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1. Introduction

Consider a compact boundaryless smooth manifold M ⊆ Rs and denote by
BU((−∞, 0],M) the space of bounded and uniformly continuous maps from
(−∞, 0] into M with the topology of the uniform convergence. In this paper
we study a retarded functional motion equation on M of the type

x′′π(t) = f(t, xt)− εx′(t), (1)

where

1. x′′π(t) stands for the tangential part of the acceleration x′′(t) ∈ Rs at the
point x(t) ∈M ,

2. the frictional coefficient ε is a positive constant,
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3. the applied force f : R×BU((−∞, 0],M) → Rs is continuous, T -periodic
in the first variable and such that f(t, ϕ) ∈ Tϕ(0)M for all (t, ϕ), where
TpM ⊆ Rs stands for the tangent space of M at a point p of M .

We will call functional field a continuous map f : R×BU((−∞, 0],M) → Rs

verifying the above tangency condition. In addition, let us recall that, given
any map x, defined on a real interval J with inf J = −∞, and given t ∈ J , xt

denotes the map θ 7→ x(θ + t), defined on (−∞, 0].
The main result of this work, Theorem 4.1 below, shows that the equa-

tion (1) admits at least one T -periodic solution (a forced oscillation), provided
that M has nonzero Euler-Poincaré characteristic and f is bounded and verifies
a sort of Lipschitz condition.

This result provides a positive answer to a conjecture recently formulated
in [4]. A key tool that allowed us to solve our conjecture is Lemma 3.1 below,
proved in [10].

An existence result for a similar problem has been obtained in [1] (see
also [2, 3]), with the difference that, in [1], the function f is defined and con-
tinuous on R×C((−∞, 0],M) endowed with the compact-open topology. The
continuity assumption of f on R× C((−∞, 0],M) is more restrictive than the
hypothesis of continuity on R×BU((−∞, 0],M), since the compact-open topol-
ogy on C((−∞, 0],M) induces on BU((−∞, 0],M) a topology which is weaker
than that of uniform convergence. This means that the existence of forced
oscillations for (1), proved in this paper, is not a byproduct of the analogous
result given in [1], whose proof, in addition, does not fit in the present context.

To get our main result we consider a first order retarded functional differen-
tial equation (RFDE for short) on the tangent bundle TM ⊆ R2s, which turns
out to be equivalent to the above second order equation (1). More precisely, in
the first part of the paper we study a first order RFDE of the type

x′(t) = g(t, xt), (2)

where g : R × BU((−∞, 0], N) → Rk is a functional field over a boundaryless
smooth manifold N ⊆ Rk.

Assuming that g is T -periodic in the first variable, we tackle the problem of
the existence of T -periodic solutions of equation (2). More generally, given a
closed subset X of N , we study the existence of confined T -periodic solutions,
that is, T -periodic solutions having image in X.

The main result of the first part of the paper, Theorem 3.2 below, states
that the equation (2) admits a confined T -periodic solution provided that X is
a compact absolute neighborhood retract (ANR) with nonzero Euler-Poincaré
characteristic, and the functional field g satisfies some additional conditions.
The proof is given by applying the fixed point index theory for locally compact
maps on ANRs to a sort of Poincaré T -translation operator acting in a suitable
subset of the Banach space C([−T, 0],Rk).
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For general reference on RFDEs we suggest the monograph by Hale and
Verduyn Lunel [16]. For RFDEs with finite delay in Euclidean spaces we refer
also to the works of Gaines and Mawhin [11], Nussbaum [22, 23] and Mallet-
Paret, Nussbaum and Paraskevopoulos [19]. For RFDEs with infinite delay in
Euclidean spaces we recommend the article of Hale and Kato [15] and the book
by Hino, Murakami and Naito [17]. Finally, for RFDEs with finite delay on
manifolds we cite the papers of Oliva [24, 25].

2. Preliminaries

Given a subset A of Rk, we will denote by BU((−∞, 0], A) the set of bounded
and uniformly continuous maps from (−∞, 0] into A with the topology of the
uniform convergence. Clearly, BU((−∞, 0], A) is a metric subspace of the
Banach space BU((−∞, 0],Rk) and is complete if and only if A is closed. For
brevity, throughout the paper we will use the notation

Ã := BU((−∞, 0], A).

