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Abstract. In this paper we consider a class of impulsive Kolmogorov-
type systems. The problems of uniform stability and uniform asymptotic
stability of the solutions are studied. We establish stability criteria
by employing piecewise continuous Lyapunov functions. Examples are
given to demonstrate the effectiveness of the obtained results. We show,
also, that the role of impulses in changing the behavior of impulsive
models is very important.
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1. Introduction

The studies for Kolmogorov systems has long been and will continue to be
one of the dominant themes in both ecology and mathematical ecology due
to its theoretical and practical significance. Many authors established a series
of criteria on the boundedness, persistence, permanence, global asymptotic
stability and the existence of positive periodic solutions [8, 9, 12, 14, 16, 18].
Some interesting work on this topic of interest has been done by Zanolin and
his co-authors [6, 19, 20].

On the other hand, impulsive effect likewise exists in a wide variety of evo-
lutionary processes in which states are changed abruptly at certain moments
of time, involving such fields as medicine and biology, economics, mechanics,
electronics, telecommunications, etc. Since time perturbations occur so often
in nature, a number of models in ecology can be formulated as systems of im-
pulsive differential equations [2, 3, 4, 5, 13, 15, 21]. One of the most important
problems for these types of systems is to analyze the effect of impulsive time
perturbations on the dynamic activity patterns in the systems. Impulses can
make unstable systems stable; so they have been widely used as a control [17].
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Recently, some qualitative properties of populations, which undergo impul-
sive effects at fixed times between interval of continuous evolutions, have been
investigated for impulsive classes of Kolmogorov systems [5, 15, 21]. However,
in all of these papers so far, authors mostly focused on the existence of periodic
solutions and permanence.

In our previous papers [2] and [3] we studied stability properties of some
special cases of impulsive Kolmogorov systems with or without delays.

In the present paper, we consider the uniform stability and uniform asymp-
totic stability of the solutions for a class of impulsive Kolmogorov-type systems
of nonautonomous differential equations. For this purpose piecewise continu-
ous auxiliary functions are used which are an analogue of Lyapunov functions.
Examples are given to demonstrate the effectiveness of the obtained results.
We show, also, that the role of impulses in changing the behavior of impulsive
models is very important.

2. Preliminaries

Let Rn be the n-dimensional Euclidean space with norm ||x|| =
n∑

i=1

|xi|. Let

R+ = [0,∞) , t0 ∈ R+ and t0 < t1 < t2 < ..., lim
k→∞

tk = ∞.

Consider the following n- dimensional impulsive Kolmogorov-type system

ẋi(t) = xi(t)fi(t, x(t)), t 6= tk,
∆xi(tk) = Pik(xi(tk)), k = 1, 2, ...,

(1)

i = 1, 2, ..., n, where n corresponds to the number of units in the system, xi(t)
corresponds to the state of the ith unit at time t, fi : [t0,∞) × Rn

+ → R,
f = col(f1, f2, ..., fn), f ∈ C[[t0,∞)× Rn

+, Rn], ∆xi(t) = xi(t + 0)− xi(t− 0),
tk, k = 1, 2, ... are the moments of impulsive perturbations and Pik(xi(tk))
represents the abrupt change of the state xi(t) at the impulsive moment tk,
Pk = col(P1k, P2k, ..., Pnk), Pk ∈ C[Rn

+, Rn].
Let x0 = col(x10, x20, ..., xn0) and xi0 ≥ 0, i = 1, 2, ..., n. Denote by x(t) =

x(t; t0, x0) = col(x1(t), x2(t), ..., xn(t)) the solution of system (1), satisfying the
initial condition

x(t0 + 0; t0, x0) = x0. (2)

We suppose that the existence, uniqueness, and continuous dependence of
solutions of system (1) hold. For the efficient sufficient conditions which guar-
antee the existence, uniqueness, and continuous dependence of solutions of
system (1) (see [11]).

