the subspace of the real line consisting of all irrational numbers, and by D the
set of all dyadic numbers in the interval (0, 1). We set Z0 = Z\{0}, Z− = Z\IN
and J2 = I′ \ D. If (X,<) is a linearly ordered set and x ∈ X, then we set

succ(x) = {y ∈ X | x < y}, pred(x) = {y ∈ X | y < x};

also, we denote by x+ the successor of x (when it exists) and by x− – the
predecessor of x (when it exists). If M is a set, then we will denote by P (M)
the power set Boolean algebra of M ; the cardinality of M will be denoted by
|M |. If X is a topological space, then we will denote by CO(X) the set of all
clopen (= closed and open) subsets of X.

Now we will construct a CLCA (Ã, σ̃, ĨB) and we will show that it is LCA-
isomorphic to Ψt(R).

The construction of (Ã, σ̃, ĨB). Let Ai = P (Z0), for every i ∈ IN+. Thus, if
i ∈ IN+ and ai ∈ Ai, then ai is a subset of Z0 and its cardinality will be denoted
by |ai|. Let (A, (ϕi)i∈IN+) be the sum of Boolean algebras {Ai | i ∈ IN+}; then,
by Proposition 3.1, for every i ∈ IN+, ϕi : Ai −→ A is a monomorphism, the
family {ϕi(Ai) | i ∈ IN+} is an independent family and the set

⋃
i∈IN+ ϕi(Ai)

generates A. Let Ã be the completion of A. We can suppose, without loss of
generality, that A ⊆ Ã.

The following subset of A will be important for us:

B0 = {ϕ1(a1) ∧ . . . ∧ ϕk(ak) | k ∈ IN+,
(∀i = 1, . . . , k)(ai ∈ Ai and |ai| = 1)} . (7)

If b ∈ B0 and b = ϕ1(a1) ∧ . . . ∧ ϕk(ak), where ak = {p}, then we set

b− = ϕ1(a1) ∧ ϕ2(a2) ∧ . . . ∧ ϕk−1(ak−1) ∧ ϕk({p−}). (8)

For every b ∈ B0, where b = ϕ1(a1) ∧ . . . ∧ ϕk(ak), and every n ∈ IN+, we set

qbn = (b− ∧ ϕk+1(succ(n))) ∨ (b ∧ ϕk+1(pred(−n))). (9)

Now we set
B1 = {qbn | b ∈ B0, n ∈ IN+}. (10)

Let ĨB be the ideal of Ã generated by the set B0 ∪B1. Now, we will define
a relation σ̃ on Ã. It will be, by definition, a symmetric relation.
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Let r, r′ ∈ IN+, b, b′ ∈ B0, b = ϕ1(a1)∧ . . .∧ϕk(ak), b′ = ϕ1(a′1)∧ . . .∧ϕl(a′l)
and ak = {n}, a′k = {m}. We can suppose, without loss of generality, that
k ≤ l. If k < l, then let a′k+1 = {p}. Now we set

bσ̃b′ ⇔

[(
ai = a′i, ∀i ∈ {1, . . . , k − 1}

)

&

({
m ∈ {n−, n, n+}, if k = l

m = n, if k < l

)]
,

(11)

and

qbrσ̃qb′r′ ⇔

(ai = a′i, ∀i ∈ {1, . . . , k − 1}
)

&



m=n, if l=k
(m=n and p≤−r) or (m=n− and p>r), if l=k+1
(m=n and p<−r) or (m=n− and p>r), if l>k+1


 .

(12)

Let r ∈ IN+, b, b′ ∈ B0, b = ϕ1(a1) ∧ . . . ∧ ϕk(ak), b′ = ϕ1(a′1) ∧ . . . ∧ ϕl(a′l)
and ak = {n}, a′k = {m}. If k < l, then let a′k+1 = {p}. Now, if k > l, we set

qbrσ̃b
′ ⇔ (ai = a′i, ∀i ∈ {1, . . . , l}); (13)

if k ≤ l, we set

qbrσ̃b
′ ⇔

(ai = a′i, ∀i ∈ {1, . . . , k − 1}
)

&



m ∈ {n−, n}, if l=k
(p≥r and m=n−) or (p≤−r and m=n), if l=k+1
(p>r and m=n−) or (p<−r and m=n), if l>k+1


 .

(14)

Further, for every two elements c and d of ĨB, set

c(−σ̃)d⇔
(
∃k, l ∈ N+ and ∃c1, . . . , ck, d1, . . . , dl ∈ B0 ∪B1 such that

c ≤
k∨

i=1

ci, d ≤
l∨

j=1

dj and ci(−σ̃)dj , ∀i=1, . . . , k and∀j=1, . . . , l
)
.

(15)
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Finally, for every two elements a and b of Ã, set

aσ̃b⇔ (∃c, d ∈ ĨB such that c ≤ a, d ≤ b and cσ̃d). (16)

Theorem 4.1. The triple (Ã, σ̃, ĨB) (constructed above) is a CLCA; it is LCA-
isomorphic to the CLCA (RC(R), ρR, CR(R)). Thus, the triple (Ã, σ̃, ĨB) com-
pletely determines the real line R with its natural topology.