Moreover, the norm in Rk will be denoted by | · | and the norm in R̃k by ‖ · ‖.
A vector v ∈ Rk is said to be inward to A at a given point p in the closure

A of A if there exist two sequences {αn} in [0,+∞) and {pn} in A such that

pn → p and αn(pn − p) → v.

The set CpA of the inward vectors to A at p is called the tangent cone of A at
p (see [6]). One can easily check that the tangent cone is always closed in Rk.
The vector subspace of Rk spanned by CpA is the tangent space TpA of A at
p, whose elements are the tangent vectors to A at p.

To simplify some statements and definitions we put CpA = TpA = ∅ when-
ever p does not belong to A (this can be regarded as a consequence of the
definition of inward vector if one replaces the assumption p ∈ A with p ∈ Rk).

Observe that TpA is the trivial subspace {0} of Rk if and only if p is an
isolated point of A. In fact, if p is a limit point, then, given any {pn} in A\{p}
such that pn → p, the sequence

{
αn(pn − p)

}
, with αn = 1/|pn − p|, admits

a convergent subsequence whose limit is a unit vector. On the other hand, if
p is an isolated point of A, the unique inward vector is the null one since the
unique sequence {pn} in A convergent to p is the constant sequence coinciding
with p.

One can show that, in the special and important case when A is a smooth
differentiable manifold with (possibly empty) boundary ∂A (a ∂-manifold for
short), this definition of tangent space is equivalent to the classical one (see
for instance [14, 20]). Moreover, if p ∈ ∂A, CpA is a closed half-space in TpA
(delimited by Tp∂A), while CpA = TpA if p ∈ A\∂A.
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2.1. Initial value problem

Let N be a boundaryless smooth manifold in Rk. We say that a continuous
map g : R × Ñ → Rk is a retarded functional tangent vector field over N if
g(t, ϕ) ∈ Tϕ(0)N for all (t, ϕ) ∈ R× Ñ . To simplify the notation, in the sequel
we frequently call g a functional field (over N).

Let us consider a retarded functional differential equation (RFDE for short)
of the type

x′(t) = g(t, xt), (3)

where g : R×Ñ → Rk is a functional field over N . Here, as usual and whenever
it makes sense, given t ∈ R, by xt ∈ Ñ we mean the function θ 7→ x(t+ θ).

A solution of (3) is a function x : J → N , defined on an open real interval
J with inf J = −∞, bounded and uniformly continuous on any closed half-line
(−∞, b] ⊂ J , and which verifies eventually the equality x′(t) = g(t, xt). That
is, x is a solution of (3) if there exists τ , with −∞ ≤ τ < supJ , such that
x is C1 on the subinterval (τ, supJ) of J , and verifies x′(t) = g(t, xt) for all
t ∈ (τ, supJ). Observe that the derivative of a solution x may not exist at
t = τ . However, the right derivative D+x(τ) of x at τ always exists and is
equal to g(τ, xτ ). Also, notice that, since x is uniformly continuous on any
closed half-line (−∞, b] of J , then t 7→ xt is a continuous curve in Ñ .

A solution of (3) is said to be maximal if it is not a proper restriction of
another solution to the same equation. As in the case of ODEs, Zorn’s lemma
implies that any solution is the restriction of a maximal solution.

In what follows, given η ∈ Ñ , we will also consider the initial value problem{
x′(t) = g(t, xt),
x0 = η .

(4)

A solution of (4) is a solution x : J → N of (3) such that sup J > 0, x′(t) =
g(t, xt) for t > 0, and x0 = η.

Moreover, given a relatively closed subset X of N , if one takes η ∈ X̃, then
problem (4) will be called the confined problem and any X-valued solution
of (4) a confined solution. For instance, X could be a ∂-manifold of the type
{p ∈ N : F (p) ≤ 0}, where the “cutting function” F : N → R is smooth,
having 0 ∈ R as a regular value (this is the situation considered in Section 4).
Furthermore, N could be an open subset of Rk and X one of its connected
components.

Following [4], we say that the functional field g : R × Ñ → Rk is away
from N at p ∈ X if either g(t, ϕ) 6∈ Cp(N\X) for all (t, ϕ) with ϕ(0) = p or
g(t, ϕ) = 0 for all (t, ϕ) with ϕ(0) = p. We point out that this condition is
obviously satisfied whenever p, which is a point of X, is not in the topological
boundary of X relative to N since, in that case, Cp(N\X) = ∅. Notice that
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this condition is also satisfied when X = N , since Cp(∅) = ∅. If g is away from
N at any p ∈ X, we say that g is away from N in X.