The solutions x(t) of system (1) are piecewise continuous functions with
points of discontinuity of the first kind tk at which they are left continuous; i.e.
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the following relations are satisfied:

xi(tk − 0) = xi(tk), xi(tk + 0) = xi(tk) + Pik(xi(tk)),
i = 1, 2, ..., n, k = 1, 2, ....

We also assume that solutions of (1) with initial conditions (2) are nonneg-
ative, and if xi0 > 0 for some i, then xi(t) > 0 for all t ≥ t0, If, moreover,
(tk, xi) ∈ (t0,∞) × (0,∞), then xi(tk) + Pik(xi(tk)) > 0 for all i = 1, 2, ..., n
and k = 1, 2, .... Note that these assumptions are natural from the applicability
point of view.

Let x(t)= x(t; t0, x0) = col(x1(t), x2(t), ..., xn(t)) and x∗(t) = x∗(t; t0, x∗0) =
col(x∗1(t), x

∗
2(t), ..., x

∗
n(t)) be any two solutions of (1) with initial conditions

x(t0 + 0; t0, x0) = x0,

x∗(t0 + 0; t0, x∗0) = x∗0,

where x∗0 = col(x∗10, x
∗
20, ..., x

∗
n0) and x∗i0 ≥ 0, i = 1, 2, ..., n.

We will use the following definitions of some stability properties of the
solutions of (1).

Definition 2.1. The solution x∗(t) of system (1) is said to be:

(a) stable, if for all t0 ∈ R+ and for all ε > 0 there exists δ = δ(t0, ε) > 0
such that if x0, x

∗
0 ∈ Rn

+, with ||x0 − x∗0|| < δ, then for all t ≥ t0:

||x(t; t0, x0)− x∗(t; t0, x∗0)|| < ε;

(b) uniformly stable, if the number δ in (a) is independent of t0 ∈ R+;

(c) uniformly attractive, if there exists λ > 0 such that for all ε > 0 there
exists γ = γ(ε) > 0 such that if t0 ∈ R+ and x0, x

∗
0 ∈ Rn

+, with ||x0 −
x∗0|| < λ, then for all t ≥ t0 + γ:

||x(t; t0, x0)− x∗(t; t0, x∗0)|| < ε;

(d) uniformly asymptotically stable, if it is uniformly stable and uniformly
attractive.

Introduce the sets

Gk =
{

(t, x, x∗) ∈ [t0,∞)×Rn
+ ×Rn

+ : tk−1 < t < tk

}
, k = 1, 2, ...,

G =
∞⋃

k=1

Gk .
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Definition 2.2. A function V : [t0,∞)×Rn
+ ×Rn

+ → R+ belongs to class V0,
if:

1. V is continuous in G and locally Lipschitz continuous with respect to its
second and third arguments on each of the sets Gk, k = 1, 2, ... and

V (t, x∗, x∗) = 0, t ∈ [t0,∞).

2. For each k = 1, 2, ... there exist the finite limits

V (tk − 0, x, x∗) = lim
t→tk
t<tk

V (t, x, x∗), V (tk + 0, x, x∗) = lim
t→tk
t>tk

V (t, x, x∗)

and the equality V (tk − 0, x, x∗) = V (tk, x, x∗) holds.

3. For each k = 1, 2, ... and x, x∗ ∈ Rn
+ the following inequality holds:

V (tk + 0, x + Pk(x), x∗ + Pk(x∗)) ≤ V (t, x, x∗). (3)

Let V ∈ V0. For (t, x, x∗) ∈ G we set

V̇(1)(t, x, x∗)= lim
h→0+

sup
1
h

[V (t+h, x+hxf(t, x), x∗+hx∗f(t, x∗))−V (t, x, x∗)].

Note that if x = x(t) and x∗ = x∗(t) are solutions of system (1), then
D+

(1)V (t, x(t), x∗(t)) = V̇(1)(t, x, x∗), t ≥ t0, t 6= tk, where

D+
(1)V (t, x(t), x∗(t))= lim

h→0+
sup

1
h

[V (t+h, x(t+h), x∗(t+h))−V (t, x(t), x∗(t))]

is the upper right Dini derivative of the function V (t, x(t), x∗(t)) (with respect
to the system (1)).