Proof. In this proof, we will use the notation introduced in the construction
of (Ã, σ̃, ĨB).

Let Z0 be endowed with the discrete topology. Then RC(Z0) = P (Z0) and
Proposition 3.2 shows that the algebra Ã is isomorphic to RC(ZIN+

0 ). Since the
space ZIN+

0 is homeomorphic to J (see, e.g., [17]), we get, by Lemma 2.13, that Ã
is isomorphic to RC(R). Clearly, RC(J) can be endowed with an LCA-structure
LCA-isomorphic to the LCA (RC(R), ρR, CR(R)). Then, using the homeomor-
phism between J and ZIN+

0 , we can transfer this structure to RC(ZIN+

0 ) and,
hence, to Ã. For technical reasons, this plan will be slightly modified. We
will use the homeomorphism between ZIN+

0 and J2 described in [3]. Since J2

is dense in the open interval I′, and I′ is homeomorphic to R, we can use J2

instead of J for realizing the desired transfer. So, we start with the descrip-
tion (given by P. S. Alexandroff [3]) of the homeomorphism f : ZIN+

0 −→ J2.
Let, for every j ∈ N+, ∆j = [1 − 1

2j , 1 − 1
2j+1 ] and let, for every j ∈ Z−,

∆j = [2j−1, 2j ]. Set δ1 = {∆j | j ∈ Z0}. Further, for every ∆j ∈ δ1, where
∆j = [aj , bj ], set dj = bj − aj and ∆jk = [bj − dj

2k , bj − dj

2k+1 ] when k ∈ N+,
∆jk = [aj + dj .2k−1, aj + dj .2k] when k ∈ Z−. Let δ2 = {∆jk | j, k ∈ Z0}.
In the next step we construct analogously the family δ3, and so on. Set
δ =

⋃
{δi | i ∈ IN+}. It is easy to see that the set of all end-points of the

elements of the family δ coincides with the set D. Now we define the function
f : ZIN+

0 −→ J2 by the formula

f(n1, n2, . . . , nk, . . .) = ∆n1 ∩∆n1n2 ∩ . . . ∩∆n1n2...nk
∩ . . . .

One can prove that the definition of f is correct and that f is a homeomorphism.
Set Xi = Z0, for every i ∈ IN+. Let X =

∏
{Xi | i ∈ IN+} and let

πi : X −→ Xi,

where i ∈ IN+, be the projection. Then, for every k ∈ IN+ and every ni ∈ Xi,
where i = 1, . . . , k, we have that (writing, for short, “π−1

i (ni)” instead of
“π−1

i ({ni})”)

f

(
k⋂

i=1

π−1
i (ni)

)
= ∆n1n2...nk

∩ J2. (17)
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Let ψi : RC(Xi) −→ RC(X), F 7→ π−1
i (F ), where i ∈ IN+; then, as we

have seen in the proof of Proposition 3.2, ψi is a complete monomorphism. Set
A′i = ψi(RC(Xi)). Since Xi is a discrete space, we have that Ai = RC(Xi) and
A′i ⊆ CO(X), for all i ∈ IN+. Thus, for the elements of the subset

⋃
i∈IN+ A′i

of RC(X), the Boolean operation “meet in RC(X)” coincides with the set-
theoretic operation “intersection” between the subsets of X, and the same for
the Boolean complement in RC(X) and the set-theoretic complement inX. We
also have that the Boolean algebras Ai and A′i are isomorphic. Let A′ be the
subalgebra of P (X) generated by

⋃
i∈IN+ A′i. Then A′ is isomorphic to A. Note

that A′ is a subalgebra of CO(X). Also, A′ is a dense subalgebra of RC(X);
therefore, RC(X) is the completion of A′. Thus, Ã is isomorphic to RC(X). So,
without loss of generality, we can think that Ã is RC(X), A is A′, ϕi = ψi and
hence ϕi(Ai) is A′i, for i ∈ IN+. We will now construct an LCA (RC(X), σ, IB)
LCA-isomorphic to (RC(R), ρR, CR(R)). Then, identifying RC(X) with Ã, we
will show that σ = σ̃ and IB = ĨB.

Let IB2 = {M ∈ RC(J2) | clI′(M) is compact}. For every two elements
M and N of RC(J2), set Mρ2N ⇔ clI′(M) ∩ clI′(N) 6= ∅. Then, using
Lemma 2.13, we get that the triple (RC(J2), ρ2, IB2) is LCA-isomorphic to the
LCA (RC(I′), ρI′ , CR(I′)) (which, in turn, is LCA-isomorphic to the local con-
tact algebra (RC(R), ρR, CR(R))). Now, for every two elements F,G ∈ RC(X),
we set

FσG⇔ f(F )ρ2f(G). (18)

Also, we put
IB = {f−1(M) | M ∈ IB2}. (19)

Obviously, (RC(X), σ, IB) is LCA-isomorphic to (RC(R), ρR, CR(R)). In the
rest of this proof, we will show that the definitions of IB and σ given above
agree with the corresponding definitions of ĨB and σ̃ given in the construction
of (Ã, σ̃, ĨB).