Theorem 2.1 below is a particular case of a global existence result for the
confined case (see [4, Theorem 3.9]; see also [1, Lemma 2.1]).

Theorem 2.1 (confined global existence). Let X be a compact subset of a
boundaryless smooth manifold N ⊆ Rk and g : R × Ñ → Rk a functional field
away from N in X. Assume that g(R × X̃) is bounded. Then, any maximal
solution of the confined problem (4) is defined on the whole real line.

The continuous dependence of the solutions on initial data is stated in
Theorem 2.2 below and is a staightforward consequence of Theorem 4.4 of [4].

Theorem 2.2 (continuous dependence). Let N be a boundaryless smooth man-
ifold and g : R × Ñ → Rk a functional field. Assume the uniqueness of the
maximal solution of problem (4). Then, given T > 0, the set

D = {η ∈ Ñ : the maximal solution of (4) is defined up to T}

is open and the map that associates to any η ∈ D the restriction to [0, T ] of the
unique maximal solution of problem (4) is continuous.

2.2. Fixed point index

We recall that a metrizable space X is an absolute neighborhood retract (ANR)
if, whenever it is homeomorphically embedded as a closed subset C of a metric
space Y , there exists an open neighborhood V of C in Y and a retraction
r : V → C (see e.g. [5, 13]). Polyhedra and differentiable manifolds are examples
of ANRs. Let us also recall that a continuous map between topological spaces
is called locally compact if it has the property that each point in its domain
has a neighborhood whose image is contained in a compact set.

Let X be a metric ANR and consider a locally compact (continuous) X-
valued map k defined on a subset D(k) of X. Given an open subset U of
X contained in D(k), if the set of fixed points of k in U is compact, the pair
(k, U) is called admissible. It is known that to any admissible pair (k, U) we can
associate an integer indX(k, U) – the fixed point index of k in U – which satisfies
properties analogous to those of the classical Leray–Schauder degree [18]. The
reader can see for instance [7, 12, 21, 23] for a comprehensive presentation
of the index theory for ANRs. As regards the connection with the homology
theory we refer to standard algebraic topology textbooks (e.g. [8, 26]).

We summarize below the main properties of the fixed point index.

i) (Existence) If indX(k, U) 6= 0, then k admits at least one fixed point in
U .
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ii) (Normalization) If X is compact, then indX(k,X) = Λ(k), where Λ(k)
denotes the Lefschetz number of k.

iii) (Additivity) Given two disjoint open subsets U1, U2 of U such that any
fixed point of k in U is contained in U1 ∪ U2, then

indX(k, U) = indX(k, U1) + indX(k, U2).

iv) (Excision) Given an open subset U1 of U such that k has no fixed points
in U\U1, then indX(k, U) = indX(k, U1).

v) (Commutativity) Let X and Y be metric ANRs. Suppose that U and
V are open subsets of X and Y respectively and that k : U → Y and
h : V → X are locally compact maps. Assume that one of the sets of
fixed points of hk in k−1(V ) or kh in h−1(U) is compact. Then the other
set is compact as well and indX(hk, k−1(V )) = indY (kh, h−1(U)).

vi) (Homotopy invariance) Let H : U × [0, 1] → X be a locally compact map
such that the set {(x, λ) ∈ U × [0, 1] : H(x, λ) = x} is compact. Then
indX(H(·, λ), U) is independent of λ.

3. Existence of periodic solutions

Let N ⊆ Rk be a boundaryless differentiable manifold and X ⊆ N a compact
ANR. Given T > 0, denote by X̂ := C([−T, 0], X) the metric subspace of
C([−T, 0],Rk) of the X-valued continuous function on [−T, 0] and by X̂0 the
set

{
ψ ∈ X̂ : ψ(−T ) = ψ(0)

}
. Observe that X̂ is complete since X is closed.

