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1. Introduction

1.1. Motivation

The problem of classification of vector bundles over an elliptic curve was con-
sidered and completely solved by Atiyah in [1].

For a group Γ acting on a complex manifold Y , an r-dimensional factor
of automorphy is a holomorphic function f : Γ × Y → GLr(C) satisfying
f(λµ, y) = f(λ, µy)f(µ, y). Two factors of automorphy f and f ′ are equivalent
if there exists a holomorphic function h : Y → GLr(C) such that h(λy)f(λ, y) =
f ′(λ, y)h(y).

Given a complex manifold X and the universal covering Y
p
−→ X , let Γ be

the fundamental group of X acting naturally on Y by deck transformations.
Then there is a one-to-one correspondence between equivalence classes of r-
dimensional factors of automorphy and isomorphism classes of vector bundles
on X with trivial pull-back along p. In particular, if Y does not possess any
non-trivial vector bundles, one obtains a one-to-one correspondence between
equivalence classes of r-dimensional factors of automorphy and isomorphism
classes of vector bundles on X . In particular this is the case for complex tori.

Since it is known that one-dimensional complex tori correspond to elliptic
curves and since the classification of holomorphic vector bundles on a projective
variety over C is equivalent to the classification of algebraic vector bundles
(cf. [13]), it is possible to formulate Atiyah’s results in the language of factors
of automorphy. So for example in the case of vector bundles of rank 1 and 2
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such a formulation using factors of automorphy was given in [4], Theorems 4.4
and 4.5.

This paper is a shortened version of the diploma thesis [7] and aims to prove
some results used without any proofs by different authors, in particular in [12]
and [3]. The main result of this note, Theorem 5.24, gives a classification of
indecomposable vector bundles of fixed rank and degree on a complex torus in
terms of factors of automorhy. Its statement coincides with the statement of
Proposition 1 from [12], which was given without any proof.

The author thanks Igor Burban, Bernd Kreußler, and Günther Trautmann,
who motivated him to prepare this manuscript.

1.2. Structure of the Paper

In Section 2 we establish a correspondence between vector bundles and factors
of automorphy. Section 3 deals with properties of factors of automorphy, in par-
ticular we discuss a correspondence between operations on vector bundles and
operations on factors of automorphy. From Section 4 on we restrict ourselves
to the case of vector bundles on complex tori. It is shown in Theorem 4.11
that to define a vector bundle of rank r on a complex one-dimensional torus is
the same as to fix a holomorphic function C∗ → GLr(C). In Section 5 we first
present in Theorem 5.13 a classification of indecomposable vector bundles of
degree zero, using this we give then in Theorem 5.24 a complete classification
of indecomposable vector bundles of fixed rank and degree in terms of factors
of automorphy.

1.3. Notations and Conventions

Following Atiyah’s paper [1] we denote by E(r, d) = EX(r, d) the set of isomor-
phism classes of indecomposable vector bundles over X of rank r and degree d.
For a vector bundle E we usually denote the corresponding locally free sheaf of
its sections by E . By Vect we denote the category of finite dimensional vector
spaces. For a divisor D we denote by [D] the corresponding line bundle.

2. Correspondence between Vector Bundles and Factors

of Automorphy

Let X be a complex manifold and let p : Y → X be a covering of X . Let
Γ ⊂ Deck(Y/X) be a subgroup in the group of deck transformations Deck(Y/X)
such that for any two points y1 and y2 with p(y1) = p(y2) there exists an element
γ ∈ Γ such that γ(y1) = y2. In other words, Γ acts transitively in each fiber.
We call this property (T).
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Remark 2.1. Note that for any two points y1 and y2 there can be only one γ ∈
Deck(Y/X) with γ(y1) = y2 (see [5], Satz 4.8). Therefore, Γ = Deck(Y/X) and
the property (T) simply means that p : Y → X is a normal (Galois) covering.

We have an action of Γ on Y :

Γ × Y → Y, y 7→ γ(y) =: γy.

Definition 2.2. A holomorphic function f : Γ× Y → GLr(C), r ∈ N is called
an r-dimensional factor of automorphy if it satisfies the relation

f(λµ, y) = f(λ, µy)f(µ, y).

Denote by Z1(Γ, r) the set of all r-dimensional factors of automorphy.

We introduce the relation ∼ on Z1(Γ, r). We say that f is equivalent to f ′

if there exists a holomorphic function h : Y → GLr(C) such that

h(λy)f(λ, y) = f ′(λ, y)h(y).

We write in this case f ∼ f ′.

Lemma 2.3. The relation ∼ is an equivalence relation on Z1(Γ, r).

Proof. Straightforward verifications.

We denote the set of equivalence classes of Z1(Γ, r) with respect to ∼ by
H1(Γ, r).

Consider f ∈ Z1(Γ, r) and a trivial vector bundle Y × Cr → Y . Define a
holomorphic action of Γ on Y × Cr:

Γ × Y × C
r → Y × C

r, (λ, y, v) 7→ (λy, f(λ, y)v) =: λ(y, v).

Denote E(f) = Y × Cr/Γ and note that for two equivalent points (y, v) ∼Γ

(y′, v′) with respect to the action of Γ on Y × Cr it follows that p(y) = p(y′).
In fact, (y, v) ∼Γ (y′, v′) implies in particular that y = γy′ for some γ ∈ Γ
and by the definition of deck transformations p(y) = p(γy′) = p(y′). Hence the
projection Y × Cr → Y induces the map

π : E(f) → X, [y, v] 7→ p(y).

We equip E(f) with the quotient topology.

Theorem 2.4. E(f) inherits a complex structure from Y × Cr and the map
π : E(f) → X is a holomorphic vector bundle on X.



64 OLEKSANDR IENA

Proof. First we prove that π is a topological vector bundle. Clearly π is a
continuous map. Consider the commutative diagram

Y × Cr

��

// E(f)

π

��

Y
p

// X.

Let x be a point of X . Since p is a covering, one can choose an open neighbour-
hood U of x such that its preimage is a disjoint union of open sets biholomorphic
to U, i. e., p−1(U) =

⊔

i∈I
Vi, pi := p|Vi

: Vi → U is a biholomorphism for
each i ∈ I. For each pair (i, j) ∈ I × I there exists a unique λij ∈ Γ such that
λijp

−1
j (x) = p−1

i (x) for all x ∈ U . This follows from the property (T).

We have π−1(U) = ((
⊔

i∈I
Vi) × Cr)/Γ.

Choose some iU ∈ I. Consider the holomorphic map

ϕ′
U :

(

⊔

i∈I

Vi

)

× C
r → U × C

r, (yi, v) 7→ (p(yi), f(λiU i, yi)v), yi ∈ Vi.

Suppose that (yi, v
′) ∼Γ (yj , v). This means

(yi, v
′) = λij(yj , v) = (λijyj , f(λij , yj)v).

Therefore,

ϕ′
U (yi, v

′) = (p(yi), f(λiU i, yi)v
′) = (p(λijyj), f(λiU i, λijyj)f(λij , yj)v)

= (p(yj), f(λiU j , yj)v) = ϕ′
U (yj , v).