Note first that the subset B′
0 of A′, which corresponds to the subset B0 of

A described in the construction of (Ã, σ̃, ĨB), is the following:

B′
0 =

{
k⋂

i=1

π−1
i (ni) | k ∈ IN+, (∀i = 1, . . . , k)(ni ∈ Xi)

}
. (20)

Let F,G ∈ B′
0 and F =

⋂k
i=1 π

−1
i (ni), G =

⋂l
i=1 π

−1
i (mi). We can sup-

pose, without loss of generality, that k ≤ l. Then, by (17) and Lemma 2.13,
clI′(f(F )) = ∆n1n2...nk

and clI′(f(G)) = ∆m1m2...ml
. If k = l, then, clearly,

∆n1n2...nk
∩ ∆m1m2...mk

6= ∅ iff (ni = mi, for all i = 1, . . . , k − 1, and mk ∈
{n−k , nk, n

+
k }). If k < l, then, obviously, ∆n1n2...nk

∩ ∆m1m2...ml
6= ∅ iff

(ni = mi, for all i = 1, . . . , k). Then, using (18) and the formula (11), we
get that σ and σ̃ agree on B′

0 (or, equivalently, on B0).
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Let F ∈ B′
0, F =

⋂k
i=1 π

−1
i (ni) and n ∈ IN+. Then the element QFn of A′

corresponding to the element qbn of A, where b ∈ B0 corresponds to F , is the
following:

QFn =

[(
k−1⋂
i=1

π−1
i (ni)

)
∩ π−1

k (n−k ) ∩ π−1
k+1(succ(n))

]
∪
[
F ∩π−1

k+1(pred(−n))
]
.

Clearly,

QFn =

 ⋃
s∈succ(n)

(
k−1⋂
i=1

π−1
i (ni) ∩ π−1

k (n−k ) ∩ π−1
k+1(s)

)
∪

 ⋃
s∈pred(−n)

(
k⋂

i=1

π−1
i (ni) ∩ π−1

k+1(s)

) .
(21)

(It is easy to see, as well, that in the formula (21) the sign of the union can
be replaced everywhere with the sign of the join in RC(X).) Thus,

f(QFn) =

 ⋃
s∈succ(n)

∆n1n2...nk−1n−k s

 ∪

 ⋃
s∈pred(−n)

∆n1n2...nks

∩ J2. (22)

Let d be the left end-point of the closed interval ∆n1n2...nk
. Then it is easy

to see that
clI′(f(QFn)) = [d− εn, d+ ε′n], (23)

where εn and ε′n depend from n and also from n1, . . . , nk (for simplicity, we
don’t reflect this dependence on the notation), but for fixed n1, . . . , nk, we
have that εn > εn+1 > 0, ε′n > ε′n+1 > 0, for all n ∈ IN+, and limn→∞ εn = 0,
limn→∞ ε′n = 0; also, the closed interval [d−εn, d+ε′n] lies in the open interval
having as end-points the middles of the closed intervals ∆n1n2...nk−1n−k

and
∆n1n2...nk

. Since the family {D∩ J2 | D ∈ δ} is a base of J2 and every element
of D appears as a left end-point of some element of the family δ, we get that
the family

B = {intI′(clI′((f(F ))), intI′(clI′((f(QFn))) | n ∈ IN+, F ∈ B′
0}

is a base of I′. Also, if

B = {clI′((f(F )), clI′((f(QFn)) | n ∈ IN+, F ∈ B′
0},

then B = {clI′(U) | U ∈ B} and B ⊆ CR(I′). Hence, B generates the ideal
CR(I′) of RC(I′). Clearly, the family

B′
1 = {QFn | F ∈ B′

0, n ∈ IN+} (24)
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corresponds to the subset B1 of A constructed above (before the formulation
of our theorem). Since B = {clI′(G) | G ∈ f(B′

0 ∪B′
1)}, we get that the subset

f(B′
0 ∪ B′

1) of RC(J2) generates the ideal IB2 of RC(J2). Thus, the subset
B′

0 ∪B′
1 of RC(X) generates the ideal IB of RC(X). Therefore, IB corresponds

to ĨB; we can even write that IB = ĨB.
Let now r, r′ ∈ IN+, F, F ′ ∈ B′

0, F = π−1
1 (n1) ∩ . . . ∩ π−1

k (nk) and F ′ =
π−1

1 (n′1) ∩ . . . ∩ π−1
l (n′l). We can suppose, without loss of generality, that

k ≤ l. Let d and d′ be the left end-points of the closed intervals ∆n1n2...nk

and ∆n′1n′2...n′l
, respectively. Then, using (23), we get that clI′(f(QFr)) =

[d− εr, d+ ε′r] and clI′(f(QF ′r′)) = [d′ − εr′ , d
′ + ε′r′ ]. If k = l, then it is easy

to see that clI′(f(QFr)) ∩ clI′(f(QF ′r′)) 6= ∅ iff (ni = n′i, for all i = 1, . . . , k).
If l = k + 1, then one readily checks that clI′(f(QFr)) ∩ clI′(f(QF ′r′)) 6= ∅ iff
[(ni = n′i, for all i = 1, . . . , k−1) and ((nk = n′k and n′k+1 ≤ −r) or (n′k = (nk)−

