
Rend. Istit. Mat. Univ. Trieste
Volume 43 (2011), 95–110

Language Sampling

for Universal Grammars

Luca Bortolussi and Andrea Sgarro

Abstract. In this paper we present a sampling algorithm for con-
strained strings representing the state of parameters of a universal
grammar. This sampling algorithm has been used to assess statistical
significance of the parametric comparison method, a new syntax-based
approach to reconstruct linguistic phylogeny.

Keywords: Monte-Carlo Sampling, Universal Grammars, Language Phylogeny.
MS Classification 2010: 65C60, 68U99

1. Introduction

Historical linguistics is a discipline studying the evolution of languages in the
past, with the ultimate aim of gaining a better understanding of past events
of human history. A major technique is the construction of phylogenies of
current (and extinct) languages. The main methodologies for this task are
based on the so called classical comparative method [8], exploiting lexical and
phonetic relationships to prove language relatedness and to construct language
distances (a step required for algorithmic phylogenetic tree reconstruction [4]).
Unfortunately, the evolutionary speed of these kinds of data makes them useless
to recover relationships more distant in time than 10,000 years.

A recent approach to circumvent these limitations is the Parametric Com-
parison Method (PCM) [5, 6], using syntactic digital data obtained from pa-
rameters of the Universal Grammar (UG) [3]. Universal Grammar is a recent
theory trying to explain language diversity and acquisition in terms of a finite
number of (binary) switches encoded in the brain that are fixed during lan-
guage learning and precisely define the syntax of a language. As parameters
are supposed to evolve at a much slower rate than lexicon, PCM compares
(some) parametric values of languages and extracts phylogenetic information
from them. The digital nature of such data parallels the use of DNA informa-
tion to reconstruct phylogeny of biological species. Unlike with DNA, however,
parameters of the UG are interrelated by a complex network of logical depen-
dencies, a fact making statistical analysis of data much more complicated.

96 L. BORTOLUSSI AND A. SGARRO

In this paper we tackle the problem of sampling uniformly from the set of
strings corresponding to admissible values of parameters of a UG, a necessary
step in order to perform statistical analysis.

In our setting, there is a fixed number n of boolean parameters of the univer-
sal grammar, which are related among them according to logical dependencies.
This means that not all possible assignments of boolean values to parameters
are admissible. Furthermore, certain parameters may not have a defined value
under certain circumstances (i.e. depending on the state of related parameters),
hence they may have three values: +, -, and 0 (undefined).

The relationships between parameters are given in terms of propositional
formulae, where atoms predicate the value of a single parameter. These formu-
lae can be essentially seen as constraints on the space An of strings of length
n on the ternary alphabet A = {+,−, 0}, so that the space of admissible lan-
guages L is a proper subset of An. Hence, the problem we are facing is sampling
uniformly from L.

One simple solution is to use a rejection sampling technique: we generate an
element of An uniformly (which can be done easily by sampling each position
in the string independently) and then we check whether or not it satisfies the
constraints. Unfortunately, this approach is unfeasible, because L is very small
with respect to An, hence this method is much too costly. The solution we
propose here is to use a modification of this basic rejection sampling technique:
we sample from a subspace L0 such that L ⊂ L0 ⊂ An, and such that the
relative dimension of L in L0 is reasonably large. The main difficulty is to find
such a space L0 together with an efficient algorithm to sample uniformly from it.

Our main strategy is to investigate the structure of the constraints on the
languages. If these constraints are simple enough, we can build a data structure
enabling fast sampling. If all constraints were of this kind, we would have an
efficient sampler. However, just a small fraction of constraints is simple enough.
In order to make the method feasible, we preprocess the space of parameters by
merging some of them in order to simplify the structure of the constraints. This
approach is fit to deal with the number of parameters typical of the linguistical
applications we have to face.

In the rest of the paper, we first present formally the data we have to work
with, namely parameters and rules (Section 2). Subsequently, we recall the
basics of rejection sampling (Section 3), and then we present our fast sam-
pling based on a data structure managing simple constraints, called sampling
structure (Section 4). This part is the core of the paper: we define formally
the data structure used for the sampling, proving the correctness of our algo-
rithm. In Section 5, we deal with the problem of merging parameters together
so as to simplify the structure of rules. Finally, in Section 6, we discuss the
performances of the algorithm on real data and draw some conclusions.

LANGUAGE SAMPLING FOR UNIVERSAL GRAMMARS 97

2. Parameters and Rules

As customary in science, we work with a model of a certain aspect of real-
ity. Our interest is in the historical evolution of languages, and we focus on a
particular description of languages based on the universal grammar [3, 6]. Es-
sentially, each language is characterized by a set of boolean parameters, which
fix a certain feature of the syntax of the language, mimicking the way language
grammar is learnt and “stored” by human brain. Abstracting from the precise
meaning of parameters, each language is represented by a tuple of values for
the parameters considered.

