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Index and persistence of
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Abstract. A theorem by Bell and Meyer says that a stable and tran-
sitive Cantor set in the plane can be approximated by periodic points.
We prove that the periodic points can be chosen with index one. As a
consequence these Cantor sets are always persistent invariant sets.
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1. Introduction

Cantor sets often appear as invariant sets of planar homeomorphisms. Well
known examples are the Bernoulli shift in Smale’s horseshoe, Aubry-Mather
sets in non-integrable twist maps or adding machines obtained as sections of a
solenoid. Some concrete constructions can be found in [1, 3, 6]. In general we
will consider a homeomorphism h : R2 −→ R2 and a Cantor set Λ ⊂ R2 with

h(Λ) = Λ.

In this paper homeomorphisms are understood as surjective maps, so that
h(R2) = R2. Also, to avoid trivialities, it will be assumed that Λ is transitive.
This means that for some p ∈ Λ,

Lω(p, h) = Λ,

where Lω(p, h) is the corresponding ω-limit set. A Cantor set is a compact,
perfect and totally disconnected metric space. All Cantor sets are homeomor-
phic but they can support many different transitive dynamics. In the examples
mentioned above one can find chaos, Denjoy dynamics or almost-periodicity.
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An invariant set Λ ⊂ R2 is stable (in the sense of Lyapunov) if each neighbor-
hood U of Λ contains another neighborhood V such that

hn(V ) ⊂ U for every n ≥ 1.

In [2], Bell and Meyer obtained a remarkable result: in the plane, stable Cantor
sets are never isolated, in fact they can be approximated by periodic points lying
outside Λ. The purpose of our paper is to prove that these periodic points have
non-zero index. Here we refer to the fixed point index that can be expressed in
terms of Brouwer’s degree. As a consequence we will prove that stable Cantor
sets are persistent as invariant sets. An invariant compact set Λ is persistent if,
given any positive ε > 0, there exists δ > 0 such that for any homeomorphism
h̃ : R2 −→ R2 with

‖h(x)− h̃(x)‖ ≤ δ

for each x ∈ R2, there exists a compact set Λ̃ ⊂ R2 such that

h̃(Λ̃) = Λ̃ and DH(Λ, Λ̃) ≤ ε.

The symbol DH refers to the Hausdorff distance between compact subsets of
the plane. In our result, Λ̃ will be composed by periodic points derived from
the properties of degree. Summing up we can say that stable Cantor sets in
the plane are simultaneously non-isolated and persistent. This is in contrast
with the properties enjoyed by stable finite sets. At the end of the paper
we will present an example of a fixed point that is stable and non-persistent.
The structure of the paper is as follows. The main theorem on index and a
corollary on persistence are stated in Section 2. The proofs of both results
are presented in Section 3. Finally, in Section 4 we discuss some connections
with the literature. To finish this introduction we notice that an example
constructed in [2] shows that our results do not admit a direct extension to
higher dimensions.

2. Main results

Given a Jordan curve Γ ⊂ R2, the bounded component of R2\Γ will be indicated
by Γ̂. Brouwer’s degree in the plane will be denoted by d[f,G, 0] where G ⊂ R2

is a bounded and open set and f : cl(G) −→ R2 is a continuous function defined
on the closure of G. We must also assume that f does not vanish on ∂G, the
boundary of G. We recall two properties of the degree that will be employed
later,

i) existence of zeros: the function f has at least one zero on G if d[f,G, 0] 6=0,



STABLE CANTOR SETS 35

ii) continuity of the degree: there exists η > 0, depending on f , such that
if g : cl(G) −→ R2 is a continuous function with

‖f(x)− g(x)‖ ≤ η

for each x ∈ ∂G, then g does not vanish on ∂G and d[g,G, 0] = d[f,G, 0].