and n′k+1 > r))]. Finally, if l > k + 1, then clI′(f(QFr)) ∩ clI′(f(QF ′r′)) 6= ∅ iff
[(ni = n′i, for all i = 1, . . . , k−1) and ((nk = n′k and n′k+1 < −r) or (n′k = (nk)−

and n′k+1 > r))]. All this shows that the relations σ and σ̃ agree on B′
1 (or,

equivalently, on B1).
Let r ∈ IN+, F, F ′ ∈ B′

0, F = π−1
1 (n1) ∩ . . . ∩ π−1

k (nk) and F ′ = π−1
1 (n′1) ∩

. . . ∩ π−1
l (n′l). If l < k, then we get that clI′(f(QFr)) ∩ clI′(f(F ′)) 6= ∅ iff

(ni = n′i, for all i = 1, . . . , l). If l = k, then clI′(f(QFr)) ∩ clI′(f(F ′)) 6= ∅
iff (ni = n′i, for all i = 1, . . . , k − 1, and n′k ∈ {n−k , nk}). If l = k + 1,
then clI′(f(QFr)) ∩ clI′(f(F ′)) 6= ∅ iff [(ni = n′i, for all i = 1, . . . , k − 1), and
((n′k = n−k and n′k+1 ≥ r) or (n′k = nk and n′k+1 ≤ −r))]. Finally, if l > k + 1,
then clI′(f(QFr)) ∩ clI′(f(F ′)) 6= ∅ iff [(ni = n′i, for all i = 1, . . . , k − 1), and
((n′k = n−k and n′k+1 > r) or (n′k = nk and n′k+1 < −r))]. We get that the
relations σ and σ̃ agree on B′

0 ∪B′
1 (or, equivalently, on B0 ∪B1).

Now, using the facts that B is a base of I′, I′ is a regular space, and clI′(f(F ))
is a compact set for all F ∈ IB, we get that for all F,G ∈ IB, clI′(f(F )) ∩
clI′(f(G)) = ∅ iff (there exist F1, . . . , Fk, G1, . . . , Gl ∈ B′

0 ∪ B′
1 such that F ⊆⋃k

i=1 Fi, G ⊆
⋃l

j=1Gj and clI′(f(Fi)) ∩ clI′(f(Gj)) = ∅ for all i = 1, . . . , k
and all j = 1, . . . , l). This shows that the relations σ and σ̃ agree on IB (or,
equivalently, on ĨB).

Finally, as in every LCA, for every F,G ∈ RC(X), we have that FσG iff
(there exist F ′, G′ ∈ IB such that F ′ ⊆ F , G′ ⊆ G and F ′σG′). Therefore, the
relations σ and σ̃ agree on RC(X) (or, equivalently, on Ã).

Theorem 4.2. For every n ∈ IN+, the CLCA (RC(Rn), ρRn , CR(Rn)) (=
Ψt(Rn)) is LCA-isomorphic to the DHLC-sum (Ãn, σ̃n, ĨBn) of n copies of
the CLCA (Ã, σ̃, ĨB) (see Theorem 4.1 for it); thus, the CLCA (Ãn, σ̃n, ĨBn)
completely determines the Euclidean space Rn with its natural topology. For
every n ∈ IN+, the Boolean algebras Ãn and Ã are isomorphic.

Proof. Since Jn is homeomorphic to J and is dense in Rn, we get that RC(Rn)
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is isomorphic to RC(J), and thus, to Ã (see “The construction of (Ã, σ̃, ĨB)”
and the proof of Theorem 4.1). Now all follows from Theorems 4.1 and 3.5.

We will now present the description of the CLCA (RC(R), ρR, CR(R)) in
two new forms; the notation used in them permits to obtain a more compact
form of the definitions of the corresponding relations. As we have already
mentioned, RC(R) is isomorphic to RC(J), i.e. to RC(ZIN+

0 ) or, equivalently,
to RC(ωω). The last algebra, which is one of the collapsing algebras RC(kω)
(where k is an infinite cardinal equipped with the discrete topology), has many
abstract descriptions. The one, which is the most appropriate for our purposes,
is the following: a complete Boolean algebra C is isomorphic to the Boolean
algebra RC(kω) iff it has a dense subset isomorphic to T ∗, for the normal
tree T =

⋃
{kn | n ∈ IN+} (here T ∗ is the tree T with the opposite partial

order and kn ∩ km = ∅ for n 6= m) (see, e.g., [29, 14.16(a),(b)]). (Recall
that a partially ordered set (T,≤T ) is called a tree if for every t ∈ T , the
set pred(t) is well-ordered by ≤T .) This shows that RC(kω) is isomorphic
to the Boolean algebra RC(T ∗), where the ordered set T ∗ is endowed with
the left topology, i.e. that one generated by the base {LT∗(t) | t ∈ T} (here
LT∗(t) = {t′ ∈ T | t′ ≤T∗ t} = {t′ ∈ T | t ≤T t′}, for every t ∈ T ) (see, e.g.,
[29, 4.11-4.16] and [17, 1.7.2]).