Moreover, it is not difficult to show that X̂ is itself an ANR.
Let g : R × Ñ → Rk be a functional field. Given T > 0, assume that g is

T -periodic in the first variable. We are interested in proving the existence of
X-valued T -periodic solutions of equation (3). To this end, let us consider the
family of RFDE

x′(t) = λ g(t, xt) (5)

depending on the parameter λ ∈ [0, 1]. Our aim is to define a parametrized
Poincaré-type T -translation operator whose fixed points are the restrictions to
the interval [−T, 0] of the T -periodic solutions of (5). For this purpose, we need
to introduce a suitable backward extension of the elements of X̂. The properties
of such an extension are contained in Lemma 3.1 below, obtained in [10]. In
what follows, by a T -periodic map defined on (−∞, 0] (or on (−∞,−T ]) we
mean the restriction of a T -periodic map on R .

Lemma 3.1. There exist an open neighborhood U of X̂0 in X̂ and a continuous
map from U to X̃, ψ 7→ ψ̃, with the following properties:
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1) ψ̃ is an extension of ψ;

2) ψ̃ is T -periodic on (−∞,−T ];

3) ψ̃ is T -periodic on (−∞, 0], whenever ψ ∈ X̂0.

Let us now state our existence result.

Theorem 3.2. Let N ⊆ Rk be a boundaryless smooth manifold and g : R×Ñ →
Rk a T -periodic functional field. Let X ⊆ N be a compact ANR with Euler-
Poincaré characteristic χ(X) 6= 0. Assume that g is away from N in X and
that g(R × X̃) is bounded. Also assume that, for any η ∈ X̃, the maximal
solution of problem (4) is unique. Then, the equation x′(t) = g(t, xt) has a
T -periodic solution in X.

Proof. Given η ∈ X̃ and λ ∈ [0, 1], let x(η, λ, ·) be the X-valued maximal
solution of the parametrized confined problem{

x′(t) = λ g(t, xt),
x0 = η,

(6)

whose global existence is ensured by Theorem 2.1 (observe that λ g is still away
from N in X even for λ = 0). Let now U be an open neighborhood of X̂0 in
X̂ as in Lemma 3.1 and consider the homotopy P : U × [0, 1] → X̂ defined by
P (ψ, λ)(θ) = x(ψ̃, λ, T + θ), where ψ̃ ∈ X̃ is the continuous extension of ψ as
in Lemma 3.1.

By an argument similar to that used in [2, Proposition 3.2], we get that
ψ ∈ U is a fixed point of P (·, λ), λ ∈ [0, 1], if and only if it is the restriction to
[−T, 0] of a T -periodic solution of (5).

Let us show that P is admissible for the fixed point index.
P is continuous. Consider the problem

x′(t) = µ g(t, xt),
µ′(t) = 0,
x0 = η,
µ(0) = λ.

(7)

The continuity of P follows immediately by Lemma 3.1 and by applying The-
orem 2.2 to the auxiliary problem (7).

The image of P is contained in a compact subset of X̂. By assumption,
there exists c > 0 such that |g(t, ϕ)| ≤ c for any (t, ϕ) ∈ R × X̃. Hence,
P (U × [0, 1]) is contained in the set K = {y ∈ X̂ : |y′(t)| ≤ c} which is compact
by Ascoli’s theorem, since X is bounded and X̂ complete.
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The set {(ψ, λ) ∈ U × [0, 1] : P (ψ, λ) = ψ} is compact. Observe that, for
any λ ∈ [0, 1], the set {ψ ∈ U : P (ψ, λ) = ψ} is contained in K ∩ X̂0 that is
clearly a compact subset of U .

The three steps proved above imply that P is an admissible homotopy in
U . Consequently, by the homotopy invariance of the fixed point index, we get

indX̂(P (·, 1), U) = indX̂(P (·, 0), U).

Now, observe that P (·, 0) sends U onto the subset of X̂0 ⊆ U of the constant
X-valued functions, which will be identified with X itself. According to this
identification, the restriction P (·, 0)|X coincides with the identity IX of X.
Therefore, by the commutativity and normalization properties of the fixed point
index, we get

indX̂(P (·, 0), U) = indX(P (·, 0)|X , X) = Λ(IX).

As well-known, the Lefschetz number Λ(IX) coincides with the Euler-Poincaré
characteristic χ(X) of X that, by assumption, is nonzero. Hence,

indX̂(P (·, 1), U) = χ(X) 6= 0,

which implies that P (·, 1) has a fixed point in U . Thus, as previously observed,
this is equivalent to the existence of a T -periodic solution of equation (3), as
claimed.