We refer to [10] for more information on degree theory. Given a continuous
function φ : cl(G) −→ R2, the fixed point index is defined as the degree of
f = id− φ. The zeros of f are precisely the fixed points of φ.
We will prove that the existence of a stable Cantor set has strong consequences

on the fixed point index of the map hN = h ◦
(N)
· · · ◦h. Notice that the fixed

points of hN are the periodic points of h whose minimal period is a divisor
of N .

Theorem 2.1. Assume that h : R2 −→ R2 is a homeomorphism and Λ is
an invariant Cantor set that is stable and has a transitive point. Then for
every δ > 0 and p ∈ Λ there exist a Jordan curve Γ = Γ(δ, p) and an integer
N = N(δ, p) ≥ 1 such that the following properties hold,

DH(Γ, {p}) ≤ δ, hN (x) 6= x if x ∈ Γ, d[id− hN , Γ̂, 0] = 1.

The existence property of the degree implies that each region Γ̂(δ, p) contains
a periodic point. This implies that Λ can be obtained as a limit of periodic
points.

Theorem 2.2. (Bell and Meyer) In the assumptions of Theorem 2.1 and given
p ∈ Λ, there exist a sequence of points {xn} in R2 and integers σ(n) ≥ 1 such
that

xn −→ p and hσ(n)(xn) = xn.

The persistence of Λ will be deduced from the continuity of the degree.

Corollary 2.3. In the assumptions of Theorem 2.1, the set Λ is persistent.

3. Proofs

The proof by Bell and Meyer in [2] is based on a well known fixed point theorem
due to Cartwright and Littlewood. This theorem deals with orientation pre-
serving homeomorphisms and it has been extended to the orientation reversing
case by Bell. We will employ a strategy similar to that in [2] but without
making use of this fixed point theorem. Instead we will use the following result
which is a consequence of Brouwer’s theory on translations arcs.
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Lemma 3.1. Assume that Ω ⊂ R2 is an open and simply connected set and let
H : Ω −→ Ω be an orientation preserving embedding. In addition, assume that
H has a recurrent point that is not fixed. Then there exists a Jordan curve
Γ ⊂ Ω such that H(x) 6= x if x ∈ Γ and

d[id−H, Γ̂, 0] = 1.

Let us recall that an embedding is a continuous and one-to-one map. In
contrast to homeomorphisms, embeddings are not necessarily onto, that is
H(Ω) ⊂ Ω. For this reason, orbits are well defined for the future but not
necessarily for the past. The embedding is orientation-preserving if

d[H,B, y] = 1,

where y is any point in H(Ω) and B is an open ball centered at H−1(y).
Given any embedding H, the second power H2 = H ◦H is always orientation-
preserving. This is well known and follows from the properties of the degree of
a composition of maps, see for instance [10].
By a recurrent point x∗ ∈ Ω we mean a point such that Hσn(x∗) → x∗ for
some increasing sequence of positive integers {σn}. Notice that the sequence
{Hn(x∗)}n≥0 could be unbounded.

Proof of Lemma 3.1. This is a well known result and we refer to [4, 8, 9] for the
case of homeomorphisms. The proof for the case of embeddings is similar. We
sketch it. Since Ω is homeomorphic to R2 we can restrict to the case Ω = R2.
For this reduction we are using the invariance of the fixed point index under
topological conjugation. This is again a consequence of the properties of the
degree of a composition.
Let C be a connected component of R2 \ Fix(H) containing the recurrent
point x∗. We can find a small and closed disk D centered at x∗ and such
that D ⊂ C and D ∩ H(D) = ∅. This is possible because x∗ is not fixed.
From [15, Chapter 3, Proposition 20] we know that H(D) is contained in C.
The recurrence of x∗ allows us to obtain an integer σ ≥ 2 such that y∗ = Hσ(x∗)
belongs to the interior of D. The points x∗ and y∗ lie on D and so it is possible
to apply [15, Chapter 3, Proposition 17] to deduce the existence of a translation
arc α containing x∗ and y∗. In consequence, y∗ belongs to α ∩ Hσ(α) and
Brouwer’s Arc Translation Lemma is applicable. An adaptation to embeddings
of the proof by Brown of this lemma can be found in [15].