Thus ϕ′
U factorizes through ((

⊔

i∈I
Vi) × Cr)/Γ, i. e., the map

ϕU :

((

⊔

i∈I

Vi

)

× C
r

)

/Γ → U × C
r, [(yi, v)] 7→ (p(yi), f(λiU i, yi)v), yi ∈ Vi

is well-defined and continuous. We claim that ϕU is bijective.
Suppose ϕU ([(yi, v

′)]) = ϕU ([(yj , v)]), where yi ∈ Vi, yj ∈ Vj . By definition
this is equivalent to (p(yi), f(λiU i, yi)v

′) = (p(yj), f(λiU j , yj)v), which means
yi = λijyj and

f(λiU i, λijyj)v
′ = f(λiU i, yi)v

′ = f(λiU j , yj)v

= f(λiU iλij , yj)v = f(λiU i, λijyj)f(λij , yj)v.

We conclude v′ = f(λij , yj)v and [(yi, v
′)] = [(yj , v)], which means injectivity

of ϕU .
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At the same time for each element (y, v) ∈ U × Cr one has

ϕU ([(p−1
i (y), f(λiU i, p

−1
i (y))−1v)])

= (pp−1
i (y), f(λiU i, p

−1
i (y))f(λiU i, p

−1
i (y))−1v) = (y, v),

i.e., ϕU is surjective and we obtain that ϕU is a bijective map.
This means, that ϕU is a trivialization for U and that π : E(f) → X is a

(continuous) vector bundle. If U and V are two neighbourhoods ofX defined as
above for which E(f)|U , E(f)|V are trivial, then the corresponding transition
function is

ϕUϕ
−1
V : (U ∩ V ) × C

r → (U ∩ V ) × C
r, (x, v) 7→ (x, gUV (x)v),

where gUV : U ∩ V → GLr(C) is a cocycle defining E(f). But from the
construction of ϕU it follows that

gUV (x) = f(λiU iV
, p−1

iV
(x)).

Therefore, gUV is a holomorphic map, hence ϕUϕ
−1
V is also a holomorphic

map. Thus the maps ϕU give E(f) a complex structure. Since π is locally a
projection, one sees that π is a holomorphic map.

Remark 2.5. Note that p∗E(f) is isomorphic to Y ×Cr. An isomorphism can
be given by the map

p∗E(f) → Y × C
r, (y, [ỹ, v]) 7→ (y, f(λ, ỹ)v), λỹ = y.

Now we have the map from Z1(Γ, r) to the set Kr = {[E] | p∗(E) ≃ Y ×C
r}

of isomorphism classes of vector bundles of rank r over X with trivial pull back
with respect to p.

φ′ : Z1(Γ, r) → Kr; f 7→ [E(f)].

Theorem 2.6. Let Kr denote the set of isomorphism classes of vector bundles
of rank r on X with trivial pull back with respect to p. Then the map

H1(Γ, r) → Kr, [f ] 7→ [E(f)]

is a bijection.

Proof. This proof generalizes the proof from [2, Appendix B] given only for
line bundles.

Consider the map φ′ : Z1(Γ, r) → Kr and let f and f ′ be two equivalent
r-dimensional factors of automorphy. It means that there exists a holomorphic
function h : Y → GLr(C) such that

f ′(λ, y) = h(λy)f(λ, y)h(y)−1.
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Therefore, for two neighbourhoods U , V constructed as above we have the
following relation for cocycles corresponding to f and f ′.

g′UV (x) = f ′(λUV , p
−1
iV

(x)) = h(λUV p
−1
iV

(x))f(λUV , p
−1
iV

(x))h(p−1
iV

(x))−1

= h(p−1
iU

(x))gUV (x)h(p−1
iV

(x))−1 = hU (x)gUV (x)hV (x)−1,

where λUV = λiU iV
, hU (x) = h(p−1

iU
(x)) and hV (x) = h(p−1

iV
(x)). We obtained

g′UV = hUgUV h
−1
U ,

which is exactly the condition for two cocycles to define isomorphic vector
bundles. Therefore, E(f) ≃ E(f ′) and it means that φ′ factorizes through
H1(Γ, r), i.e., the map

φ : H1(Γ, r) → Kr; [f ] 7→ [E(f)]

is well-defined.

It remains to construct the inverse map. Suppose E ∈ Kr, in other words
p∗(E) is the trivial bundle of rank r over Y . Let α : p∗E → Y × Cr be a
trivialization. The action of Γ on Y induces a holomorphic action of Γ on p∗E
:

λ(y, e) := (λy, e) for (y, e) ∈ p∗E = Y ×X E.

Via α we get for every λ ∈ Γ an automorphism ψλ of the trivial bundle Y ×Cr.
Clearly ψλ should be of the form

ψλ(y, v) = (λy, f(λ, y)v),

where f : Γ×Y → GLr(C) is a holomorphic map. The equation for the action
ψλµ = ψλψµ implies that f should be an r-dimensional factor of automorphy.

Suppose α′ is an another trivialization of p∗E. Then there exists a holo-
morphic map h : Y → GLr(C) such that α′α−1(y, v) = (y, h(y)v). Let f ′ be a
factor of automorphy corresponding to α′. From

(λy, f ′(λ, y)v) = ψ′
λ(y, v) = α′λα′−1(y, v) = α′α−1αλα−1αα′−1(y, v)

= α′α−1ψλ(α′α−1)−1(y, v) = α′α−1ψλ(y, h(y)−1v)

= α′α−1(λy, f(λ, y)h(y)−1v) = (λy, h(λy)f(λ, y)h(y)−1),

we obtain f ′(λ, y) = h(λy)f(λ, y)h(y)−1. The last means that [f ] = [f ′], in
other words, the class of a factor of automorphy in H1(Γ, r) does not depend
on the trivialization and we get a map Kr → H1(Γ, r). This map is the
inverse of φ.
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Let X be a connected complex manifold, let p : X̃ → X be a universal
covering of X , and let Γ = Deck(Y/X). Since universal coverings are normal
coverings, Γ satisfies the property (T) (see [5, Satz 5.6]). Moreover, Γ is isomor-
phic to the fundamental group π1(X) of X (see [5, Satz 5.6]). An isomorphism
is given as follows.

Fix x0 ∈ X and x̃0 ∈ X̃ with p(x̃0) = x0. We define a map

Φ : Deck(X̃/X) → π1(X,x0)

as follows. Let σ ∈ Deck(X̃/X) and v : [0; 1] → X̃ be a curve with v(0) = x̃0

and v(1) = σ(x̃0). Then a curve

pv : [0; 1] → X, t 7→ pv(t)

is such that pv(0) = pv(1) = x0. Define Φ(σ) := [pv], where [pv] denotes
a homotopy class of pv. The map Φ is well defined and is an isomorphism
of groups.

So we can identify Γ with π1(X). Therefore, we have an action of π1(X)
on X̃ by deck transformations.

Consider an element [w] ∈ π1(X,x0) represented by a path w : [0; 1] → X .
We denote σ = Φ−1([w]). Consider any x̃0 ∈ X such that p(x̃0) = w(0) = w(1),
then the path w can be uniquely lifted to the path

v : [0; 1] → X̃

with v(0) = x̃0 (see [5], Satz 4.14). Denote x̃1 = v(1). Then σ is a unique
element in Deck(X̃/X) such that σ(x̃0) = x̃1. This gives a description of the
action of π1(X,x0) on X̃ .

Now we have a corollary to Theorem 2.6.

Corollary 2.7. Let X be a connected complex manifold, let p : X̃ → X be
the universal covering, let Γ be the fundamental group of X naturally acting on
X̃ by deck transformations. As above, H1(Γ, r) denotes the set of equivalence
classes of r-dimensional factors of automorphy

Γ × X̃ → GLr(C).