However, parameters are not independent of one another, but rather they
are connected by an intricate network of logical relationships. More precisely,
it is meaningful to consider a parameter only if certain other parameters have
specific values. For instance, a parameter P2 may be considered only if the
parameter P1 has value + (i.e. the characteristic it encodes is present). These
relationships build up a causal structure on parameters, which is free of logical
vicious circles, meaning that parameters can be ordered so that the meaning-
fulness of parameter Pj depends only on parameters Pi, for i < j. Rules for
parameters are usually expressed by propositional formulae, specifying which
values of parameters are required in order for parameter Pj to be meaningful.
For instance, the formula for parameter P3 may be φ3 = (x1 = +) ∧ (x2 = −).

We introduce now some notational conventions that will be used throughout
the paper. We assume we have n parameters, indicated by P1, . . . , Pn. Each
parameter Pi can take values in a finite domain Di. Usually, Di = {+,−}, so
that Pi is binary. However, for reasons that will be made clear in Section 5, we
prefer to work in a more general setting, without restricting the cardinality of
Di (essentially, we want to deal with macro-parameters, constructed by merging
together several “basic” parameters, thus having more than 2 possible states).
In addition, each parameter can take a special value, 0, which indicates that it
is not meaningful in the current context (i.e., given the value of the parameters
it depends on).

Hence, the proper domain for parameter Pi is D̃i = Di ∪{0}, and the space
of tuples we need to consider is D =

∏n
i=1 D̃i.

Only the elements of D that satisfy a given set of constraints, expressed in
terms of rules, are admissible. A rule is a pair (Pj , φj), where Pj is a parameter
and φj is a propositional formula. The atoms are equalities of the form xi = ai,
where xi is a variable referring to the parameter Pi and ai ∈ Di is a possible
value of Pi. We require that all the variables appearing in the formula φj are
among x1, . . . , xj−1. We consider a set of rules R, containing one rule for each
parameter Pj (note that a formula φ can be a tautology). We say that a tuple
a ∈ D satisfies a rule (Pj , φj) in R if and only if the formula φj [a] is true. A
tuple a ∈ D is admissible if and only if it satisfies all the rules of the set R.

98 L. BORTOLUSSI AND A. SGARRO

3. Rejection Sampling

Rejection sampling is a standard sampling technique [2, 7] to sample indirectly
from a target probability distribution. More precisely, suppose we want to
sample from a distribution q1(x) on space X, but we do not know how to sample
from q1. However, we have a sampling algorithm for another distribution q2(x)
on X, and we know that there exists a constant M > 0 such that, for each
x ∈ X, q1(x) ≤ Mq2(x). Rejection sampling consists in sampling from q2
and accepting a sample with probability q1(x)

Mq2(x)
. More precisely, the sampling

algorithm works as follows:

1. sample x from q2;

2. sample u from the uniform distribution in [0, 1];

3. accept x if u < q1(x)
Mq2(x)

.

In our context, rejection sampling in even simpler. Suppose we want to
sample uniformly from a subset L ⊆ D, but we only have an uniform sampler
for an intermediate space L0, such that L ⊆ L0 ⊆ D. In this setting, an element
x ∈ L0 is sampled with probability 1

|L0| , and the constant M is M = |L0|
|L| .

This implies that the acceptance rule simplifies to: accept x if and only if it
belongs to L.

The problem with rejection sampling lies in the constant M . In fact, M
can be seen as the average number of trials one has to do in order to generate
an element of L. Hence, if M is very large, the rejection sampling becomes
highly inefficient.

In our application context, if we choose L0 = D = An, from which uniform
sampling is very easy to implement (just select a value for each parameter
uniformly and independently), we obtain a constant which is incredibly large
(of the order of 1018 in the case of [6], see also Section 6). Hence, the only
way of using rejection sampling in our context is to identify a much smaller
super-space of L. We tackled the problem in the following way:

• we identified a simple form for rules that allows fast uniform sampling,
using a dedicated data structure;

• we separated actual rules into two subsets, those that allow fast sampling
and the others;

• we sample parameters governed by simple rules using the dedicated sam-
pling and we sample the other parameters uniformly, then accept if all
rules are satisfied (i.e. if the language so generated is in L).

LANGUAGE SAMPLING FOR UNIVERSAL GRAMMARS 99

In this way, we are sampling from an intermediate space L0, as we never gen-
erate sequences of parameters that violate a simple rule.