Let us add some details and introduce some notation.

Notation. For any n ∈ IN+, we set

n = {1, . . . , n}.

We set
T0 =

⋃
{Zn

0 | n ∈ IN+},

where Zn
0 ∩ Zm

0 = ∅ for n 6= m. Any element t ∈ Zn
0 is interpreted, as usual,

as a function t : n −→ Z0. Further, we let ⊥ ⊆ t and ⊥ 6= t, for any t ∈ T0; if
n, n′ ∈ IN+, t ∈ Zn

0 and t′ ∈ Zn′

0 , then we set t ⊆ t′ iff t′ is an extension of t, i.e.
iff n ≤ n′ and t(i) = t′(i) for any i ∈ n. Then the ordered set (T0 ∪ {⊥},⊆) is
a normal tree of height ω with Zn

0 as its nth level (it will be denoted by Ln).
We also put, for any t, t′ ∈ T0 ∪ {⊥},

t ≤ t′ ⇔ t′ ⊆ t.

We set
T ∗0 = (T0 ∪ {⊥},≤).

Let T ∗0 be endowed with its left topology (i.e. let (T0∪{⊥},⊆) be equipped
with its right topology (which is defined analogously to the left topology (see
[17, 1.7.2]))). Further, for any t ∈ T0 ∪ {⊥}, put

ct = {t′ ∈ T0 | t and t′ are T ∗0 -compatible}.
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(Recall that two elements x and y of a partially ordered set (M,�) are com-
patible if there is some z ∈ M such that z � x and z � y.) Then, as it is well
known (see, e.g., [29, 4.13, 4.16, the formula for cl(up) in the proof of 4.16]), the
embedding e of the partially ordered set T ∗0 into the Boolean algebra RC(T ∗0 )
is given by the formula

e(t) = ct, ∀t ∈ T0 ∪ {⊥}.

(Note that the map e is an embedding because T ∗0 is a separative partial order
(see, e.g., [29, 4.15,4.16,p.226]).) Also, let us recall that the left topology on
T0 ∪ {⊥} induced by the ordered set T ∗0 is an Alexandroff topology, i.e. the
union of arbitrarily many closed sets is a closed set (see, e.g., [17, 1.7.2]).
Thus, the (finite or infinite) joins

∨
{Fj | j ∈ J} in RC(T ∗0 ) are just the unions⋃

{Fj | j ∈ J}.
Finally, for every n ∈ IN+ \ {1} and every t ∈ Ln (i.e. t : n −→ Z0), define

tλ : n −→ Z0 by the formulas (tλ)| n−1 = t| n−1 and tλ(n) = (t(n))−; (25)

let, for t ∈ L1, tλ : 1 −→ Z0 be defined by tλ(1) = (t(1))−.

Remark 4.3. As we have already mentioned, the Boolean algebra RC(ZIN+

0 ) is
isomorphic to the Boolean algebra RC(T ∗0 ) (see, e.g., [29, 14.16(a),(b),4.11-
4.16]). We will recall the proof of this fact since we will use it later. For every
t ∈ T0, set

at = {x ∈ ZIN+

0 | t ⊆ x}. (26)

Note that if t : n −→ Z0, where n ∈ IN+, then

at =
n⋂

i=1

π−1
i (t(i)) (27)

and thus at is a clopen subset of ZIN+

0 . Set

S = {at | t ∈ T0} ∪ ZIN+

0 . (28)

Then S ⊆ CO(ZIN+

0 ) ⊆ RC(ZIN+

0 ). Now it is easy to see that the set S is dense
in RC(ZIN+

0 ) and isomorphic to T ∗0 (indeed, the map

s : T ∗0 −→ S, where s(⊥) = ZIN+

0 and s(t) = at,∀t ∈ T0 (29)

is an isomorphism). Therefore, RC(ZIN+

0 ) is isomorphic to the Boolean algebra
RC(T ∗0 ).
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We will now equip the Boolean algebra RC(T ∗0 ) defined above with an
LCA-structure (RC(T ∗0 ), θ,BT ) and will prove that the obtained CLCA is LCA-
isomorphic to the CLCA (RC(R), ρR, CR(R)). Recall that two elements x and
y of a partially ordered set (M,4) are comparable if x 4 y or y 4 x.

The construction of (RC(T ∗0 ), θ,BT ). For every k, n ∈ IN+ and for every
t ∈ Lk (recall that Lk = Zk

0), set

dtn =
⋃{

ct′ | (t′ ∈ Lk+1)

&
(
(tλ ⊆ t′ & t′(k + 1) > n) or (t ⊆ t′ & t′(k + 1) < −n)

)}
.

Note that the fact that the left topology on T ∗0 is an Alexandroff topology
implies that

dtn =
∨{

ct′ | (t′ ∈ Lk+1)

&
(
(tλ ⊆ t′ and t′(k + 1) > n) or (t ⊆ t′ and t′(k + 1) < −n)

)}
.