Then there is a bijection

H1(Γ, r) → Kr, [f ] 7→ E(f),

where Kr denotes the set of isomorphism classes of vector bundles of rank r on
X with trivial pull back with respect to p.
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3. Properties of Factors of Automorphy

Definition 3.1. Let f : Γ × Y → GLr(C) be an r-dimensional factor of auto-
morphy. A holomorphic function s : Y → Cr is called an f -theta function if
it satisfies

s(γy) = f(γ, y)s(y) for all γ ∈ Γ, y ∈ Y .

Theorem 3.2. Let f : Γ × Y → GLr(C) be an r-dimensional factor of auto-
morphy. Then there is a one-to-one correspondence between sections of E(f)
and f -theta functions.

Proof. Let {Vi}i∈I be a covering of Y such that p restricted to Vi is a homeo-
morphism. Denote ϕi := (p|Vi

)−1, Ui := p(Vi). Then {Ui} is a covering of X
such that E(f) is trivial over each Ui.

Consider a section of E(f) given by functions si : Ui → Cr satisfying

si(x) = gij(x)sj(x) for x ∈ Ui ∩ Uj ,

where
gij(x) = f(λUiUj

, ϕj(x)), x ∈ Ui ∩ Uj

is a cocycle defining E(f) (see the proof of Theorem 2.6). Define s : Y → C
r

by s(ϕi(x)) := si(x). To prove that this is well-defined we need to show
that si(x) = sj(x) when ϕi(x) = ϕj(x). But since ϕi(x) = ϕj(x) we
obtain λUiUj

= 1. Therefore,

si(x) = gij(x)si(x) = f(λUiUj
, ϕj(x))sj(x) = f(1, ϕj(x))sj(x) = sj(x).

For any γ ∈ Γ for any point y ∈ Y take i, j ∈ I and x ∈ X such that y = ϕj(x)
and γy = γϕj(x) = ϕi(x). Thus γ = λUiUj

and one obtains

s(γy) = s(ϕi(x)) = si(x) = gij(x)sj(x)

= f(λUiUj
, ϕj(x))sj(x) = f(γ, y)s(ϕj(x)) = f(γ, z)s(y).

In other words, s is an f -theta function.
Vice versa, let s : Y → Cr be an f -theta function. We define si : Ui → Cr

by si(x) := s(ϕi(x)). Then for a point x ∈ Ui ∩ Uj we have

si(x) = s(ϕi(x)) = s(λUiUj
ϕj(x))

= f(λUiUj
, ϕj(x))s(ϕj(x)) = gij(x)sj(x),

which means that the functions si define a section of E(f). The described
correspondences are clearly inverse to each other.

The following statement will be useful in the sequel.
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Theorem 3.3. Let

f(λ, y) =

(

f ′(λ, y) f̃(λ, y)
0 f ′′(λ, y)

)

be an r′ + r′′-dimensional factor of automorphy, where f ′(λ, y) ∈ GLr′(C),
f ′′(λ, y) ∈ GLr′′(C). Then

(a) f ′ : Γ × Y → GLr′(C) and f ′′ : Γ × Y → GLr′′(C) are r′ and r′′-
dimensional factors of automorphy respectively;

(b) there is an extension of vector bundles

0 // E(f ′)
i

// E(f)
π

// E(f ′′) // 0 .

Proof. The statement of (a) follows from straightforward verification. To prove
(b) we define maps i and π as follows.

i :E(f ′) → E(f), [y, v] 7→ [y,

(

v
0

)

], v ∈ C
r′

,

(

v
0

)

∈ C
r′+r′′

π :E(f) → E(f ′′), [y,

(

v
w

)

] → [y, w], v ∈ C
r′

, w ∈ C
r′′

Since [λy, f ′(λ, y)v] is mapped via i to
[

λy,

(

f ′(λ, y)v
0

)]

=

[

λy, f(λ, y)

(

v
0

)]

,

one concludes that i is well-defined. Analogously, since [λy, f ′′(λ, y)w] = [y, w]
one sees that π is well-defined. Using the charts from the proof of (2.4) one
easily sees that the defined maps are holomorphic.

Notice that i and π respect fibers, i is injective and π is surjective in each
fiber. This proves the statement.

Now we recall one standard construction from linear algebra. Let A be an
m×n matrix. It represents some morphism Cn → Cm for fixed standard bases
in Cn and Cm.

Let F : Vect
p → Vect be a covariant functor. Let A1, . . . , Ap be the matrices

representing morphisms Cn
1

f1
→ Cm

1 , . . . ,C
n
p

fp

→ Cm
p in standard bases.

If for each object F(Cm) we fix some basis, then the matrix corresponding
to the morphism F(f1, . . . , fp) is denoted by F(A1, . . . , Ap). Clearly it satisfies

F(A1B1, . . . , ApBp) = F(A1, . . . , Ap)F(B1, . . . , Bp).

In this way A ⊗ B, Sq(A), Λq(A) can be defined. As F one considers the
functors

⊗ : Vect
2 → Vect, Sn : Vect → Vect, Λ : Vect → Vect
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respectively.

Recall that every holomorphic functor F : Vect
n → Vect can be canonically

extended to the category of vector bundles of finite rank over X . By abuse of
notation we will denote the extended functor by F as well.

Theorem 3.4. Let F : Vect
n → Vect be a covariant holomorphic functor. Let

f1, . . . , fn be ri-dimensional factors of automorphy. Then f = F(f1, . . . , fn) is
a factor of automorphy defining F(E(f1), . . . , E(fn)).

Proof. One clearly has

F(f1, . . . , fn)(λµ, y) = F(f1(λµ, y), . . . , fn(λµ, y))

= F(f1(λ, µy)f1(µ, y), . . . , fn(λ, µy)fn(µ, y))

= F (f1(λ, µy), . . . , fn(λ, µy))F (f1(µ, y), . . . , fn(µ, y))

= F(f1, . . . , fn)(λ, µy)F(f1, . . . , fn)(µ, y).

Since (f1, . . . , fn) represents an isomorphism in Vect
n, F(f1, . . . , fn) also

represents an isomorphism C
r → C

r for some r ∈ N. Therefore, f is an r-
dimensional factor of automorphy.

Since f = F(f1, . . . , fn), for cocycles defining the corresponding vector
bundles the equality gU1U2

= F(g1U1U2
, . . . , gnU1U2

) holds true, where giU1U2

is a cocycle defining E(fi). This shows that E(f) = F(E(f1), . . . , E(fn)) and
proves the required statement.

For example for F = ⊗ : Vect
2 → Vect we get the following obvious

corollary.

Corollary 3.5. Let f ′ : Γ× Y → GLr′(C) and f ′′ : Γ× Y → GLr′′(C) be two
factors of automorphy. Then f = f ′ ⊗ f ′′ : Γ×Y → GLr′r′′(C) is also a factor
of automorphy. Moreover, E(f) ≃ E(f ′) ⊗ E(f ′′).

It is not essential that the functor in Theorem 3.4 is covariant. The following
theorem is a generalization of Theorem 3.4.

Theorem 3.6. Let F : Vect
n → Vect be a holomorphic functor. Let F be

covariant in k first variables and contravariant in n − k last variables. Let
f1, . . . , fn be ri-dimensional factors of automorphy. Then

f = F(f1, . . . , fk, f
−1
k+1, . . . , f

−1
n )

is a factor of automorphy defining F(E(f1), . . . , E(fn)).

Proof. The proof is analogous to the proof of Theorem 3.4.
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4. Vector Bundles on Complex Tori

4.1. One Dimensional Complex Tori

Let X be a complex torus, i.e., X = C/Γ, Γ = Zτ + Z, Im τ > 0. Then the
universal covering is X̃ = C, namely

pr : C → C/Γ, x 7→ [x].