Unfortunately, also this approach is limited, because the set of bad rules is
too large (resulting in a large constant M). In order to reduce its size (hence the
constant M), in Section 5 we merge some parameters into macro-parameters.
In this way, we remove some rules (as they are taken into account in defining
the allowed values of the macro-parameter) and we simplify other rules, making
them simple enough to be dealt with by means of the fast sampler.

4. Sampling Structures

Sampling directly admissible languages according to a uniform probability dis-
tribution is complicated because of the complexity of the rules. However, a
direct sampling algorithm may be feasible if we impose sufficient restrictions
on the rules. In particular, we will consider restrictions allowing the construc-
tion of a collection of decision trees to uniformly sample the value of parameters
in linear time with respect to n.

In order to construct our decision trees, the meaningfulness of a parameter
Pj should depend only on another single parameter Pi, i < j. This surely holds
if the formula for Pj contains a single atom, namely it is of the form xi = ai
(simple rules). This also holds for formulae that are disjunctions of atoms,
such that only one atom can be true at a given time (exclusive OR rules), due
to constraints imposed by rules on the parameters involved in the disjunction.
In this latter case, we just need to consider one parameter, the one whose atom
is true. Hence, in the following we assume that the set of rules R contains only
tautologies, simple rules and exclusive OR rules;1 in subsection 4.2 we show
how to check whether an OR rule is indeed exclusive. A set R of this kind will
be dubbed simple. Under this restriction, we will show how to build a set of
trees (a forest) and how to use it for sampling uniformly. We will refer to this
forest as the sampling structure associated with R.

4.1. Definition of the Sampling Structure

The sampling structure associated with a simple set of rules R contains two
kinds of nodes: parameter nodes, or p-nodes, and value nodes, or v-nodes. The
former represent parameters, while the latter encode the different values that a
parameter can take. These nodes will be annotated: p-nodes store the index of
the parameter they are associated with, while v-nodes store both the index of
the parameter and the value of the element they refer to. Edges in this graph
represent two different things: edges from p-nodes to v-nodes simply connect
each p-node with all the possible values its parameter can take, while edges from

1Note that simple rules are special cases of exclusive OR rules, with just 1 disjunct.

100 L. BORTOLUSSI AND A. SGARRO

v-nodes to p-nodes encode the dependencies between parameters through rules.
Essentially, there will be an edge from a v-node for parameter Pi and value ai
to a p-node for parameter Pj if and only if xi = ai is a disjunct in the rule for
Pj . Furthermore, we will require that this forest contains the information of all
the rules in R. We now provide a formal definition of the sampling structure
(a forest, actually) associated with a given simple set of rules R.

Definition 4.1. A sampling structure for a simple set of rules R is a tuple
T = (P, V,E, ι, λ), where:

• P is the set of p-nodes;

• V is the set of v-nodes;

• E ⊂ (P × V) ∪ (V × P) is the set of edges;

• ι : P ∪ V → {1, . . . , n} associates with each node the index of the param-
eter it refers to;

• λ : V →
⋃n
i=1Di associates with each v-node v a value λ(v) ∈ Dι(v).

T satisfies the following properties:

1) for all i = 1, . . . , n, there exists p ∈ P such that ι(p) = i (completeness
of p-nodes);

2) (p, v) ∈ E implies that ι(p) = ι(v) (coherence between a p-node and its
children v-node);

3) for each v ∈ V there exists p ∈ P such that (p, v) ∈ E (each v-node has
a p-parent);

4) for each p ∈ P , there exist v1, . . . , vh ∈ V , h = |Dι(p)|, such that (p, vi) ∈
E and λ(vi) 6= λ(vj), for each i 6= j (each p-node has children v-nodes
for all possible values);

5) if (Pj , (xi1 = ai1) ∨ . . . ∨ (xik = aik)) ∈ R, then for each v ∈ V such that
ι(v) = is and λ(v) = ais , there exists p ∈ P with ι(p) = j and (v, p) ∈ E
(disjuncts imply edges);

6) for each (v, p) ∈ E, xι(p) = λ(vι(v)) is a disjunct in the rule for Pι(p)
(edges imply disjuncts).

In graph-theoretic terms, the previous definition corresponds to a forest,
whose roots correspond to independent parameters, i.e. those having a tautol-
ogy assigned by the rules in R. Each parameter can be associated with one or
more p-nodes. Exclusive OR rules with more than one disjunct multiply the

LANGUAGE SAMPLING FOR UNIVERSAL GRAMMARS 101

P1

P1,+ P1,-

P5

P5,+ P5,-

P2

P2,+ P2,-

P4

P4,+ P4,-

P3

P3,+ P3,-

P4

P4,+ P4,-

P6

P6,+ P6,-

Figure 1: An example of a sampling structure for parameters P1, . . . , P6,
all taking values in {+,−}, and subject to rules R = {(P1, true), (P2, x1 =
+), (P3, x2 = +), (P4, (x1 = −) ∨ (x2 = −)), (P5, x1 = +), (P6, true)}.

occurrences of p-nodes for a given parameter: a chain of exclusive OR rules
can provoke an exponential growth of p-nodes (with respect to n). However,
this combinatorial explosion can be readily tamed, see Section 4.5 below.