(30)

Let
C0 = {ct | t ∈ T0} and C1 = {dtn | t ∈ T0, n ∈ IN+}. (31)

Denote by BT0 the ideal of RC(T ∗0 ) generated by C0 ∪ C1.
For every k, k′, n, n′ ∈ IN+ and every t ∈ Lk, t′ ∈ Lk′ , set

ctθct′ ⇔
{
t = t′ or t = t′λ or t′ = tλ, if k = k′

t and t′ are comparable, if k 6= k′, (32)

and
dtnθdt′n′ ⇔ (33)

(t′ ⊆ t and t(k′ + 1) < −n′) or (t′λ ⊆ t and t(k′ + 1) > n′), if k > k′ + 1
(t′ ⊆ t and t(k) ≤ −n′) or (t′λ ⊆ t and t(k) > n′), if k = k′ + 1
t = t′, if k = k′

(t ⊆ t′ and t′(k′) ≤ −n) or (tλ ⊆ t′ and t′(k′) > n), if k = k′ − 1
(t ⊆ t′ and t′(k + 1) < −n) or (tλ ⊆ t′ and t′(k + 1) > n), if k < k′ − 1;

and also
dtnθct′ ⇔ ct′θdtn ⇔ (34)

t′ ⊆ t, if k′ < k
t′ = t or t′ = tλ, if k′ = k
(tλ ⊆ t′ and t′(k′) ≥ n) or (t ⊆ t′ and t′(k′) ≤ −n), if k′ = k + 1
(tλ ⊆ t′ & t′(k + 1) > n) or (t ⊆ t′ & t′(k + 1) < −n), if k′ > k + 1.
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Further, for every two elements c and d of BT0 , set

c(−θ)d⇔
(
∃k, l ∈ N+ and∃c1, . . . , ck, d1, . . . , dl∈C0 ∪ C1 such that

c ⊆
k⋃

i=1

ci, d ⊆
l⋃

j=1

dj and ci(−θ)dj , ∀i=1, . . . , k and∀j=1, . . . , l
)
.

(35)

Finally, for every two elements a and b of RC(T ∗0 ), set

aθb⇔ (∃c, d ∈ BT0 such that c ⊆ a, d ⊆ b and cθd). (36)

Theorem 4.4. The triple (RC(T ∗0 ), θ,BT0) (constructed above) is a CLCA; it
is LCA-isomorphic to the complete local contact algebra (RC(R), ρR, CR(R)).
Thus, the triple (RC(T ∗0 ), θ,BT0) completely determines the real line R with its
natural topology.

Proof. In this proof, we will use the notation introduced in the following places
of this paper: in Remark 4.3 and in the “Notation” before it, in “The con-
struction of (Ã, σ̃, ĨB)” and in “The construction of (RC(T ∗0 ), θ,BT )”. As
it follows from Remark 4.3 and [29, the proof of 4.14], there is an isomorphism
h : RC(T ∗0 ) −→ RC(ZIN+

0 ) defined by the formula h(c) =
∨

RC(ZIN+
0 )

{at | t ∈
T ∗0 , ct ⊆ c}, for every c ∈ RC(T ∗0 ). Thus, h(ct) = at =

⋂k
i=1 π

−1
i (t(i)) and ct

corresponds to
∧k

i=1 ϕi(t(i)) (see “The construction of (Ã, σ̃, ĨB)”), where
t ∈ Lk ⊆ T ∗0 (i.e., t : k −→ Z0). This implies that h(C0) = B′

0 = {at | t ∈ T0}
and C0 corresponds to B0 = {

∧k
i=1 ϕi(t(i)) | k ∈ IN+, t ∈ Lk} (see (31), (20),

(7)). Note that tλ corresponds to b− (see (25) and (8)). Since h is a complete
homomorphism, we get that h(dtn) = Qatn and thus dtn corresponds to qatn,
for every k, n ∈ IN+ and every t ∈ Lk (see (30), (21), (9)). Then h(C1) = B′

1

and hence C1 corresponds to B1 (see (31), (24), (10)). Hence, h(BT0) = B and
therefore BT0 corresponds to ĨB (see the line after (31), (19) and the paragraph
after (24), the line after (10)). Having all these facts in mind, we obtain eas-
ily that the formula (32) follows from the formula (11), (33) from (12), (34)
from (14), (35) from (15) and (36) from (16). This completes the proof of our
theorem.

Theorem 4.5. A CLCA (M,µ,M) is LCA-isomorphic to the complete local
contact algebra (RC(R), ρR, CR(R)) iff there exists an embedding (between par-
tially ordered sets) ζ : T ∗0 −→ M such that the following two conditions are
satisfied:
(a) ζ(T0) is dense in M , and
(b) let ζ(t) = zt, for every t ∈ T0, and let the elements d̃tn be defined by the
formula (30) in which dtn is replaced by d̃tn, and ct is replaced by zt; then the
ideal M is generated by the set Z = ζ(T0) ∪ {d̃tn | t ∈ T0, n ∈ IN+} and the
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formulas (32), (33), (34), (15), (16) hold with θ and σ̃ replaced by µ, ct by zt,
dtn by d̃tn, B̃ by M, B0 ∪B1 by Z, and Ã by M .

Proof. It follows from Theorem 4.4 and [29, 4.14,14.16].