We have an action of Γ on C:

Γ × C → C, (γ, y) 7→ γ + y.

Clearly Γ acts on C by deck transformations and satisfies the property (T).
Since C is a non-compact Riemann surface, by [5, Theorem 30.4, p. 204],

there are only trivial bundles on C. Therefore, we have a one-to-one correspon-
dence between classes of isomorphism of vector bundles of rank r on X and
equivalence classes of factors of automorphy

f : Γ × C → GLr(C).

As usually, Va denotes the standard parallelogram constructed at point a,
Ua is the image of Va under the projection, ϕa : Ua → Va is the local inverse
of the projection.

Remark 4.1. Let f be an r-dimensional factor of automorphy. Then

gab(x) = f(ϕa(x) − ϕb(x), ϕb(x))

is a cocycle defining E(f). This follows from the construction of the cocycle in
the proof of Theorem 2.6.

Example 4.2. There are factors of automorphy corresponding to classical theta
functions. For any theta-characteristic ξ = aτ + b, where a, b ∈ R, there is a
holomorphic function θξ : C → C defined by

θξ(z) =
∑

n∈Z

exp(πi(n+ a)2τ)exp(2πi(n+ a)(z + b)),

which satisfies

θξ(γ + z) = exp(2πiaγ − πip2τ − 2πip(z + ξ))θξ(z) = eξ(γ, z)θξ(z),

where γ = pτ + q and eξ(γ, z) = exp(2πiaγ − πip2τ − 2πip(z + ξ)). Since

eξ(γ1 + γ2, z) = eξ(γ1, γ2 + z)eξ(γ2, z),

we conclude that eξ(γ, z) is a factor of automorphy.
By Theorem 3.2 θξ(z) defines a section of E(eξ(γ, z)).
For more information on classical theta functions see [8, 9, 10].
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Theorem 4.3. degE(eξ) = 1.

Proof. We know that sections of E(eξ) correspond to eξ - theta functions. The
classical eξ-theta function θξ(z) defines a section sξ of E(eξ). Since θξ has only
simple zeros and the set of zeros of θξ(z) is 1

2 + τ
2 + ξ + Γ, we conclude that sξ

has exactly one zero at point p = [12 + τ
2 + ξ] ∈ X . Hence by [6, p. 136] we get

E(eξ) ≃ [p] and thus degE(eξ) = 1.

Theorem 4.4. Let ξ and η be two theta-characteristics. Then

E(eξ) ≃ t∗[η−ξ]E(eη),

where t[η−ξ] : X → X, x 7→ x+ [η − ξ] is the translation by [η − ξ].

Proof. As in the proof of Theorem 4.3 E(eξ) ≃ [p] and E(eη) = [q] for p =
[ 12 + τ

2 + ξ] and q = [12 + τ
2 + η]. Since t[η−ξ]p = q, we get

E(eξ) ≃ [p] ≃ t∗[η−ξ][q] ≃ t∗[η−ξ]E(eη),

which completes the proof.

Now we are going to investigate the extensions of the type

0 → X × C → E → X × C → 0.

In this case the transition functions are given by matrices of the type

(

1 ∗
0 1

)

.

and E is isomorphic to E(f) for some factor of automorphy f of the form

f(λ, x̃) =

(

1 µ(λ, x̃)
0 1

)

.

Note that the condition for f to be a factor of automorphy in this case is
equivalent to the condition

µ(λ+ λ′, x̃) = µ(λ, λ′ + x̃) + µ(λ′, x̃),

where we use the additive notation for the group operation since Γ
is commutative.

Theorem 4.5. f defines the trivial bundle if and only if µ(λ, x̃) = ξ(λx̃)− ξ(x̃)
for some holomorphic function ξ : C → C.
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Proof. We know that E is trivial if and only if h(λx̃) = f(λ, x̃)h(x̃) for some
holomorphic function h : X̃ → GL2(C). Let

h =

(

a(x̃) b(x̃)
c(x̃) d(x̃)

)

,

then the last condition is
(

a(λx̃) b(λx̃)
c(λx̃) d(λx̃)

)

=

(

1 µ(λ, x̃)
0 1

)(

a(x̃) b(x̃)
c(x̃) d(x̃)

)

=

(

a(x̃) + c(x̃)µ(λ, x̃) b(x̃) + d(x̃)µ(λ, x̃)
c(x̃) d(x̃)

)

.

In particular it means c(λx̃) = c(x̃) and d(λx̃) = d(x̃), i.e., c and d are
doubly periodic functions on X̃ = C, so they should be constant, i.e.,
c(λ, x̃) = c ∈ C, d(λ, x̃) = d ∈ C.

Now we have

a(x̃) + cµ(λ, x̃) = a(λx̃)

b(x̃) + dµ(λ, x̃) = b(λx̃)

which implies

cµ(λ, x̃) = a(λx̃) − a(x̃)

dµ(λ, x̃) = b(λx̃) − b(x̃).

Since deth(x̃) 6= 0 for all x̃ ∈ X̃ = C one of the numbers c and d is not
equal to zero. Therefore, one concludes that µ(λ, x̃) = ξ(λx̃) − ξ(x̃) for some
holomorphic function ξ : X̃ = C → C.

Now suppose µ(λ, x̃) = ξ(λx̃)− ξ(x̃) for some holomorphic function ξ : C →

C. Clearly for h(x̃) =

(

1 ξ(x̃)
0 1

)

one has that deth(x̃) = 1 6= 0 and

f(λ, x̃)h(x̃) =

(

1 µ(λ, x̃)
0 1

)(

1 ξ(x̃)
0 1

)

=

(

1 ξ(x̃) + µ(λ, x̃)
0 1

)

=

(

1 ξ(λx̃)
0 1

)

= h(λx̃).

We have shown, that f defines the trivial bundle. This proves the statement
of the theorem.

Theorem 4.6. Two factors of automorphy

f(λ, x̃) =

(

1 µ(λ, x̃)
0 1

)

and f ′(λ, x̃) =

(

1 ν(λ, x̃)
0 1

)
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defining non-trivial bundles are equivalent if and only if

µ(λ, x̃) − kν(λ, x̃) = ξ(λx̃) − ξ(x̃), k ∈ C, k 6= 0

for some holomorphic function ξ : C = X̃ → C.

Proof. Suppose that the factors of automorphy

f(λ, x̃) =

(

1 µ(λ, x̃)
0 1

)

and

f ′(λ, x̃) =

(

1 ν(λ, x̃)
0 1

)

are equivalent. Then there is an equality f(λ, x̃)h(x̃) = h(λx̃)f(λ, x̃) for some
holomorphic function h : C = X̃ → GL2(C). Let us write h in the form

h(x̃) =

(

a(x̃) b(x̃)
c(x̃) d(x̃)

)

.

Then the condition for equivalence of f and f ′ can be rewritten as follows:
(

1 µ(λ, x̃)
0 1

)(

a(x̃) b(x̃)
c(x̃) d(x̃)

)

=

(

a(λx̃) b(λx̃)
c(λx̃) d(λx̃)

)(

1 ν(λ, x̃)
0 1

)

After multiplication one obtains
(

a(x̃) + c(x̃)µ(λ, x̃) b(x̃) + d(x̃)µ(λ, x̃)
c(x̃) d(x̃)

)

=

(

a(λx̃) a(λx̃)ν(λ, x̃) + b(λx̃)
c(λx̃) c(λx̃)ν(λ, x̃) + d(λx̃)

)

,

which leads to the system of equations


























a(x̃) + c(x̃)µ(λ, x̃) = a(λx̃)

b(x̃) + d(x̃)µ(λ, x̃) = a(λx̃)ν(λ, x̃) + b(λx̃)

c(x̃) = c(λx̃)

d(x̃) = c(λx̃)ν(λ, x̃) + d(λx̃).