We will also use the following result on minimal homeomorphisms.

Lemma 3.2. Assume that K is a compact metric space and φ : K −→ K is a
minimal homeomorphism. Then, for each integer N ≥ 1, the set

RN = {k ∈ K : k ∈ Lω(k, φN )}

is dense in K.
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We recall that φ is minimal if every point is transitive; that is, Lω(k, φ) = K
for each k ∈ K.

Proof. First of all we prove that RN is non-empty. The existence of minimal
sets for general homeomorphisms implies that there exists a non-empty compact
set M ⊂ K that is minimal for φN . This means that φN (M) = M and if N is
a compact subset of M with φN (N) = N then either N = ∅ or N = M . In
particular, the set Lω(m,φN ) has to coincide with M for each m ∈ M. This
implies that M is contained in RN . The second observation is that RN is
invariant under φ. This is easily checked and leads to the identity φ(cl(RN )) =
cl(RN ). The minimality of φ implies that cl(RN ) = K.

We need two more lemmas. The setting and the assumptions correspond
to those of the main theorem.

Lemma 3.3. The restricted homeomorphism hΛ : Λ −→ Λ is minimal.

Proof. This is a particular case of [5, Lemma 2] but we present the proof for
completeness. Assume by contradiction that h is not minimal on Λ. Then
there exists a point p ∈ Λ such that the limit set Lω(p, h) is a proper subset
of Λ. Let us fix another point q ∈ Λ \ Lω(p, h). The compact sets Lω(p, h)
and {q} can be separated by two open sets U and V of R2. Since Λ is totally
disconnected they can be chosen so that

• Λ ⊂ U ∪ V ,

• cl(V ) ∩ cl(U) = ∅,

• Lω(p, h) ⊂ U ,

• q ∈ V .

Let V∗ be the connected component of V containing q. Notice that this is also
a component of the larger set U ∪ V . The stability of Λ implies the existence
of an open set W ⊂ R2 satisfying that

Λ ⊂ W ⊂ U ∪ V, hn(W ) ⊂ U ∪ V

for each n ≥ 2. Let W∗ be the connected component of W containing p. By
assumption we know that Λ contains a transitive point. All the points in
the orbit will be transitive and therefore we know that transitive points are
dense in Λ. Let r ∈ Λ be a transitive point close enough to p in order to
guarantee that r ∈ W∗. Let (σn) be an increasing sequence of positive integers
with hσn(r) −→ q. This implies that hσn(r) belongs to V∗ for large n and so
hσn(W∗) ∩ V∗ 6= ∅. Since hσn(W∗) is a connected subset of U ∪ V we conclude
that it must be contained in one component. Hence hσn(W∗) ⊂ V∗. Finally, we
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observe that the iterates hσn(p) belong to hσn(W∗) ⊂ V∗ and therefore Lω(p, h)
has to contain a point in cl(V∗). This is a contradiction with the conditions
imposed on U and V .

The last lemma needs some preliminary remarks on the topology of R2.
Given an open set G in R2, the set Ĝ ⊂ R2 is the smallest open and simply
connected set containing G. We refer to [14] for an elementary construction
of this set. In [2], this set Ĝ is called the topological hull of G. In fact its
construction is purely topological and this explains the property h(Ĝ) = ĥ(G).

Lemma 3.4. Given a point p ∈ Λ and a disk D centered at p, there exists an
integer N ≥ 1 and an open and simply connected domain Ω ⊂ R2 satisfying
that

p ∈ Ω ⊂ D, hN (Ω) ⊂ Ω.

Proof. Since Λ is totally disconnected it is possible to find open sets A and B
in R2 satisfying that

p ∈ A ⊂ int(D),

Λ ⊂ A ∪B,

cl(A) ∩ cl(B) = ∅.