As an example, consider parameters P1, . . . , P6, all taking values in {+,−},
and subject to the following set of rulesR = {(P1, true), (P2, x1 = +), (P3, x2 =
+), (P4, (x1 = −) ∨ (x2 = −)), (P5, x1 = +), (P6, true)}. Observe that R is
simple because the rule for P4 is a disjunctive OR rule: P2 is defined if and
only if P1 is set to +. The sampling structure associated with this set of rules
and parameters is shown in Figure 1.

4.2. Exclusive OR Rules and Sampling Tree Structure

Before entering into the details of using a sampling structure to sample ad-
missible languages, we describe some structural properties that can be used to
check if the OR rules in the set of rules R are indeed exclusive. We collect
these properties in the following proposition.

102 L. BORTOLUSSI AND A. SGARRO

Proposition 4.2. Let T = (P, V,E, ι, λ) be a sampling structure for the set of
simple rules R.

1) For each independent parameter Pj of R, there is a single p-node p ∈ P
such that ι(p) = j, and it is the root of a tree in the forest T .

2) All p-nodes for the same parameter Pj belong to the same tree of the
forest T .

3) Let p1, p2 be two nodes for the same parameter, i.e. ι(p1) = ι(p2), and let
w be the lowest common ancestor of p1 and p2, w = LCA(p1, p2). Then
w ∈ P (i.e. w is a p-node).

Proof.

1) This is straightforward, otherwise the property 6 of Definition 4.1 would
be violated.

2) Suppose not, and let Pj be the first parameter violating the property,
so that there are two nodes p1 and p2 for Pj belonging to different trees
in the forest. The ancestor p-nodes of p1 and p2 are all different (due
to the choice of Pj), hence the parent p-nodes and v-nodes of p1 and p2

correspond to two different disjuncts in the rule for Pj . Disjointness of
ancestor p-nodes implies that there is an admissible tuple that satisfies
both disjuncts, constructed by assigning to the parameter of each p-node
p the value of its children v-nodes v in the path to p1 or p2, i.e. by
assigning to Pι(p) the value λ(v). This contradicts the hypothesis that R
is simple.

3) Suppose not, and let Pj be the first parameter violating the property, so
that there are two nodes p1 and p2 for Pj whose LCA is a v-node v. Due
to the choice of Pj , the p-nodes in the paths from v to p1 and from v
to p2 correspond to disjoint parameters, hence the parent p-nodes and
v-nodes of p1 and p2 correspond to two different disjuncts of the OR rule
for Pj . Reasoning as in the previous point, there is an admissible tuple
that satisfies both disjuncts, a contradiction.

The last proposition gives a way to check if a set of rules containing just
OR rules violates the property of being simple (namely, if all OR rules are
exclusive). In fact, one just has to construct the sampling structure of R and
check if points 2 and 3 of the previous proposition are violated or not. If they
are violated, one can conclude that some OR rules are not exclusive. Actually,
one can also prove the inverse of points 2 and 3: if the sampling structure is
such that all p-nodes for the same parameter are in the same tree and their

LANGUAGE SAMPLING FOR UNIVERSAL GRAMMARS 103

LCA is always a p-node, then the rule set R is simple.2 This provides a
characterization of simple rule sets in terms of their sampling structures.

4.3. Instances and Languages

The key notion to use a sampling structure T to sample admissible languages
is that of an instance of T . Intuitively, an instance is a sub-forest of T that can
be mapped to a single admissible language. It is constructed starting from the
roots and recursively picking only one child for each p-node, and all children
of v-nodes. Choosing a child of a p-node corresponds to fixing the value of a
parameter. Choosing all children of a v-node is necessary because we need to
fix all meaningful parameters, i.e. those whose formulae in R are true.

We first formally define an instance of T , and then prove that instances of
T and admissible languages are in bijection.

Definition 4.3. Let T = (P, V,E, ι, λ) be a sampling structure for the set
of simple rules R. An instance I of T is a subgraph (PI , VI , EI , ι, λ) of T
such that:

1) roots of T are in I;

2) if p ∈ PI then there exists an unique v ∈ V such that v ∈ VI and
(p, v) ∈ EI (an instance contains just one child for each p-node);

3) if v ∈ VI , then for each p ∈ P such that (v, p) ∈ E, it holds that p ∈ PI
and (v, p) ∈ EI (an instance contains all children of v-nodes).