The third equation means that c is a double periodic function. Therefore, c
should be a constant function.

If c 6= 0 from the first and the last equations using Theorem 4.5 one con-
cludes that f and f ′ define the trivial bundle.

In the case c = 0 one has










a(x̃) = a(λx̃)

b(x̃) + d(x̃)µ(λ, x̃) = a(λx̃)ν(λ, x̃) + b(λx̃)

d(x̃) = d(λx̃),
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i.e., as above, a and d are constant and both not equal to zero since det(h) 6= 0.
Finally one concludes that

dµ(λ, x̃) − aν(λ, x̃) = b(λx̃) − b(x̃), a, d ∈ C, ad 6= 0 (1)

Vice versa, if µ and ν satisfy (1) for

h(x̃) =

(

a b(x̃)
0 d

)

we have

f(λ, x̃)h(x̃) =

(

1 µ(λ, x̃)
0 1

)(

a b(x̃)
0 d

)

=

(

a b(x̃) + dµ(λ, x̃)
0 d

)

=

(

a b(λx̃) + aν(λ, x̃)
0 d

)

=

(

a b(λx̃)
0 d

)(

1 ν(λ, x̃)
0 1

)

= h(λx̃)f(λ, x̃).

This means that f and f ′ are equivalent.

4.2. Higher Dimensional Complex Tori

One can also consider higher dimensional complex tori. Let Γ ⊂ Cg be a lattice,

Γ = Γ1 × · · · × Γg, Γi = Z + Zτi, Im τ > 0.

Then as for one dimensional complex tori we obtain that X = Cg/Γ is a
complex manifold. Clearly the map

C
g → C

g/Γ = X, x 7→ [x]

is the universal covering of X . Since all vector bundles on Cg are trivial, we ob-
tain a one-to-one correspondence between equivalence classes of r-dimensional
factors of automorphy

f : Γ × C
g → GLr(C)

and vector bundles of rank r on X .
Let Γ = Zg + ΩZg, where Ω is a symmetric complex g × g matrix with

positive definite real part. Note that Ω is a generalization of τ from one di-
mensional case.
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For any theta-characteristic ξ = Ωa + b, where a ∈ Rg, b ∈ Rg there is a
holomorphic function θξ : Cg → C defined by

θξ(z) = θa
b (z,Ω) =

∑

n∈Zg

exp(πi(n+ a)tΩ(n+ a)τ )exp( 2πi(n+ a)tΩ(z + b)),

which satisfies

θξ(γ + z) = exp(2πiatγ − πiptΩp− 2πipt(z + ξ))θξ(z) = eξ(γ, z)θξ(z),

where γ = Ωp+ q and eξ(γ, z) = exp(2πiatγ − πiptΩp− 2πipt(z + ξ)). Since

eξ(γ1 + γ2, z) = eξ(γ1, γ2 + z)eξ(γ2, z),

we conclude that eξ(γ, z) is a factor of automorphy.
As above θξ(z) defines a section of E(eξ(γ, z)).
For more detailed information on higher dimensional theta functions

see [8, 9, 10].

4.3. Factors of Automorphy depending only on the

τ-Direction of the Lattice Γ

Here X is a complex torus, X = C/Γ, Γ = Zτ +Z, Im τ > 0. Denote q = e2πiτ .
Consider the canonical projection

pr : C
∗ → C

∗/ < q >, u→ [u] = u < q > .

Clearly one can equip C∗/ < q > with the quotient topology. Therefore, there
is a natural complex structure on C∗/ < q >.

Consider the homomorphism

C
exp
→ C

∗ pr
→ C

∗/ < q >, z 7→ e2πiz 7→ [e2πiz].

It is clearly surjective. An element z ∈ C is in the kernel of this homomorphism
if and only if e2πiz = qk = e2πikτ for some integer k. But this holds if and only
if z − kτ ∈ Z or, in other words, if z ∈ Γ. Therefore, the kernel of the map is
exactly Γ, and we obtain an isomorphism of groups

iso : C/Γ → C
∗/ < q >= C

∗/Z, [z] → [e2πiz].

Since the diagram

C
pr

//

exp

��

C/Γ
OO

iso

��

C∗
pr

// C∗/Z C∗/ < q >
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is commutative, we conclude that the complex structure on C∗/ < q > in-
herited from C/Γ by the isomorphism iso coincides with the natural com-
plex structure on C

∗/ < q >. Therefore, iso is an isomorphism of com-
plex manifolds. Thus complex tori can be represented as C∗/ < q >,
where q = e2πiτ , τ ∈ C, Im τ > 0.

So for any complex torus X = C∗/ < q > we have a natural surjective
holomorphic map

C
∗ → C

∗/ < q >= X, u→ [u].

This map is moreover a covering of X . Consider the group Z. It acts holomor-
phically on X = C∗:

Z × C
∗ → C

∗, (n, u) 7→ qnu.

Moreover, since pr(qnu) = pr(u), Z is naturally identified with a subgroup in
the group of deck transformations Deck(X/C∗). It is easy to see that Z satisfies
the property (T). We obtain that there is a one-to-one correspondence between
classes of isomorphism of vector bundles over X and classes of equivalence of
factors of automorphy

f : Z × C → GLr(C).

Consider the following action of Γ on C
∗:

Γ × C
∗ → C

∗; (λ, u) 7→ λu =: e2πiλu

Let A : Γ × C
∗ → GLr(C) be a holomorphic function satisfying

A(λ+ λ′, u) = A(λ, λ′u)A(λ′, u) (∗)

for all λ, λ′ ∈ Γ. We call such functions C
∗-factors of automorphy. Consider

the map

idΓ ×exp : Γ × C → Γ × C
∗, (λ, x) → (λ, e2πix)

Then the function

fA = A ◦ (idΓ ×exp) : Γ × C → GLr(C)

is an r-dimensional factor of automorphy, because

fA(λ+ λ′, x) = A(λ+ λ′, e2πix) = A(λ, e2πiλ′

e2πix)A(λ′, e2πix)

= A(λ, e2πi(λ′+x))A(λ′, e2πix)

= fA(λ, λ′ + x)fA(λ′, x).

So, factors of automorphy on C∗ define factors of automorphy on C.
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We restrict ourselves to factors of automorphy f : Γ × C → GLr(C) with
the property

f(mτ + n, x) = f(mτ, x), m, n ∈ Z. (2)

It follows from this property that f(n, x) = f(0, x) = idCr . Therefore,

f(λ+ k, x) = f(λ, k + x)f(k, x) = f(λ, k + x) for all λ ∈ Γ, k ∈ Z

and it is possible to define the function

Af : Γ × C
∗ → GLr(C), (λ, e2πix) 7→ f(λ, x),

which is well-defined because from e2πix1 = e2πix2 follows x1 = x2 + k for some
k ∈ Z and f(λ, x1) = f(λ, x2 + k) = f(λ, x2).