We shall use the following class of functions:

K = {a ∈ C[R+, R+] : a(r) is strictly increasing and a(0) = 0} .

3. Main results

In the proofs of our main theorems in this section we shall use piecewise con-
tinuous Lyapunov functions V ∈ V0. Similar results for systems with delays
are discussed in [13].
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Theorem 3.1. Assume that there exist functions V ∈ V0 and a, b ∈ K such
that

a(||x− x∗||) ≤ V (t, x, x∗) ≤ b(||x− x∗||), t ∈ [t0,∞), x, x∗ ∈ Rn
+, (4)

V̇(1)(t, x, x∗) ≤ 0, (t, x, x∗) ∈ G. (5)

Then the solution x∗(t) of system (1) is uniformly stable.

Proof. Let ε > 0 be chosen. Choose δ = δ(ε) > 0 so that b(δ) < a(ε).
Let t0 ∈ R+, x0, x

∗
0 ∈ Rn

+, with ||x0 − x∗0|| < δ, and x(t) = x(t; t0, x0) =
col(x1(t), x2(t), ..., xn(t)), x∗(t) = x∗(t; t0, x∗0) = col(x∗1(t), x

∗
2(t), ..., x

∗
n(t)) be

the solutions of (1).
From the properties of the function V and conditions (4), (5), we get to the

inequalities

a(||x(t; t0, x0)− x∗(t; t0, x∗0)||)≤ V (t, x(t; t0, x0), x∗(t; t0, x∗0))
≤ V (t0 + 0, x0, x

∗
0)

≤ b(||x0 − x∗0||) < b(δ) < a(ε) ,

from which it follows that ||x(t; t0, x0) − x∗(t; t0, x∗0)|| < ε for t ≥ t0. This
proves the uniform stability of the solution x∗(t) of system (1).

Theorem 3.2. Let the condition (4) of Theorem 3.1 be fulfilled and let a func-
tion c ∈ K exist such that for x, x∗ ∈ Rn

+ the inequality

V̇(1)(t, x, x∗) ≤ −c(||x− x∗||), t ∈ [t0,∞), t 6= tk, k = 1, 2, ... (6)

holds.
Then the solution x∗(t) of system (1) is uniformly asymptotically stable.

Proof. From Theorem 3.1 it follows that the solution x∗(t) of system (1) is
uniformly stable. Hence, for any ε, ε > 0, there exists δ > 0, such that if
t0 ∈ R+, x0, x

∗
0 ∈ Rn

+, with ||x0 − x∗0|| < δ, then

||x(t; t0, x0)− x∗(t; t0, x∗0)|| < ε

for t ≥ t0.
Now, we shall prove that the solution x∗(t) of system (1) is uniformly at-

tractive.
1. Let α = const > 0 be so small, that {x ∈ Rn : ||x− x∗(t)|| ≤ α} ⊂ Rn

+.
For any t ≥ t0 denote

V −1
t,α =

{
x ∈ Rn

+ : V (t + 0, x, x∗) ≤ a(α)
}

.
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From (4) we deduce

V −1
t,α ⊂ {x ∈ Rn : ||x− x∗|| ≤ α}.

From conditions of Theorem 3.2 it follows that for any t0 ∈ R+ and any x0 ∈
Rn

+ : x0 ∈ V −1
t0,α we have x(t; t0, x0) ∈ V −1

t,α , t ≥ t0. Choose η = η(ε) so that
b(η) < a(ε) and let γ = γ(ε) > b(α)

c(η) . If we assume that for each t ∈ [t0, t0 + γ]
the inequality ||x(t; t0, x0) − x∗(t; t0, x∗0)|| ≥ η is valid, then from (3) and (6)
we deduce the inequalities

V (t0 + γ, x(t0 + γ; t0, x0), x∗(t0 + γ; t0, x∗0))