The open set A∪B is a neighborhood of Λ and the stability of this set implies the
existence of another open set V ⊂ R2 with Λ ⊂ V ⊂ A∪B and hn(V ) ⊂ A∪B
if n ≥ 1. Define W =

⋃
n≥0 hn(V ). This is also a neighborhood of Λ satisfying

Λ ⊂ W ⊂ A ∪B and hn(W ) ⊂ W if n ≥ 1.

Let G be the connected component of W containing p. This component has to
be contained in A, and hence in D. In consequence Ĝ is also contained in D.
We know by Lemma 3.3 that the limit set Lω(p, h) is the whole Cantor set Λ.
From here we deduce that p ∈ Lω(p, h) and there exists an integer N ≥ 1
such that hN (p) belongs to G. This implies that G ∩ hN (G) 6= ∅. But hN (G)
is a connected set inside W and so it must be contained in one component
of W . This component is obviously G. From hN (G) ⊂ G we obtain that
hN (Ĝ) = ĥN (G) ⊂ Ĝ and the set Ĝ is the searched domain Ω.

Proof of Theorem 2.1. We fix p ∈ Λ and a disk D of radius δ > 0. From
Lemma 3.4 we obtain a simply connected domain Ω ⊂ R2 and an integer
N ≥ 1 with

p ∈ Ω ⊂ D, hN (Ω) ⊂ Ω.

Consider the orientation preserving embedding H = h2N : Ω −→ Ω. We know
from Lemmas 3.3 and 3.2 that the set

R2N = {q ∈ Λ : q ∈ Lω(q, h2N )}
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is dense in Λ. In consequence we can find a point lying in Ω∩R2N . This point
is recurrent for H and Lemma 3.1 applies.

Proof of Corollary 2.3. We fix ε > 0. The stability of Λ as an invariant set of
h guarantees the existence of δ∗ > 0 such that

dist(x, Λ) ≤ δ∗ =⇒ dist(hi(x),Λ) ≤ ε

2

for each i ≥ 0. In particular, δ∗ ≤ ε
2 . Since Λ is compact it can be covered

by a finite number of open balls B1, ..., Bk of radius δ∗ and centered at points
p1, ..., pk lying in Λ. Next we apply Theorem 2.1 at each pi to find Jordan curves
Γ1,...,Γk and integers N1, ..., Nk ≥ 1 such that Γj ⊂ Bj and d[id−hNj , Γ̂j , 0] =
1, j = 1, ..., k. Define K =

⋃k
j=1(Γj ∪ Γ̂j) and N = max{N1, ..., Nk}.

We consider the family F1 composed by homeomorphisms h̃ : R2 −→ R2

satisfying
‖h− h̃‖∞ := sup

x∈R2
‖h(x)− h̃(x)‖ ≤ 1.

We need some properties of the iterates of h̃ which are common to the whole
family F1.
Claim 1: There exists a compact set K∗ ⊂ R2 such that

h̃i(K) ⊆ K∗

for all i = 0, 1, ..., N and for each h̃ ∈ F1.
Let C0 > 0 be a large number so that K is contained in the ball of radius C0

centered at the origin. By induction, we define

Ci+1 = 1 + max
‖x‖≤Ci

‖h(x)‖, i ≥ 0.

We claim that
‖h̃i(x)‖ ≤ Ci if x ∈ K.

Indeed, using the induction method,

‖h̃i+1(x)‖ ≤ ‖h̃(h̃i(x))− h(h̃i(x))‖+ ‖h(h̃i(x))‖
≤ ‖h̃− h‖∞ + max

‖x‖≤Ci

‖h(x)‖.