Consider A with the property A(mτ + n, u) = A(mτ, u) =: A(m,u). Then
clearly fA(mτ + n, u) = fA(mτ, u). So for any C∗-factor of automorphy A :
Γ×C∗ → GLr(C) with the property A(mτ + n, u) = A(mτ, u) one obtains the
factor of automorphy fA satisfying (2). We proved the following

Theorem 4.7. Factors of automorphy f : Γ × C → GLr(C) with the prop-
erty (2) are in a one-to-one correspondence with C∗-factors of automorphy
with property A(mτ + n, u) = A(mτ, u).

Now we want to translate the conditions for factors of automorphy with the
property (2) to be equivalent in the language of C∗-factors of automorphy with
the same property.

Theorem 4.8. Let f , f ′ be r-factors of automorphy with the property (2). Then
f ∼ f ′ if and only if there exists a holomorphic function B : C∗ → GLr(C)
such that

Af (m,u)B(u) = B(qmu)Af ′(m,u))

for q := e2πiτ , where A(m,u) := A(mτ, u). In this case we also say Af is
equivalent to Af ′ and write Af ∼ Af ′ .

Proof. Let f ∼ f ′. By definition it means that there exists a holomorphic
function h : C → GLr(C) such that f(λ, x)h(x) = h(λx)f ′(λ, x). Therefore,
from f(n, x)h(x) = h(n + x)f ′(n, x) and f(n, x) = f ′(n, x) = idCr it follows
h(x) = h(n+ x) for all n ∈ Z. Therefore, the function

B : C
∗ → GLr(C), e2πix 7→ h(x)

is well-defined. We have

Af (m, e2πix)B(e2πix) =f(mτ, x)h(x) = h(mτ + x)f ′(mτ, x) =

B(e2πi(mτ+x))f ′(m, e2πix) = B(qme2πix)Af ′(m, e2πix).
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Vice versa, let B be such that Af (m,u)B(u) = B(qmAf ′(m,u)). Define h =
B ◦ exp. We obtain

f(mτ + n, x)h(x) = Af (mτ + n, e2πix)B(e2πix)

= B(qme2πix)Af ′(mτ + n, e2πix) = B(e2πi(mτ+x))Af ′(mτ + n, e2πix)

= B(e2πi(mτ+n+x))Af ′(mτ + n, e2πix) = h(mτ + n+ x)f ′(mτ + n, x),

which means that f ∼ f ′ and completes the proof.

Remark 4.9. The last two theorems allow us to embed the set Z1(Z, r) of
factors of automorphy Z×X → GLr(C) to the set Z1(Γ, r). The embedding is

Ψ : Z1(Z, r) → Z1(Γ, r), f 7→ g, g(nτ +m,x) := f(n, x).

Two factors of automorphy from Z1(Z, r) are equivalent if and only if their
images under Ψ are equivalent in Z1(Γ, r). That is why it is enough to consider
only factors of automorphy

Γ × C → GLr(C)

satisfying (2).

Corollary 4.10. A factor of automorphy f with property (2) is triv-
ial if and only if Af (m,u) = B(qmu)B(u)−1 for some holomorphic
function B : C∗ → GLr(C).

Theorem 4.11. Let A be a C∗-factor of automorphy. A(m,u) is uniquely de-
termined by A(u) := A(1, u).

A(m,u) = A(qm−1u) . . . A(qu)A(u), m > 0 (3)

A(−m,u) = A(q−mu)−1 . . . A(q−1u)−1, m > 0. (4)

A(m,u) is equivalent to A′(m,u) if and only if

A(u)B(u) = B(qu)A′(u) (5)

for some holomorphic function B : C∗ → GLr(C). In particular A(m,u) is
trivial iff A(u) = B(qu)B(u)−1.

Proof. Since A(1, u) = A(u) the first formula holds for m = 1. Therefore,

A(m+ 1, u) = A(1, qmu)A(m,u) = A(qm)A(m,u)

and we prove the first formula by induction.



80 OLEKSANDR IENA

Now id = A(0, u) = A(m−m,u) = A(m, q−mu)A(−m,u) and hence

A(−m,u) = A(m, q−mu)−1 = (A(qm−1q−mu) . . . A(qq−mu)A(q−mu))−1

= A(−m,u) = A(q−mu)−1 . . . A(q−1u)−1

which proves the second formula.

If A(m,u) ∼ A′(m,u) then clearly (5) holds.
Vice versa, suppose A(u)B(u) = B(qu)A′(u). Then

A(m,u)B(u) = A(qm−1u) . . . A(qu)A(u)B(u)

= A(qm−1u) . . . A(qu)B(qu)A′(u)

= . . .

= B(qmu)A′(qm−1u) . . . A′(qu)A′(u)

= B(qmu)A′(m,u)

for m > 0.
Since A(−m,u) = A(m, q−mu)−1 we have

A(−m,u)B(u) = A(m, q−mu)−1B(u) = (B(u)−1A(m, q−mu))−1

= (B(u)−1A(m, q−mu)B(q−mu)B(q−mu)−1)−1

= (B(u)−1B(qmq−mu)A′(m, q−mu)B(q−mu)−1)−1

= (B(u)−1B(u)A′(m, q−mu)B(q−mu)−1)−1

= B(q−mu)A′(m, q−mu)−1 = B(q−mu)A′(−m,u),

which completes the proof.

Remark 4.12. Theorem 4.11 means that all the information about a vector
bundle of rank r on a complex torus can be encoded by a holomorphic function
C∗ → GLr(C).

For a holomorphic function A : C∗ → GLr(C), let us denote by E(A) the
corresponding vector bundle on X .

Theorem 4.13. Let A : C∗ → GLn(C), B : C∗ → GLm(C) be two holomorphic
maps. Then E(A) ⊗ E(B) ≃ E(A⊗B).

Proof. By theorem 3.5 we have

E(A) ⊗ E(B) ≃ E(A(n, u)) ⊗ E(B(n, u)) ≃ E(A(n, u) ⊗B(n, u)).

Since A(1, u)⊗B(1, u) = A(u)⊗B(u), we obtain E(A)⊗E(B) ≃ E(A⊗B).
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5. Classification of Vector Bundles over a Complex Torus

Here we work with factors of automorphy depending only on τ , i.e., with holo-
morphic functions C∗ → GLr(C).

5.1. Vector Bundles of Degree Zero

We return to extensions of the type 0 → I1 → E → I1 → 0, where I1 denotes
the trivial vector bundle of rank 1.

Theorem 4.5 can be rewritten as follows.

Theorem 5.1. A function

A(u) =

(

1 a(u)
0 1

)

defines the trivial bundle if and only if a(u) = b(qu)−b(u) for some holomorphic
function b : C∗ → C.

Corollary 5.2.

A(u) =

(

1 1
0 1

)

defines a non-trivial vector bundle.

Proof. Suppose A defines the trivial bundle. Then 1 = b(qu) − b(u) for some
holomorphic function b : C∗ → C. Considering the Laurent series expansion
∑+∞

−∞
bku

k of b we obtain 1 = b0 − b0 = 0 which shows that our assumption
was false.

Let a : C∗ → C be a holomorphic function such that

A2(u) =

(

1 a(u)
0 1

)

defines non-trivial bundle, i.e., by Theorem 5.1, there is no holomorphic func-
tion b : C∗ → C such that

a(u) = b(qu) − b(u).

Let F2 be the bundle defined by A2. Then by Theorem 3.3 there exists an
exact sequence

0 → I1 → F2 → I1 → 0.

For n > 3 we define An : C∗ → GLn(C),

An =











1 a
. . .

. . .

1 a
1











,
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where empty entries stay for zeros.
Let Fn be the bundle defined by An. By (3.3) one sees that An defines the

extension
0 → I1 → Fn → Fn−1 → 0.