In order to prove that instances and admissible languages are in one to
one correspondence, we will show how we can construct an admissible lan-
guage from an instance and, viceversa, how to construct an instance from an
admissible language.

First, consider an instance I, and define a language aI according to the
following rule:

aIj =

{
λ(v), if v ∈ VI ∧ ∃p ∈ PI : ι(p) = j ∧ (p, v) ∈ EI
0, otherwise.

In order for aI to be well defined, the number of p-nodes for parameter Pj in
an instance must be at most one. This is guaranteed by the following lemma.

2The proof works as follows. Suppose the OR rule for parameter Pj is not exclusive.
Then there is an admissible language that satisfies two disjuncts of this rule. Use the value
of parameters in this language to choose a child v-node for each p-node in T , like in the
language to instantiate construction of the next section. In this way, we will find two p-
nodes for Pj . But their LCA must be a p-node, hence we should have chosen two different
v-nodes for it, a contradiction.

104 L. BORTOLUSSI AND A. SGARRO

Lemma 4.4. Let I be an instance of a sampling structure T = (P, V,E, ι, λ) for
simple rules R. For each parameter Pj, there exists at most one node p ∈ PI
such that ι(p) = j.

Proof. Suppose not, and let Pj be the first parameter having two p-nodes in
I, say p1 and p2. Then, as each p-node in I has just one child and p1 and
p2 belong to the same tree of T , the LCA of p1 and p2 must be a v-node, in
contradiction with point 3 of Proposition 4.2.

We now need to prove that aI satisfies all the rules of R.

Lemma 4.5. The tuple aI satisfies all the rules in R.

Proof. We prove the lemma by finite induction on the parameter index j.

(j = 1) The constraint formula for P1 is always a tautology, hence there is only
one p-node for it, and all its values are admissible.

(j − 1⇒ j) We first consider the case in which aIj = 0. In this case, the boolean
formula for Pj must be false, otherwise there would be a true disjunct,
say xi = aIi , with i < j, so that there would be a v-node vi in I with
λ(vi) = aIi such that one of its children p-nodes would not belong to I.
Now, suppose aIj 6= 0. Let p be the node for Pj in I, and let v be its parent
v-node. Then, by definition of sampling structure xι(v) = λ(v) = aIι(v) is
a disjunct in the boolean formula for Pj , which is therefore true.

We now consider an admissible language a and associate to it an instance Ia .
The construction is done recursively in a simple way:

• add to Ia the p-node for P1, its child v-node v with λ(v) = a1 and all
p-nodes children of v;

• if aj 6= 0, consider the only p-node for parameter Pj in the instance Ia
being constructed, and add to Ia its child v-node v with λ(v) = aj and
all p-nodes children of v

• if aj = 0, do nothing;

We observe that step 2 of the previous construction can always be carried out.
In fact, there is always just one p-node for Pj in case aj 6= 0, as there must
be a v-node corresponding to one of the disjuncts in the rule for Pj previously
inserted in Ia (a is admissible) and all its children are also in Ia . Hence, the
following lemma holds.

Lemma 4.6. Ia is an instance of T .

LANGUAGE SAMPLING FOR UNIVERSAL GRAMMARS 105

We have just defined two mappings, one from admissible languages to in-
stances and the other from instances to admissible languages. By construction
of these mappings, it holds that they are one the inverse of the other, namely
IaI = I and aIa = a. This is sufficient to prove the following theorem.

Theorem 4.7. Let R be a simple set of rules and T be its sampling structure.
Then instances of T and admissible languages of R are in bijection.

This theorem is the key to the sampling algorithm: in order to sample
uniformly admissible languages for a simple rule set, we can sample uniformly
instances from the associated sampling structure.

4.4. Uniform Sampling of Instances

We now turn to detail the sampling mechanism of instances, proving that it
samples instances according to the uniform probability distribution. A key
step towards the sampling algorithm is to count all possible instances of each
tree and subtree of a sampling structure. This is necessary because, in order
to sample uniformly, we need to know how many instances can be generated
choosing one or another child v-node of a p-node. The counting function is
defined inductively on the height of nodes of each tree of the sampling structure,
distinguishing between v-nodes and p-nodes, as instances treat them differently.

Definition 4.8. Let T = (P, V,E, ι, λ) be a sampling structure for simple rules
R. The instance-counting function N : P ∪ V → N is defined recursively
as follows:

1) for each v-node v of height h(v) = 0, N(v) = 1;

2) for each p-node p of height h > 0, with children v1, . . . , vk, N(p) =
N(v1) + . . .+N(vk);

3) for each v-node v of height h > 0, with children p1, . . . , pk, N(v) = N(p1)·
. . . ·N(pk).