Claim 2: Given ∆ > 0 there exists δ2 > 0 such that h̃ ∈ F1 and ‖h− h̃‖∞ ≤ δ2

implies that ‖hi(x)− h̃i(x)‖ ≤ ∆ if x ∈ K, i = 1, ..., N.
In view of Claim 1 we can find a modulus of continuity for h on K∗. This
means a function ω : [0,∞[−→ R with limr→0+ ω(r) = 0 and

‖h(x)− h(y)‖ ≤ ω(‖x− y‖) if x, y ∈ K∗.
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Define Di = maxx∈K ‖h̃i(x)− hi(x)‖. Then, by induction, we prove that

Di+1 ≤ ‖h̃− h‖∞ + ω(Di), i = 1, ..., N − 1

and the claim follows easily. Notice that

‖h̃i+1(x)− hi+1(x)‖ ≤ ‖h̃(h̃i(x))− h(h̃i(x))‖+ ‖h(h̃i(x))− h(hi(x))‖.

After these claims we are ready to prove the existence of Λ̃. First we apply the
continuity of the degree to find positive numbers η1, ..., ηk such that if

‖hNj (x)− h̃Nj (x)‖ ≤ ηj , x ∈ Γj ,

then
d[id− h̃Nj , Γ̂j , 0] = d[id− hNj , Γ̂j , 0] = 1.

Next we apply Claim 2 with ∆ = min{ ε
2 , η1, ..., ηk} and find δ2 ∈]0, δ∗[ such

that the conclusion of the claim holds if ‖h− h̃‖∞ ≤ δ2. The existence property
of the degree allows us to select points x̃j ∈ Γ̂j such that h̃Nj (x̃j) = x̃j . The
set

Λ̃ = {h̃i(x̃j) : j = 1, ..., k, 0 ≤ i < Nj}

is finite and invariant under h̃. It remains to prove that DH [Λ, Λ̃] ≤ ε. Assume
first that p is a point in Λ. Since Λ is covered by B1, ..., Bk we find an index j
such that p ∈ Bj . The ball Bj also contains the point x̃j . In consequence,

dist(p, Λ̃) ≤ ‖p− x̃j‖ ≤ 2δ∗ ≤ ε.

Consider now a point in Λ̃, say h̃i(x̃j). From

dist(x̃j ,Λ) ≤ ‖x̃j − pj‖ ≤ δ∗,

we deduce that
dist(hi(x̃j),Λ) ≤ ε

2
.

Hence, using Claim 2 and this estimate, if ‖h− h̃‖∞ ≤ δ2,

dist(h̃i(x̃j),Λ)≤ ‖h̃i(x̃j)− hi(x̃j)‖+ dist(hi(x̃j),Λ)

≤ ε

2
+

ε

2
.
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4. Miscelaneous remarks

4.1. Invariant finite sets can be stable and non-persistent

A finite and invariant set Λ has to be composed by periodic points. We consider
the simple case of a singleton Λ = {p} and present an example of a stable fixed
point that is not persistent as invariant set.
Consider the map

h : C −→ C

h(z) = z exp
(

iy

1 + |z|2

)
with z = x + iy. We have expressed it in complex notation but for many
purposes it is more convenient the use of polar coordinates,

h :

{
θ1 = θ + r

1+r2 sin θ ,

r1 = r .

It is not hard to prove that h is a real analytic diffeomorphism of the plane.
We also observe that every disk of the type |z| ≤ constant is invariant under
h and so the fixed point z = 0 is stable. An useful property of h is that
V (z) = <e z = x is a Lyapunov function. This means that

V (h(z)) ≤ V (z)

for each z ∈ C. Let us now consider the perturbed map hε = Tε ◦ h where
Tε(z) = z − ε is a horizontal translation with ε > 0. Again V is a Lyapunov
function with

V (hε(z)) = V (h(z))− ε ≤ V (z)− ε.

More generally, if n ≥ 1,

V (hn
ε (z)) ≤ V (z)− nε

and so all the orbits for hε are unbounded. This shows that hε has no compact
invariant sets. Since ‖h− hε‖∞ = ε, the maps h and hε are close and Λ = {0}
is not persistent.
Incidentally, we notice that the set of fixed points Fix(h) is the real axis and
so z = 0 is not an isolated fixed point. This is no surprise because stable
fixed points are persistent as soon as they are isolated in Fix(h). This is a
consequence of the main result in [7]: if h : R2 −→ R2 is an orientation-
preserving homeomorphism and p = h(p) is a stable fixed point which is isolated
in Fix(h), then

d[id− h, Γ̂, 0] = 1
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for each Jordan curve Γ ⊂ R2 with Γ̂ ∩ Fix(h) = {p}, Γ ∩ Fix(h) = ∅. The
case of orientation-reversing homeomorphisms was treated by Ruiz del Portal
in [16].