Theorem 5.3. Fn is not the trivial bundle. The extension

0 → I1 → Fn → Fn−1 → 0.

is non-trivial for all n > 2.

Proof. Suppose Fn is trivial. Then An(u)B(u) = B(qu) for some B = (bij)ijn .

In particular it means bni(u) = bni(qu) for i = 1, n. Let bni =
∑+∞

−∞
b
(ni)
k uk be

the expansion of bni in Laurent series. Then bni(u) = bni(qu) implies b
(ni)
k =

qkb
(ni)
k for all k.
Note that |q| < 1 because τ = ξ + iη, η > 0 and

|q| = |e2πiτ | = |e2πi(ξ+iη)| = |e2πiξe−2πη| = e−2πη < 1.

Therefore, b
(ni)
k = 0 for k 6= 0 and we conclude that bni should be constant

functions.
We also have

bn−1i(u) + bnia(n) = bn−1i(qu).

Since at least one of bni is not equal to zero because of invertibility of B,
we obtain

a(u) =
1

bni
(bn−1i(qu) − bn−1i(u))

for some i, which contradicts the choice of a. Therefore, Fn is not trivial.
Assume now, that for some n > 2 the extension

0 → I1 → Fn → Fn−1 → 0

is trivial(for n = 2 it is not trivial since F2 is not a trivial vector bundle).
This means

An ∼

(

1 0
0 An−1

)

,

i.e., there exists a holomorphic function B : C
∗ → GLn(C), B = (bij)

n
i,j such

that

An(u)B(u) = B(qu)

(

1 0
0 An−1

)

.

Considering the elements of the first and second columns we obtain for the
first column

bn1(u) = bn1(qu),

bi1(u) + bi+11(u)a(u) = bi1(qu), i < n
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and for the second column

bn2(u) = bn2(qu),

bi2(u) + bi+12(u)a(u) = bi2(qu), i < n.

For the first column as above considering Laurent series we have that bn1 should
be a constant function. If bn1 6= 0 it follows

a(u) =
1

bn1
(bn−11(qu) − bn−11(u)),

which contradicts the choice of a. Therefore, bn1 = 0 and bn−11(qu) = bn−11(u),
in other words bn−11 is a constant function. Proceeding by induction one
obtains that b11 is a constant function and bi1 = 0 for i > 1.

For the second column absolutely analogously we obtain a similar result:
b12 is constant, bi2 = 0 for i > 1. This contradicts the invertibility of B(u) and
proves the statement.

Corollary 5.4. The vector bundle Fn is the only indecomposable vector bundle
of rank n and degree 0 that has non-trivial sections.

Proof. This follows from [1, Theorem 5].

So we have that the vector bundles Fn = E(An) are exactly Fn’s defined
by Atiyah in [1].

Remark 5.5. Note that constant matrices A and B having the same Jordan
normal form are equivalent. This is clear because A = SBS−1 for some con-
stant invertible matrix S, which means that A and B are equivalent.

Consider an upper triangular matrix B = (bij)
n
1 of the following type:

bii = 1, bii+1 6= 0. (6)

It is easy to see that this matrix is equivalent to the upper triangular matrix A,

aii = aii+1 = 1, aij = 0, j 6= i+ 1, j 6= i. (7)

In fact, these matrices have the same characteristic polynomial (t−1)n and the
dimension of the eigenspace corresponding to the eigenvalue 1 is equal to 1 for
both matrices. Therefore, A and B have the same Jordan form. By Remark
above we obtain that A and B are equivalent. We proved the following:

Lemma 5.6. A matrix satisfying (6) is equivalent to the matrix defined by (7).
Moreover, two matrices of the type (6) are equivalent, i.e., they define two
isomorphic vector bundles.
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Theorem 5.7. Fn ≃ Sn−1(F2).

Proof. We know that F2 is defined by the constant matrix

A2 =

(

1 1
0 1

)

.

We know by Theorem 3.4 that Sn(F2) is defined by Sn(A2). We calculate
Sn(f2) for n ∈ N0. Since f2 is a constant matrix, Sn(f2) is also a constant
matrix defining a map Sn(C2) → Sn(C2). Let e1, e2 be the standard basis of
C2, then Sn(C) has a basis

{ek
1e

n−k
2 | k = n, n− 1, . . . , 0}.

Since A2(e1) = e1 and A2(e2) = e1 +e2, we conclude that ek
1e

n−k
2 is mapped to

A2(e1)
kA2(e1)

n−k = ek
1(e1 + e2)

n−k

= ek
1

n−k
∑

i=0

(

n− k

i

)

en−k−i
1 ei

2 =

n−k
∑

i=0

(

n− k

i

)

en−i
1 ei

2.

Therefore,

Sn(A2) =























1 1 1 . . .
(

n
0

)

1 2 . . .
(

n
1

)

1 . . .
(

n
2

)

. . .
...
(

n
n

)























,

where empty entries stay for zero. In other words, the columns of Sn(A2) are
columns of binomial coefficients. By Lemma 5.6 we conclude that Sn(A2) is
equivalent to An+1. This proves the statement of the theorem.

Let E be a 2-dimensional vector bundle over a topological space X . Then
there exists an isomorphism

Sp(E) ⊗ Sq(E) ≃ Sp+q(E) ⊕ (detE ⊗ Sp−1(E) ⊗ Sq−1(E)).

This is the Clebsch-Gordan formula. If detE is the trivial line bundle, then
we have Sp(E) ⊗ Sq(E) ≃ Sp+q(E) ⊕ Sp−1(E) ⊗ Sq−1(E), and by iterating
one gets

Sp(E) ⊗ Sq(E) ≃ Sp+q(E) ⊕ Sp+q−2(E) ⊕ · · · ⊕ Sp−q(E), p > q. (8)

Theorem 5.8. Fp ⊗ Fq ≃ Fp+q−1 ⊕ Fp+q−3 ⊕ · · · ⊕ Fp−q+1 for p > q.
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Proof. Using Theorem 5.7 and (8) we obtain

Fp ⊗ Fq ≃ Sp−1(F2) ⊗ Sq−1(F2)

≃ Sp+q−2(F2) ⊕ Sp+q−4(F2) ⊕ · · · ⊕ Sp−q(F2)

≃ Fp+q−1 ⊕ Fp+q−3 ⊕ · · · ⊕ Fp−q+1.

This completes the proof.

Remark 5.9. The possibility of proving the last theorem using Theorem 5.7 is
exactly what Atiyah states in remark 1) after Theorem 9 (see [1, p. 439]).

We have already given (Corollary 5.4) a description of vector bundles of
degree zero with non-trivial sections. We give now a description of all vector
bundles of degree zero.

Consider the function ϕ0(z) = exp(−πiτ−2πiz) = q−1/2u−1 = ϕ(u), where
u = e2πiz. It defines the factor of automorphy

e0(pτ + q, z) = exp(−πip2τ − 2πizp) = q−
p2

2 u−p

corresponding to the theta-characteristic ξ = 0.

Theorem 5.10. degE(ϕ0) = 1, where as above ϕ0(z) = exp(−πiτ − 2πiz) =
q−1/2u−1 = ϕ(u).

Proof. Follows from Theorem 4.3 for ξ = 0.

Theorem 5.11. Let L′ ∈ E(1, d). Then there exists x ∈ X such that L′ ≃
t∗xE(ϕ0) ⊗ E(ϕ0)

d−1.