The correctness of the previous definition is easily proved by induction
on the height h of a node. Intuitively, at each internal p-node, we add
to an instance just one child, hence we need to add up the number of in-
stances of the children, while for internal v-nodes, we add all children to
each instance, hence we need to consider all possible combinations , hence
take the product. If p1, . . . , pk are the roots of the distinct trees of T , then
the total number of instances (and, accordingly, of admissible languages)
is N(T) = N(p1) · . . . ·N(pk).

The sampling algorithm needs to pick an instance among the possible ones,
according to the uniform distribution. The idea is to choose an instance, fol-
lowing Definition 4.3, by choosing a v-node for each p-node inserted in the

106 L. BORTOLUSSI AND A. SGARRO

instance. More precisely, we say that a p-node is active if it has been inserted
in the instance, but one of its children v-nodes has still to be selected. The
sampling algorithm that constructs I = (P, V,E) is the following:

P ← {roots of T}
A← {roots of T} {A is a set containing active p-nodes}
while A 6= ∅ do

Remove p from A

Choose child vi of p among v1, . . . , vk with probability N(vi)
N(p)

Add vi to V and (p, vi) to E
Add the children nodes p1, . . . , ps of vi to P and to A, and (vi, pi) to E

end while

The previous algorithm samples an instance with uniform probability. The
fact that it generates instances is straightforward (it replicates the recursive
definition of an instance). As for the uniform probability, observe that the
probability π with which a generic instance is generated is the product of the
probabilities of the choices performed in its internal p-nodes. Now, pick a
generic factor of this product π, namely N(v)

N(p) . If v is an internal v-node, then
all its children p1, . . . , ps are inserted in the instance, and they contribute to the
product π with factors N(vi)

N(pi)
. Now, the numerator N(v) = N(p1) · . . . ·N(ps)

cancels out with the terms N(pi) of the denominator. Therefore, the only
factors left at numerator are N(v) for v leaf, hence the numerator equals 1.
Similarly, the only factors that remain at the denominator are the terms N(p),
for each root p of T . It follows that π = 1

N(T) , showing that instances are
sampled uniformly.

4.5. Compact Sampling Trees

The complexity of the sampling algorithm of the previous section is linear in
the size of T . However, as anticipated at the end of Section 4, the size of T can
grow quicker than linearly with n, due to the fact that exclusive OR rules may
introduce many p-nodes for the same parameter Pj . For instance, consider
a sampling structure for parameters P1, . . . , Pn, with values in {+,−}, and
subject to rules R = {(P1, true), (P2, x1 = +), . . . , (Pi, (xi−1 = +) ∨ (xi−2 =
−)), . . .}. It is easy to see that there are exactly i− 1 p-nodes for parameter Pi
(i > 2), hence the total number of p-nodes is quadratic in n (see Figure 2 left).

This combinatorial growth can be avoided by relaxing the constraint that T
is a collection of trees, and allowing it to be a collection of direct acyclic graphs
(DAGs). The key observation, in fact, is that all subtrees rooted at p-nodes
pi for parameter Pj are isomorphic. Hence, we can merge them into a single
tree, effectively inserting one single p-node for Pj . If we perform this collapsing
from the last parameter backwards, at the end we obtain a collection of DAGs,

LANGUAGE SAMPLING FOR UNIVERSAL GRAMMARS 107

P1

P1,+ P1,-

P2

P2,+ P2,-

P3

P3,+ P3,-

P4

P4,+ P4,-

P4

P4,+ P4,-

P3

P3,+ P3,-

P4

P4,+ P4,-

P1

P1,+ P1,-

P2

P2,+ P2,-

P3

P3,+ P3,-

P4

P4,+ P4,-

Figure 2: An example of a sampling structure (left) and of a compact sam-
pling structure (right) for parameters P1, . . . , P4, all taking values in {+,−},
and subject to rules R = {(P1, true), (P2, x1 = +), (P3, (x1 = +) ∨ (x2 =
−)), (P4, (x2 = +) ∨ (x3 = −))}.

with exactly n distinct p-nodes, one for each parameter. We call this object a
compact sampling structure (see Figure 2 right).

Instances for a compact sampling structure can be defined similarly to sam-
pling structures. It is easy to see that the set of instances is the same for both
structures (the exclusive nature of OR rules implies that we can reach a p-node
only through a single incoming edge at a time). Hence, sampling structures
and compact sampling structures can be used interchangeably. This linear rep-
resentation allows one to sample an admissible language in time O(n), using
O(n+ |

⋃
iDi|) extra space.