≤ V (t0 + 0, x0, x
∗
0)−

∫ t0+γ

t0

c(||x(s; t0, x0)− x∗(s; t0, x∗0)||) ds

≤ b(α)− c(η)γ < 0 ,

which contradicts (4). The contradiction obtained shows that there exists t∗ ∈
[t0, t0 + γ] such that ||x(t∗; t0, x0)− x∗(t∗; t0, x∗0)|| < η. Then for t ≥ t∗ (hence
for any t ≥ t0 + γ) the following inequalities hold:

a(||x(t)− x∗(t)||)≤ V (t;x(t), x∗(t))
≤ V (t∗, x(t∗), x∗(t∗))
≤ b(||x(t∗; t0, x0)− x∗(t∗; t0, x∗0)||)
< b(η) < a(ε) .

Therefore ||x(t; t0, x0)− x∗(t; t0, x∗0)|| < ε for t ≥ t0 + γ.
2. Let λ = const > 0 be such that b(λ) ≤ a(α). Then if x0 ∈ Rn

+ :
||x0 − x∗0|| < λ, (4) implies

V (t0 + 0, x0, x
∗
0) ≤ b(||x0 − x∗0||) < b(λ) ≤ a(α),

which shows that for x0 ∈ V −1
t0,α. From what we proved in item 1 it follows that

the solution x∗(t) of system (1) is uniformly attractive.
Therefore, the solution x∗(t) of system (1) is uniformly asymptotically sta-

ble.

Corollary 3.3. If in Theorem 3.2 condition (6) is replaced by the condition

V̇(1)(t, x, x∗) ≤ −cV (t, x, x∗), t 6= tk, k = 1, 2, ..., x, x∗ ∈ Rn
+, (7)

where c = const > 0, then the solution x∗(t) of system (1) is uniformly asymp-
totically stable.
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Proof. The proof of Corollary 3.3 is analogous to the proof of Theorem 3.2. It
uses the fact that

V (t, x(t; t0, x0), x∗(t; t0, x∗0)) ≤ V (t0 + 0, x0, x
∗
0) exp[−c(t− t0)]

for t ≥ t0, which is obtained from (7) and (3).
In fact, let α = const > 0 : {x ∈ Rn : ||x− x∗(t)|| ≤ α} ⊂ Rn

+. Choose
λ > 0 so that b(λ) < a(α). Let ε > 0 and γ ≥ 1

c ln a(α)
a(ε) . Then for t0 ∈ R+,

x0, x
∗
0 ∈ Rn

+, with ||x0 − x∗0|| < λ and t ≥ t0 + γ the following inequalities hold

V (t, x(t; t0, x0), x∗(t; t0, x∗0)) ≤ V (t0 + 0, x0, x
∗
0) exp[−c(t− t0)] < a(ε),

whence, in view of (4), we deduce that the solution x∗(t) of system (1) is
uniformly attractive.

4. Applications

The results obtained can be applied in the investigation of the stability of
any solution which is of interest. One of the solutions which is an object of
investigations for the systems of type (1) is the equilibrium state, i.e. the
constant solution x∗ = col(x∗1, x

∗
2, ..., x

∗
n) such that

ẋ∗i (t) = 0, t 6= tk,

∆x∗i (tk) = 0, k = 1, 2, ..., i = 1, 2, ..., n.

In the applications, uniform stability and uniform asymptotic stability of
the equilibria will be discussed for a special case of impulsive Kolmogorov-type
models.

Consider the following n-species Lotka-Volterra type impulsive system
ẋi(t) = xi(t)

bi(t)− aii(t)xi(t)−
n∑

j=1
j 6=i

aij(t)xj(t)

 , t 6= tk,

xi(tk + 0) = xi(tk) + Pik(xi(tk)), i = 1, ..., n, k = 1, 2, ...,

(8)

where n ≥ 2, t ≥ 0, aij ∈ C[R+, R+], bi ∈ C[R+, R], Pik : R+ → R, i, j =
1, ..., n, k = 1, 2, ..., 0 < t1 < t2 < ... < tk < ... are fixed impulsive points
and lim

k→∞
tk = ∞. In mathematical ecology, the system (8) denotes a model of

the dynamics of an n-species system in which each individual competes with
all others of the system for a common resource and at the fixed moments of
time tk, k = 1, 2, ..., the system is subject to short-term perturbations. The
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numbers xi(tk) and xi(tk + 0) are, respectively, the population densities of
species i before and after impulse perturbation at the moment tk and Pik are
functions which characterize the magnitude of the impulse effect on the species
i at the moments tk.