4.2. Unstable Cantor sets can be isolated and
non-persistent

With the help of a Denjoy homeomorphism on S1, it is possible to construct
homeomorphisms h : R2 −→ R2 having a unique fixed point p∗ and an invariant
Cantor set Λ. In addition, the limit set of any point x ∈ R2 is either the fixed
point, Lω(x, h) = {p∗}, or the Cantor set, Lω(x, h) = Λ. In particular, Λ is
minimal. The details of the construction can be found in [11]. The map h has
not periodic points and this implies that

d[id− hN , Γ̂, 0] = 0

for any N ≥ 1 and any Jordan curve Γ ⊂ R2 such that p∗ lies in the exterior,
that is, p∗ 6∈ Γ ∪ Γ̂. This example shows that the conclusion of Theorem 2.1
does not hold if we drop the stability assumption. In the example constructed
in [11], the fixed point was placed at the origin, p∗ = 0, and the Cantor set
was inside the unit circumference, Λ ⊂ S1. Moreover the Euclidean norm
V (x) = ‖x‖ was a Lyapunov function satisfying

V (h(x)) < V (x)

if x ∈ R2\(Λ∪{0}). Consider the perturbed homeomorphism hε = Dε ◦h, with
ε > 0 and

Dε(x) =


(1− ε)x, if ‖x‖ ≤ 2 ;

(1− 3ε + ε‖x‖)x, if 2 ≤ ‖x‖ ≤ 3 ;

x, if ‖x‖ ≥ 3 .

Then ‖hε − h‖∞ = 2ε and

V (hε(x)) < V (x)

if x ∈ R2\{0}. La Salle’s invariance principle implies that the origin is a global
attractor for hε. This shows that Λ is not persistent.
The dynamics of hΛ in the preceding example is of Denjoy type, a case that
can be excluded if Λ is stable. The reason for this exclusion lies in a result
by Buescu and Stewart [5] implying that stable Cantor sets are conjugate to
adding machines. The family of adding machines is composed by certain ex-
plicit maps describing all possible almost periodic dynamics on a Cantor set.
Denjoy dynamics is presented in [13] as the prototype of minimal dynamics
that is not almost periodic and so it is not conjugate to an adding machine.
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4.3. Adding machines cannot be isolated

In [17], Thomas obtained a result on the dynamics of solenoids in 3D flows
that can be adapted to a 2D discrete setting for adding machines. Assume
now that h : R2 −→ R2 is a C1 diffeomorphism that is orientation-preserving
and has an invariant Cantor set Λ such that hΛ is almost periodic. Then it is
possible to construct a T -periodic differential equation in the plane such that
h is the Poincaré map. See [12] for an explicit construction. In this way, we
obtain a C1 flow on the manifold M = (R/TZ)×R2 and the results in [17] are
applicable. The closure of the orbit starting at any point of Λ is a solenoid
S ⊂ M and [17, Theorem 3] implies that S is not isolated as an invariant set
of the flow. The invariant sets accumulating on S must intersect the global
section M0 = {0} × R2 and so Λ cannot be isolated as an invariant set of h.
Notice that the result by Bell and Meyer does not follow from [5] and [17]
because in principle one could find invariant sets without periodic points. The
smoothness of h was needed in [17] to work with a smooth isolating block. At
the end of that paper it is mentioned that the smoothness hypotheses can be
weakened. It seems reasonable to expect that the previous discussion can be
extended to homeomorphisms. We do not know if the conclusion of Bell and
Meyer is also valid when the assumption of stability for Λ is replaced by almost
periodicity.
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