5. Parameter Merging

In the previous section, we discussed how to construct an efficient data struc-
ture to sample uniformly from a space of languages defined by a restricted
set of rules, namely exclusive disjunctions of literals. Unfortunately, the rules
governing real parameters of the universal grammar can be dramatically more
complex. In these cases, the previous approach is not applicable, hence we have
to resort to the rejection sampling strategy discusses in Section 3. However,

108 L. BORTOLUSSI AND A. SGARRO

this still results in a sample space which is too large in practice. In order to
reduce the dimension of the sampling space overapproximating the space of
admissible languages, we can use a different approach, merging sets of parame-
ters into a bigger macro-parameter so that the resulting set of rules simplifies.
Therefore, the parameters to be merged are those involved in formulae that are
not exclusive disjunctions.

As an example, consider four parameters, P1, P2, P3, P4, taking values in
{+,−} and subject to rules R = {(P1, true), (P2, x1 = +), (P3, true), (P4,
(x2 = +) ∧ (x3 = −))}. The rules for P1, P2, and P3 are simple, but the
rule for P4 is not. A possible solution is merging parameters P2 and P3 into
a macro-parameter P2,3, which can take four values, i.e. {++,+−,−+,−−}.
This makes the rule for P4 simple: (P4, x2,3 = +−). However, merging P2 and
P3 creates an additional problem: the possible values that P2,3 can take depend
on the value of P1, contradicting the basic property of the rule sets, i.e. that
the truth of a rule implies that a parameter is meaningful and can take any
value, independently of other parameters. The solution is simple: we need to
merge P1 and P2,3 into a bigger macro-parameter. The so-obtained parameter
P1,2,3 can take only five possible values, {+++,++−,+−+,+−−,−00}, due
to restrictions imposed by internal rules between parameters that are merged.

The previous example gives an intuition of the problems involved in param-
eter merging. More precisely, one has to merge a (minimal) set of parameters
satisfying the following consistency condition: the rule governing its meaning-
fulness is of the exclusive OR type, and when the rule is true, each of its values
is admissible. A simple way to guarantee this constraint is to require a macro-
parameter to be independent. The set of possible values of a macro-parameter
is constructed by taking into account the existent relations holding between
merged parameters.

Practically, once we select the first set of parameters to be merged by look-
ing at a single, non-simple rule, we also need to merge with them all their
ancestors parameters. This approach has the drawback of generating macro-
parameters with large set of values. Hence, there is a trade off between space
complexity of the sampling structures and time complexity of the rejection
sampling approach.

6. Experimental Results and Conclusions

In this section, we present some experimental results of our method, applied
on a set of 62 parameters, governed by the rules in Table 1. Details on these
parameters, and on the resulting phylogenies, can be found in [1].

As we can see, some rules tend to be highly complex, so we had to merge
several parameters before constructing a sampling structure. We merged pa-
rameters 25, 26, 27, 30, 31, 32, 33, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49 into

LANGUAGE SAMPLING FOR UNIVERSAL GRAMMARS 109

(P1, true), (P2, P1 = +), (P3, P2 = +), (P4, P1 = +), (P5, P2 = +), (P6, P5 = +), (P7, true)

(P8, P7 = +), (P9, P6 = +), (P10, P5 = − ∨ P6 = − ∨ P7 = +), (P11, P10 = −), (P12, P7 = +)

(P13, true), (P14, P1 = + ∧ P8 = + ∧ P13 = −), (P15, P12 = + ∧ P14 = −), (P16, P7 = + ∧ P12 = −)

(P17, P7 = +), (P18, P5 = +), (P19, P5 = +), (P20, true), (P21, true)

(P22, (P5 = − ∨ P6 = − ∨ P7 = +) ∧ P21 = −), (P23, P22 = +), (P24, P21 = + ∨ P22 = +), (P25, true)

(P26, P25 = +), (P27, P25 = − ∨ P26 = +), (P28, P12 = +)

(P29, (P25 = − ∨ P26 = +) ∧ (P25 = + ∨ P27 = + ∨ P28 = +)), (P30, true), (P31, true), (P32, P31 = +)

(P33, P32 = +), (P34, true), (P35, P6 = + ∧ (P32 = + ∨ P34 = +)), (P36, P32 = + ∧ P14 = −)

(P37, true), (P38, P37 = +), (P39, P31 = + ∧ P37 = +), (P40, P39 = −)

(P41, P31 = − ∨ P39 = + ∨ P40 = +), (P42, true), (P43, true), (P44, P43 = −)

(P45, P27 = + ∧ P44 = +), (P46, P31 = + ∧ P44 = +), (P47, P46 = +), (P48, P47 = +), (P49, P48 = +)

(P50, P31 = − ∨ P43 = + ∨ P49 = +), (P51, true), (P52, P51 = +)

(P53, (P5 = − ∨ P6 = − ∨ P8 = +) ∧ (P22 = − ∨ P51 = +)), (P54, P30 = + ∧ (P45 = − ∨ P46 = −))