Let x0 = col(x10, x20, ..., xn0) and xi0 ≥ 0, i = 1, 2, ..., n. Denote by x(t) =
x(t; t0, x0) = col(x1(t), x2(t), ..., xn(t)) the solution of system (8), satisfying the
initial condition

x(t0 + 0; t0, x0) = x0. (9)

Given a continuous function g(t) which is defined on J , J ⊆ R, we set

gL = inf
t∈J

g(t), gM = sup
t∈J

g(t).

For 0 ≤ τ1 < τ2, we define the following notation:

A[g, τ1, τ2] =
1

τ2 − τ1

∫ τ2

τ1

g(s)ds.

The lower and upper averages of g(t), denoted by m[g] and M [g] are defined
by

m[g] = lim
s→∞

inf {A[g, τ1, τ2] | τ2 − τ1 ≥ s} ,

M [g] = lim
s→∞

sup {A[g, τ1, τ2] | τ2 − τ1 ≥ s} .

In our subsequent analysis, we shall assume that the functions bi and aij ,
i, j = 1, 2, ..., n, are continuous on R+, aij ≥ 0, aM

ij < ∞, bM
i < ∞, bL

i > 0,
and aL

ii > 0 for i = 1, 2, ..., n.
Furthermore, in order to restrict our attention only to those solutions which

evolve in the phase space {x ∈ Rn
+ : xi > 0, i = 1, 2, ..., n}, we also shall

assume that the functions Pik are continuous on R+, and xi + Pik(xi) > 0 for
xi > 0, i = 1, 2, ..., n, k = 1, 2, .... This restriction prevents the instantaneous
extinction of any population xi at an impulse time tk. We point out that
efficient sufficient conditions which guarantee the positivity of the solutions of
such systems are given in [2].

Ahmad and Lazer [1] proved that, if for i = 1, ..., n,

m[bi] >

n∑
i=1
i6=j

aM
ij

aL
jj

M [bj ], (A)

then for any solution x(t) = col(x1(t), ..., xn(t)) of the corresponding system
to system (8) without impulses (i.e. with xi(tk + 0) = xi(tk), i = 1, ..., n, k =
1, 2, ...) if xi(0) > 0, i = 1, ..., n, then:

0 < inf
t≥0

xi(t) < sup
t≥0

xi(t) < ∞.
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Lemma 4.1. Assume that the condition (A) is satisfied and the functions Pik

are such that

−xi ≤ Pik(xi) ≤ 0 for xi ∈ R+, i = 1, 2, ..., n, k = 1, 2, ....

Then there exist positive constants r and R such that

r ≤ xi(t) ≤ R, t ∈ [0,∞). (10)

Proof. From corresponding theorem for the continuous case ([1]), it follows
that for all t ∈ [0, t1] ∪ (tk, tk+1], k = 1, 2, ... and 1 ≤ i ≤ n there exist positive
constants r∗i and R∗i such that the following inequalities hold:

r∗i ≤ xi(t) ≤ R∗i .

Using the positivity of the solutions and the condition of Lemma 4.1, we obtain

0 < xi(tk + 0) = xi(tk) + Pik(xi(tk)) ≤ xi(tk) ≤ R∗i .

Therefore, there exist positive constants r and R such that the inequalities (10)
are valid.

Next, we will give sufficient conditions for the uniform stability and uniform
asymptotic stability of the equilibrium states of (8). The problems of existence
and uniqueness of equilibria of Lotka-Volterra systems with or without im-
pulses have been investigated by many authors. Some sufficient conditions for
impulsive models are given in [2, 3, 13].