5. A Whiteheadian-type description of Tychonoff cubes,
spheres and tori

Theorem 5.1. For every n ∈ IN+, the CNCA (RC(Sn), ρSn) (= Ψt(Sn)) is
CA-isomorphic to the CNCA (Ãn, Cσ̃n,ĨBn

) (see 4.2 for the LCA (Ãn, σ̃n, ĨBn),
and 2.5 for Cσ̃n,ĨBn

); thus, the CNCA (Ãn, Cσ̃n,ĨBn
) completely determines the

n-dimensional sphere Sn with its natural topology. Note that Ãn is isomorphic
to Ã, for every n ∈ IN+.

Proof. As it follows from the proof of [38, Theorem 4.8], if X is a locally com-
pact Hausdorff space then the complete normal contact algebra (RC(αX), ραX)
is CA-isomorphic to the complete normal contact algebra (RC(X), CρX ,CR(X)).
Now, since αRn is homeomorphic to Sn, our result follows from Theorem 4.2.

For every cardinal number τ , denote by Tτ the space (S1)τ (for finite τ ,
this is just the τ -dimensional torus).

Theorem 5.2. For every cardinal number τ , the complete normal contact alge-
bra (RC(Tτ ), ρTτ ) (= Ψt(Tτ )) is CA-isomorphic to the DHC-sum of τ copies
of the CNCA (Ã, Cσ̃,ĨB) (see Theorem 5.1 for it); therefore, this DHC-sum
completely determines the space Tτ .

Proof. Since the CNCA (RC(S1), ρS1) is CA-isomorphic to the complete nor-
mal contact algebra (Ã, Cσ̃,ĨB) (see Theorem 5.1), our result follows from The-
orem 3.7.

Recall that if A is a Boolean algebra and a ∈ A then the set ↓ (a) = {b ∈
A | b ≤ a} endowed with the same meets and joins as in A and with complement
b′ defined by the formula b′ = b∗ ∧ a, for every b ≤ a, is a Boolean algebra; it
is denoted by A|a. If J =↓ (a∗) then A|a is isomorphic to the factor algebra
A/J ; the isomorphism h : A|a −→ A/J is the following: h(b) = [b], for every
b ≤ a (see, e.g., [29]).

In [12], we proved the following theorem:

Theorem 5.3 ([12, Theorem 6.8]). Let X be a locally compact Hausdorff space
and F ∈ RC(X). Set B = RC(X)|F , IB′ = {G∧F | G ∈ CR(X)} and let, for
every a, b ∈ B, aηb iff aρXb (i.e. a∩b 6= ∅). Then (B, η, IB′) is LCA-isomorphic
to Ψt(F ).



70 GEORGI D. DIMOV

Using this assertion, we obtain the following result:

Theorem 5.4. Let (M,µ,M) be a CLCA which is LCA-isomorphic to the
CLCA (RC(R), ρR, CR(R)) and ζ : T ∗0 −→ M be the embedding described
in Theorem 4.5. Then, for each t ∈ T0, the CNCA (M |ζ(t), µ′), where µ′ is
the restriction of the relation µ to M |ζ(t), is NCA-isomorphic to the CNCA
(RC(I), ρI).

Proof. By (17), (27) and the beginning of the proof of Theorem 4.1, if t ∈ T0,
i.e. t : n −→ Z0 for some n ∈ IN+, then the element ζ(t) coresponds to the
element ∆t(1)...t(n) of RC(I′) (see also the proofs of theorems 4.4 and 4.5). Since
∆t(1)...t(n) is homeomorphic to I, our assertion follows from Theorem 5.3.

The last theorem shows, in particular, that the following assertion holds
(the notation from “The construction of (Ã, σ̃, ĨB)” will be used in it):

Theorem 5.5. Let m ∈ IN+, n1, . . . , nm ∈ Z0, aj = {nj} for j = 1, . . . ,m, u =∧m
j=1 ϕj(aj) and B = Ã|u. Then the CNCA (B, σ̃′), where σ̃′ is the restriction

of the relation σ̃ to B, is NCA-isomorphic to the CNCA (RC(I), ρI). In partic-
ular, the CNCA (RC(I), ρI) is NCA-isomorphic to the CNCA (Ã|ϕ1({1}), σ̃′).

A direct description of the CNCA (RC(I), ρI) is given below.

The construction of (Ã, σ̃′). We will use the notation from “The construc-
tion of (Ã, σ̃, ĨB)”.

We will define a relation σ̃′ on the Boolean algebra Ã.
For every n ∈ IN+, set

u↑n = ϕ1(succ(n)) and u↓n = ϕ1(pred(−n))

and let
B2 = {u↑n, u↓n | n ∈ IN+}.

For every a, b ∈ B0 ∪B1 ∪B2, set

aσ̃′b⇔ aσ̃b

(see the construction of (Ã, σ̃, ĨB) for the definition of the relation σ̃). For
convenience of the reader, we will write down the corresponding formulae. For
every n,m ∈ IN+,

u↑nσ̃
′u↑m, u↓nσ̃

′u↓m and u↓n(−σ̃′)u↑m.