(P55, (P30 = − ∨ P43 = + ∨ P45 = + ∨ P54 = −) ∧ (P31 = − ∨ P32 = −) ∧ P42 = −)

(P56, (P5 = − ∨ P6 = − ∨ P8 = +) ∧ (P22 = − ∨ P23 = − ∨ P29 = −))

(P57, (P30 = − ∨ P43 = + ∨ P45 = + ∨ P54 = −) ∧ (P33 = + ∨ P32 = − ∨ P55 = +) ∧ P31 = + ∧ P42 = −)

(P58, P46 = + ∧ (P47 = − ∨ P48 = − ∨ P49 = −) ∧ P57 = +), (P59, P28 = −)

(P60, P30 = − ∨ P43 = + ∨ P45 = +), (P61, P45 = − ∨ P46 = − ∨ P47 = − ∨ P48 = − ∨ P13 = +)

(P62, (P5 = − ∨ P6 = − ∨ P12 = −) ∧ (P13 = + ∨ P14 = +))

Table 1: Rules for the parameters in the PCM dataset [6, 1].

a large macro-parameter with 3916 possible values, and parameters 1, 2, 5, 6,
7, 8, 12, 13, 14, 21, 22 into a smaller macro-parameter with 168 values. These
macro-parameters were constructed automatically, using a greedy heuristic.
We started by merging parameters in the head of a selected rule and we iter-
atively merged more and more parameters by considering those appearing in
the heads of complex rules of merged parameters. This procedure was stopped
when a bound on the number of states of the macro-parameter was met. Intu-
itively, the problem with parameter merging is that the complex dependencies
of Table 1 tend to produce a single large macro-parameter containing almost
all parameters, hence we had to resort to heuristics to break this tendency.

The compact sampling structure has been constructed leaving out param-
eters 29, 35, 36, 53, 56, and 61 and fixing them uniformly in the set {+,−, 0}
in each attempt of the rejection sampling. On average, the rejection sampler
takes slightly less that 65 trials to find an admissible language, and the average
time to sample a single language is around 0.6 milliseconds. This allows one
to generate 10 million languages, a reasonably large sample to extract mean-
ingful properties of the language space, in about 2 hours. Experiments were
performed on a laptop with a Core 2 Due T9300 CPU and 2 Gb of RAM.

The experimental results just presented suggest that this sampling method
is feasible to deal with applications of the size of those required in [6]. Problems
can arise if the number of parameters is increased and the rule structure contin-
ues to have the tendency of merging all parameters together. In such cases, we

110 L. BORTOLUSSI AND A. SGARRO

may try to improve the sampler by using a Gibbs sampling scheme [2, 7], iso-
lating subsets of parameters that are sufficiently (but not perfectly) separated
from the others.

This sampling algorithm can be used to assess the statistical significance of
real world data against background noise. For instance, we can use it to check
if two specific languages are significantly more similar than two languages in
a pair drawn at random. It can also be used to investigate the properties of
the space of admissible languages, which can shed further light on the intrinsic
structure of universal grammars. In general, this method allows the grounding
of PCM on firmer statistical bases.

References

[1] Linguistics laboratory of the University of Trieste, http://www2.units.it/linglab/.
[2] S.P. Brooks, Markov chain Monte Carlo method and its application, J. Roy.

Statist. Soc. D 47 (1998), 69–100.
[3] N. Chomsky, Rules and representation, Columbia University Press, New York

(1980).
[4] J. Felsenstein, Inferring phylogenies, Sinauer, Sunderland (2004).
[5] C. Guardiano and G. Longobardi, Parametric comparison and language tax-

onomy, in M. Batllori, M.L. Hernanz, C. Picallo and F. Roca, Grammat-
icalization and Parametric Variation, Oxford University Press, Oxford (2005),
pp. 149–174.

[6] G. Longobardi and C. Guardiano, Evidence for syntax as a signal of historical
relatedness, Lingua 119 (2009), 1679–1706.

[7] D.J.C. MacKay, Introduction to Monte Carlo methods, in M.I. Jordan, Learn-
ing in graphical models, NATO Science Series, Kluwer, U.S.A. (1998), pp. 175–204.

[8] A.M.S. McMahon and R. McMahon, Language classification by numbers, Ox-
ford University Press, Oxford (2005).

Authors’ addresses:

Luca Bortolussi
Dipartimento di Matematica e Informatica
Università degli Studi di Trieste
Via Valerio 12/1, 34127 Trieste, Italy
E-mail: luca@dmi.units.it

Andrea Sgarro
Dipartimento di Matematica e Informatica
Università degli Studi di Trieste
Via Valerio 12/1, 34127 Trieste, Italy
E-mail: sgarro@units.it

Received May 31, 2011
Revised August 30, 2011