Remark 3.3. We believe that the above existence result is still valid without
the uniqueness assumption on the solutions of the initial value problem.

Remark 3.4. A functional field g : R × Ñ → Rk is said to be compactly Lip-
schitz (for short, c-Lipschitz) if, given any compact subset Q of R × Ñ , there
exists L ≥ 0 such that

|g(t, ϕ)− g(t, ψ)| ≤ L‖ϕ− ψ‖

for all (t, ϕ) , (t, ψ) ∈ Q. Moreover, we will say that g is locally c-Lipschitz if
for any (τ, η) ∈ R× Ñ there exists an open neighborhood of (τ, η) in which g is
c-Lipschitz. In spite of the fact that a locally Lipschitz map is not necessarily
(globally) Lipschitz, one could actually show that if g is locally c-Lipschitz, then
it is also (globally) c-Lipschitz. As a consequence, if g is C1 or, more generally,
locally Lipschitz in the second variable, then it is additionally c-Lipschitz. In [4]
we proved that if g is a c-Lipschitz functional field, then problem (4) has a
unique maximal solution for any η ∈ Ñ . For a characterisation of compact
subsets of Ñ see e.g. [9, Part 1, IV.6.5].
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4. Retarded functional motion equations

Let M ⊆ Rs be a boundaryless smooth manifold and let

TM =
{
(q, v) ∈ Rs × Rs : q ∈M, v ∈ TqM

}
be the tangent bundle of M . Given q ∈ M , let (TqM)⊥ ⊆ Rs denote the
normal space of M at q. Since Rs = TqM ⊕ (TqM)⊥, any vector u ∈ Rs can be
uniquely decomposed into the sum of the parallel (or tangential) component
uπ ∈ TqM of u at q and the normal component uν ∈ (TqM)⊥ of u at q.

Consider the retarded functional motion equation on the constraint M

x′′π(t) = f(t, xt)− εx′(t), (8)

where x′′π(t) stands for the parallel component of the acceleration x′′(t) ∈ Rs

at the point x(t), the parameter ε > 0 is the frictional coefficient, and the map
f : R × M̃ → Rs is a functional field, T -periodic in the first variable. Any
T -periodic solution of (8) is called a forced oscillation.

Theorem 4.1 below gives a positive answer to the conjecture presented by
the authors in [4].

Theorem 4.1. Let M be a compact boundaryless smooth manifold with nonzero
Euler-Poincaré characteristic, and let f : R × M̃ → Rk be a T -periodic func-
tional field on M . Assume that f is locally Lipschitz in the second variable and
has bounded image. Then, the equation (8) has a forced oscillation.

Proof. Let us observe first that the equation (8) can be equivalently written as

x′′(t) = r(x(t), x′(t)) + f(t, xt)− εx′(t), (9)

where r : TM → Rs is a smooth map (the so-called reactive force or inertial
reaction) satisfying the following properties:

(a) r(q, v) ∈ (TqM)⊥ for any (q, v) ∈ TM ;

(b) r is quadratic in the second variable;

(c) given (q, v) ∈ TM , r(q, v) is the unique vector such that (v, r(q, v)) be-
longs to T(q,v)(TM);

(d) any C2 curve γ : (a, b) → M verifies the condition γ′′ν (t) = r(γ(t), γ′(t))
for any t ∈ (a, b), i.e. for each t ∈ (a, b), the normal component γ′′ν (t) of
γ′′(t) at γ(t) equals r(γ(t), γ′(t)).
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Now, let us transform the second order equation (9) into the first order
system {

x′(t) = y(t),
y′(t) = r(x(t), y(t)) + f(t, xt)− εy(t). (10)

System (10) is actually a first order RFDE on the noncompact manifold TM ,
since it can be written as

(x′(t), y′(t)) = G(t, (xt, yt)),

where the map G : R × T̃M → Rs × Rs is the T -periodic functional field over
TM given by

G(t, (ϕ,ψ)) = (ψ(0), r(ϕ(0), ψ(0)) + f(t, ϕ)− εψ(0)).

It is easy to see that equation (9) and system (10) are equivalent in the sense
that a function x : J →M is a solution of (9) if and only if the pair (x, x′) : J →
TM is a solution of (10).