Further, for every n, r ∈ IN+ and every b = ϕ1(a1) ∧ . . . ∧ ϕk(ak) ∈ B0, where
a1 = {m},

bσ̃′u↑n ⇔
{
m ≥ n, if k = 1
m > n, if k > 1 , bσ̃′u↓n ⇔

{
m ≤ −n, if k = 1
m < −n, if k > 1 (37)
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and

qbrσ̃
′u↑n ⇔ m > n, qbrσ̃

′u↓n ⇔
{
m ≤ −n, if k = 1
m < −n, if k > 1. (38)

Now, for every c, d ∈ Ã, set

c(−σ̃′)d⇔
(
∃k, l ∈ N+ and∃c1, . . . , ck, d1, . . . , dl ∈ B0 ∪B1 ∪B2 such that

c ≤
k∨

i=1

ci, d ≤
l∨

j=1

dj and ci(−σ̃′)dj , ∀i=1, . . . , k and∀j=1, . . . , l
)
.

(39)

Theorem 5.6. The pair (Ã, σ̃′) (constructed above) is a complete normal con-
tact algebra; it is CA-isomorphic to the CNCA (RC(I), ρI). Thus, the pair
(Ã, σ̃′) completely determines the closed interval I with its natural topology.

Proof. The proof of this assertion is analogous to the proof of Theorem 4.1. We
will use in it the notation introduced in Theorem 4.1, in “The construction
of (Ã, σ̃, ĨB)” and in the above construction.

Clearly, RC(R) is isomorphic to RC(I) (by Lemma 2.13). Thus, RC(I) is
isomorphic to RC(X), where X = ZIN+

0 (see the proof of Theorem 4.1). We
will now construct an NCA (RC(X), σ′) CA-isomorphic to (RC(I), ρI). Then,
identifying RC(X) with Ã, we will show that σ′ = σ̃′.

For every two elementsM andN of RC(J2), setMρ1N ⇔ clI(M)∩clI(N) 6=
∅. Then, using Lemma 2.13, we get that the pair (RC(J2), ρ1) is CA-isomorphic
to the NCA (RC(I), ρI). Now, for every two elements F,G ∈ RC(X), we set

Fσ′G⇔ f(F )ρ1f(G), (40)

where f : X −→ J2 is the homeomorphism constructed in the proof of Theo-
rem 4.1. Obviously, (RC(X), σ′) is CA-isomorphic to (RC(I), ρI). In the rest
of this proof, we will show that the definition of σ′ given above agrees with the
definition of σ̃′ given in the construction of (Ã, σ̃′).

Using the proof of Proposition 3.2, it is easy to see that the set

B′
2 =

{
π−1

1 (succ(n)), π−1
1 (pred(−n)) | n ∈ IN+

}
corresponds to the set B2 introduced in the construction of (Ã, σ̃′). Now, the
formula (17) implies that, for every n ∈ IN+,

clI(f(π−1
1 (succ(n)))) =

[
1− 1

2n+1
, 1
]

(41)
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and

clI(f(π−1
1 (pred(−n)))) =

[
0 ,

1
2n+1

]
. (42)

Thus, for every m,n ∈ IN+, clI(f(π−1
1 (succ(n))))∩clI(f(π−1

1 (pred(−m)))) = ∅.
Also, for every m,n ∈ IN+, we have that f(π−1

1 (succ(n)))∩f(π−1
1 (succ(m))) 6=

∅ and f(π−1
1 (pred(−n))) ∩ f(π−1

1 (pred(−m))) 6= ∅. Having in mind these for-
mulae and the fact that clI(f(F )) = clI′(f(F )), for every F ∈ B′

0 ∪B′
1 (see the

proof of Theorem 4.1 for the notation), we get that GσH ⇔ Gσ′H, for every
G,H ∈ B′

0∪B′
1∪B′

2. This shows that aσ̃′b⇔ aσ̃b, for every a, b ∈ B0∪B1∪B2.
Hence, the definitions of σ′ and σ̃′ agree on B′

0 ∪B′
1 ∪B′

2 (or, equivalently, on
B0 ∪B1 ∪B2).

Further, using (41) and (42), we get that the family

B1 = B ∪ {intI(clI(f(F ))) | F ∈ B′
2}

(see the proof of Theorem 4.1 for the notation and for the fact that B is a base
of I′) is a base of I. Thus, by the regularity of I, every two disjoint elements
of RC(I) can be separated by the finite unions of the elements of the family
{clI(f(F )) | F ∈ B′

0 ∪B′
1 ∪B′

2}. This implies that the definitions of σ′ and σ̃′

agree on RC(X) (or, equivalently, on Ã).

Theorem 5.7. For every cardinal number τ , the complete normal contact al-
gebra (RC(Iτ ), ρIτ ) (= Ψt(Iτ )) is CA-isomorphic to the DHC-sum of τ copies
of the CNCA (Ã, σ̃′) (see Theorem 5.6 for it); therefore, this DHC-sum com-
pletely determines the space Iτ .

Proof. It follows from Theorems 5.6 and 3.7.

Acknowledgements. The author is very grateful to the referee for the helpful
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References
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