Theorem 4.2. Assume that:

1. The assumptions of Lemma 4.1 holds.

2. r ≤ xi + Pik(xi) ≤ xi ≤ R for r ≤ xi ≤ R, i = 1, 2, ..., n, k = 1, 2, ....

3. The following inequalities are valid

ajj(t) ≥
n∑

i=1
i6=j

aij(t), t 6= tk, k = 1, 2, ....

Then the equilibrium x∗ of system (8) is uniformly stable.

Proof. Define a Lyapunov function

V (t, x, x∗) =
n∑

i=1

∣∣∣∣ln xi

x∗i

∣∣∣∣ . (11)
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By Mean Value Theorem and by (10), it follows that for any closed interval
contained in [0, t1] ∪ (tk, tk+1], k = 1, 2, ... and for all i = 1, 2, ...

1
R
|xi(t)− x∗i | ≤ | lnxi(t)− lnx∗i | ≤

1
r
|xi(t)− x∗i |. (12)

For t > 0 and t = tk, k = 1, 2, ..., we have

V (tk + 0, x(tk + 0), x∗(tk + 0)) =
n∑

i=1

∣∣∣∣ln xi(tk + 0)
x∗i (tk + 0)

∣∣∣∣
=

n∑
i=1

∣∣∣∣ln xi(tk) + Pik(xi(tk))
x∗i (tk)

∣∣∣∣
≤

n∑
i=1

∣∣∣∣ln xi(tk)
x∗i (tk)

∣∣∣∣ = V (tk, x(tk), x∗(tk)).

(13)

Consider the upper right-hand derivative D+
(8)V (t, x(t), x∗) of the function

V (t, x(t), x∗) with respect to system (8). For t ≥ 0 and t 6= tk, k = 1, 2, ..., we
derive the estimate

D+
(8)V (t, x(t), x∗) =

n∑
i=1

ẋi(t)
xi(t)

sgn (xi(t)− x∗i ) .

Since x∗ is the equilibrium of (8) and bi(t) = aii(t)x∗i +
n∑

j=1
j 6=i

aij(t)x∗j , then

D+
(8)V (t, x(t), x∗) ≤

n∑
j=1

−ajj(t)|xj(t)− x∗j | +
n∑

i=1
i6=j

aij(t)|xj(t)− x∗j |

 .

Thus in view of condition 3 of Theorem 4.2, we obtain

D+
(8)V (t, x(t), x∗) ≤ 0,

t ≥ 0 and t 6= tk, k = 1, 2, ....
Since all conditions of Theorem 3.1 hold, then the equilibrium x∗ of sys-

tem (8) is uniformly stable.

Theorem 4.3. In addition to the assumptions of Theorem 4.2, suppose there
exists a nonnegative constant µ such that

ajj(t) ≥ µ +
n∑

i=1
i6=j

aij(t), t 6= tk, k = 1, 2, .... (14)

Then the equilibrium x∗ of system (8) is uniformly asymptotically stable.
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Proof. We consider again the Lyapunov function (11). From (13) and (14), we
obtain

D+
(8)V (t, x(t), x∗) ≤ −µ

n∑
i=1

|xi(t)− x∗i (t)|,

t ≥ 0 and t 6= tk, k = 1, 2, ....
Since all conditions of Theorem 3.2 are satisfied, the solution x∗ of sys-

tem (8) is uniformly asymptotically stable.

In order to illustrate some features of our results, in the following we will
apply Theorem 4.3 to two-dimensional systems, which have been studied ex-
tensively in the literature.

Example 4.4. For the system{
ẋ(t) = x(t) [8− 14x(t)− y(t)] ,

ẏ(t) = y(t) [15− 4x(t)− 13y(t)] ,
(15)

one can show that the point (x∗, y∗) = ( 1
2 , 1) is an equilibrium which is uni-

formly asymptotically stable [1].
Now, we consider the impulsive Lotka-Volterra system

ẋ(t) = x(t) [8− 14x(t)− y(t)] , t 6= tk,

ẏ(t) = y(t) [15− 4x(t)− 13y(t)] , t 6= tk,

∆x(tk) = −1
3

(
x(tk)− 1

2

)
, k = 1, 2, ...,

∆y(tk) = −3
5

(
y(tk)− 1

)
, k = 1, 2, ...,

(16)

where 0 < t1 < t2 < ... and lim
k→∞

tk = ∞.