Given c > 0, consider the closed subset

Xc =
{
(q, v) ∈ TM : |v| ≤ c

}
of TM . It is not difficult to show that Xc is a ∂-manifold in Rs × Rs with
boundary

∂Xc =
{
(q, v) ∈ Xc : |v| = c

}
.

Moreover, since M is a deformation retract of Xc, then the two spaces are
homotopically equivalent. Thus, χ(Xc) = χ(M), so that χ(Xc) 6= 0.

Observe now that G(R × X̃c) is a bounded subset of Rs × Rs, since f is
bounded by assumption and Xc is compact.

Let us prove that if c is sufficiently large, then G is away from TM in
Xc. To this end, write Xc by means of the inner product 〈·, ·〉 in Rs, as{
(q, v) ∈ TM : 〈v, v〉 ≤ c2

}
and observe first that the tangent cone of Xc at

(q, v) ∈ ∂Xc is the half subspace of T(q,v)Xc given by

C(q,v)Xc =
{
(q̇, v̇) ∈ T(q,v)(TM) : 〈v, v̇〉 ≤ 0

}
.

Analogously,

C(q,v)(TM\Xc) =
{
(q̇, v̇) ∈ T(q,v)(TM) : 〈v, v̇〉 ≥ 0

}
.

Take any t ∈ R and any pair (ϕ,ψ) ∈ X̃c with |ψ(0)| = c and consider the
inner product

〈ψ(0), r(ϕ(0), ψ(0)) + f(t, ϕ)− εψ(0)〉
= 〈ψ(0), r(ϕ(0), ψ(0))〉+ 〈ψ(0), f(t, ϕ)〉 − ε〈ψ(0), ψ(0)〉.
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Now,
〈ψ(0), r(ϕ(0), ψ(0))〉 = 0,

since r(ϕ(0), ψ(0)) belongs to (Tϕ(0)M)⊥. Moreover,

〈ψ(0), f(t, ϕ)〉 ≤ |ψ(0)| |f(t, ϕ)| ≤ K|ψ(0)|,

where K is such that |f(t, ϕ)| ≤ K for all (t, ϕ) ∈ R× M̃ . Finally,

〈ψ(0), ψ(0)〉 = c2,

since (ϕ(0), ψ(0)) ∈ ∂Xc. Therefore, by choosing c > K/ε, we get〈
ψ(0), r(ϕ(0), ψ(0)) + f(t, ϕ)− εψ(0)

〉
≤ Kc− εc2 < 0.

Thus, G(t, (ϕ,ψ)) /∈ C(q,v)(TM\Xc) for all (t, (ϕ,ψ)) with (ϕ(0), ψ(0)) =
(q, v) ∈ ∂Xc. This shows that G is away from TM in Xc, as claimed.

Consequently, we are reduced to the context of Theorem 3.2 with Rk =
Rs × Rs, N = TM , g = G and the confining set X given by the compact
∂-manifold Xc.

Moreover, since f is locally Lipschitz in the second variable and r is smooth,
then G is locally Lipschitz as well. Therefore, taking into account Remark 3.4,
we get that the initial value problem{

(x′(t), y′(t)) = G(t, (xt, yt)),
(x0, y0) = (ϕ,ψ) (11)

has a unique maximal solution for any (ϕ,ψ) ∈ T̃M .
Thus, we can apply Theorem 3.2 to the first order equation (x′(t), y′(t)) =

G(t, (xt, yt)), obtaining that system (10) has a T -periodic solution and, equiv-
alently, that the motion equation (8) has a forced oscillation.

Remark 4.2. We believe that the assertion of Theorem 4.1 still holds without
the Lipschitz assumption.

Remark 4.3. In the frictionless case (i.e. ε = 0) we do not know whether or
not the equation

x′′π(t) = f(t, xt) (12)

has a forced oscillation. As far as we know, the problem of the existence of
forced oscillations of (12) is still open, even in the undelayed situation. In the
particular case of the spherical pendulum, i.e. X = S2, or, more generally,
in the case of the even dimensional pendulum (i.e. X = S2n), the existence
of forced oscillations for equation (12) has been proved by the authors in [3],
assuming the stronger hypothesis of the continuity of the functional field f on
R× C((−∞, 0], X).
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