For the system (16), the point (x∗, y∗) = ( 1
2 , 1) is an equilibrium and all

conditions of Theorem 4.3 are satisfied. In fact, for µ ≤ 10, r = 1
2 and R = 1,

we have

1
2
≤ 3x(tk) + 1

6
= x(tk) + P1k(x(tk))

= x(tk)− 1
3

(
x(tk)− 1

2

)
=

2
3

(
x(tk)− 1

2

)
+

1
2
≤ x(tk) ≤ 1,

1
2
≤ 2y(tk) + 3

5
= y(tk) + P2k(y(tk))

= y(tk)− 3
5

(
y(tk)− 1

)
=

2
5

(
y(tk)− 1

)
+ 1 ≤ y(tk) ≤ 1,
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for 1
2 ≤ x(tk) ≤ 1, 1

2 ≤ y(tk) ≤ 1, k = 1, 2, ....

Therefore, the equilibrium (x∗, y∗) = ( 1
2 , 1) is uniformly asymptotically sta-

ble.

If, in the system (16), we consider the impulsive perturbations of the form:


∆x(tk) = −3

(
x(tk)− 1

2

)
, k = 1, 2, ...,

∆y(tk) = −3
5

(
y(tk)− 1

)
, k = 1, 2, ...,

then the point (x∗, y∗) = ( 1
2 , 1) is again an equilibrium, but there is nothing we

can say about its uniform asymptotic stability, because for 1
2 ≤ x(tk) ≤ 1, we

have −1
2
≤ x(tk) + P1k(x(tk)) ≤ 1

2
, k = 1, 2, ....

The example shows that by means of appropriate impulsive perturbations we
can control the system’s population dynamics. We can see that impulses are
used to keep the stability properties of the system.

Example 4.5. The system

{
ẋ(t) = x(t) [2− 6x(t)− y(t)] ,
ẏ(t) = y(t) [3− 2x(t)− 5y(t)] .

(17)

has a boundary equilibrium point (x∗, y∗) = (1
3 , 0). We point out that efficient

sufficient conditions which guarantee the stability of such solutions of predator-
prey systems are given in [7, 10].

However, for the impulsive Lotka-Volterra system



ẋ(t) = x(t) [2− 6x(t)− y(t)] , t 6= tk,

ẏ(t) = y(t) [3− 2x(t)− 5y(t)] , t 6= tk,

∆x(tk) = −1
2

(
x(tk)− 1

4

)
, k = 1, 2, ...,

∆y(tk) = −1
3

(
y(tk)− 1

2

)
, k = 1, 2, ...,

where 0 < t1 < t2 < ... and lim
k→∞

tk = ∞, the point (x∗, y∗) = ( 1
4 , 1

2 ) is an

equilibrium which is uniformly asymptotically stable. In fact, all conditions of



STABILITY CRITERIA FOR KOLMOGOROV-TYPE SYSTEMS 31

Theorem 4.3 are satisfied for µ ≤ 3, r = 1
4 , R = 1

2 and

1
4
≤ 4x(tk) + 1

8
= x(tk) + P1k(x(tk))

= x(tk)− 1
2

(
x(tk)− 1

4

)
=

1
2

(
x(tk)− 1

4

)
+

1
4
≤ x(tk) ≤ 1

2
,

1
4
≤ 4y(tk) + 1

6
= y(tk) + P2k(y(tk))

= y(tk)− 1
3

(
y(tk)− 1

2

)
=

2
3

(
y(tk)− 1

2

)
+

1
2
≤ y(tk) ≤ 1

2
,

for 1
4 ≤ x(tk) ≤ 1

2 , 1
4 ≤ y(tk) ≤ 1

2 , k = 1, 2, ....
This shows that the impulsive perturbations can prevent the population from

going extinct.
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