Proof. Since E(ϕ0)
d has degree d, we obtain that there exists L̃ ∈ E(1, 0) such

that L′ ≃ E(ϕ0)
d ⊗ L̃. We also know that L̃ ≃ t∗xE(ϕ0)⊗E(ϕ0)

−1 (cf. proof of
Theorem 4.3 and Theorem 4.4) for some x ∈ X . Combining these one obtains

L′ ≃ E(ϕ0)
d ⊗ t∗xE(ϕ0) ⊗ E(ϕ0)

−1 ≃ t∗xE(ϕ0) ⊗ E(ϕ0)
d−1.

This proves the required statement.

Theorem 5.12. The map

C
∗/ < q >→ Pic0(X), ā 7→ E(a).

is well-defined and is an isomorphism of groups.
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Proof. Let ϕ0(z) = exp(−πiτ − 2πiz) as above. For x ∈ X consider t∗xE(ϕ0),
where the map

tx : X → X, y 7→ y + x

is the translation by x. Let ξ ∈ C be a representative of x. Clearly, t∗xE(ϕ0) is
defined by

ϕ0ξ(z) = tξϕ0(z) = ϕ0(z + ξ) = exp(−πiτ−2πiz−2πiξ) = ϕ0(z)exp(−2πiξ).

(Note that if η is another representative of x, then ϕ0ξ and ϕ0η are equivalent.)
Therefore, the bundle t∗xE(ϕ0) ⊗ E(ϕ0)

−1 is defined by

(ϕ0ξϕ0
−1)(z) = ϕ0(z)exp(−2πiξ)ϕ0

−1(z) = exp(−2πiξ).

Since for any L ∈ E(1, 0) there exists x ∈ X such that L ≃ t∗xE(ϕ0)⊗E(ϕ0)
−1,

we obtain L ≃ E(a) for a = exp(−2πiξ) ∈ C∗, where ξ ∈ C is a representative
of x. We proved that any line bundle of degree zero is defined by a constant
function a ∈ C∗.

Vice versa, let L = E(a) for a ∈ C∗. Clearly, there exists ξ ∈ C such that
a = exp(−2πiξ). Therefore,

L ≃ E(a) ≃ L(ϕ0ξϕ0
−1) ≃ t∗xE(ϕ0) ⊗ E(ϕ0)

−1,

where x is the class of ξ in X , which implies that E(a) has degree zero. So
we obtained that the line bundles of degree zero are exactly the line bundles
defined by constant functions.

We have the map

φ : C
∗ → Pic0(X), a 7→ E(a),

which is surjective. By Theorem 4.13 it is moreover a homomorphism of groups.
We are looking now for the kernel of this map.

Suppose E(a) is a trivial bundle. Then there exists a holomorphic function
f : C

∗ → C
∗ such that f(qu) = af(u). Let f =

∑

fνa
ν be the Laurent series

expansion of f . Then from f(qu) = af(u) one obtains

afν = fνq
ν for all ν ∈ Z.

Therefore, fν(a− qν) = 0 for all ν ∈ Z.
Since f 6≡ 0, we obtain that there exists ν ∈ Z with fν 6= 0. Hence a = qν

for some ν ∈ Z.
Vice versa, if a = qν , for f(u) = uν we get

f(qu) = qνuν = af(u).
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This means that E(a) is the trivial bundle, which proves Kerφ =< q >. We
obtain the required isomorphism

C
∗/ < q >→ Pic0(X), ā 7→ E(a).

This completes the proof.

Theorem 5.13. For any F ∈ E(r, 0) there exists a unique ā ∈ C∗/ < q > such
that F ≃ E(Ar(a)), where

Ar(a) =











a 1
. . .

. . .

a 1
a











.

Proof. By [1, Theorem 5] F ≃ Fr ⊗ L for a unique L ∈ E(1, 0). Since Fr ≃
E(Ar) and L ≃ E(a) for a unique ā ∈ C∗/ < q > we get F ≃ E(Ar ⊗ a). So F
is defined by the matrix











a a
. . .

. . .

a a
a











,

where empty entries stay for zeros. It is easy to see that the Jordan normal
form of this matrix is











a 1
. . .

. . .

a 1
a











.

This proves the statement of the theorem.

5.2. Vector Bundles of Arbitrary Degree

Denote by Eτ = C/Γτ , where Γτ = Zτ + Z. Consider the r-covering

πr : Erτ → Eτ , [x] 7→ [x].

Theorem 5.14. Let F be a vector bundle of rank n on Eτ defined by A(u) =
A(1, u) = A(τ, u). Then π∗

r (F ) is defined by

Ã(rτ, u) = Ã(u) = Ã(1, u) := A(rτ, u) = A(qr−1u) . . . A(qu)A(u).
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Proof. Consider the following commutative diagram.

C

prτ

}}||
||

||
|| pτ

  
AA

AA
AA

AA

Erτ
πr

// Eτ

Consider the map

E(Ã) → π∗
r (E(A)) = Erτ ×Eτ

E(A) = {([z]rτ , [z, v]τ ) ∈ Erτ × E(A)},

[z, v]rτ 7→ ([z]rτ , [z, v]τ ).

It is clearly bijective. It remains to prove that it is biholomorphic. From the
construction of E(A) and E(Ã) it follows that the diagram

π∗
r (E(A)) E(A)

Erτ Eτ

E(Ã)

//

//
�� ��

��
??

??

locally looks as

∆(U × U) × Cn U × Cn

U U

U × Cn

//

�� ��

��
??

??

, ((z, z), v) (z, v),

z z

(z, v)

� //

_

��

_

��

�

��
??

??

where ∆(U × U) denotes the diagonal of U × U .
This proves the required statement.

Theorem 5.15. Let F be a vector bundle of rank n on Erτ defined by Ã(u) =
Ã(rτ, u). Then πr∗(F ) is defined by

A(u) =

(

0 I(r−1)n

Ã(u) 0

)

.

Proof. Consider the following commutative diagram.

C

prτ

}}||
||

||
|| pτ

  
AA

AA
AA

AA

Erτ
πr

// Eτ
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Let z ∈ C. Consider y = prτ (z) ∈ Erτ and x = pτ (z) = πrprτ (z) ∈ Eτ .
Choose a point b ∈ C such that z ∈ Vb, where Vb is the standard paral-

lelogram at point b. Clearly x ∈ Ub = pr(Vb) and we have the isomorphism
ϕb : Ub → Vb with ϕb(x) = z.

Consider π−1
r (Ub) = Wb

⊔

· · ·
⊔

Wb+(r−1)τ , where y ∈ Wb and πr|Wb+iτ
:

Wb+iτ → Ub is an isomorphism for each 0 6 i < r.
We have

πr∗(E(Ã))(Ub) = E(Ã)(π−1
r (Ub)) = E(Ã)

(

Wb

⊔

· · ·
⊔

Wb+(r−1)τ

)

= E(Ã)(Wb) ⊕ · · · ⊕ E(Ã)(Wb+(r−1)τ ),

where E(Ã) is the sheaf of sections of E(Ã).
Choose a ∈ C such that z 6∈ Va, z ∈ Va+τ . We have ϕa(x) = z + τ . As

above, π−1
r (Ua) = Wa

⊔

· · ·
⊔

Wa+(r−1)τ and

πr∗(E(Ã))(Ua) =;E(Ã)(π−1
r (Ua)) = E(Ã)

(

Wa

⊔

· · ·
⊔

Wa+(r−1)τ

)

= E(Ã)(Wa) ⊕ · · · ⊕ E(Ã)(Wa+(r−1)τ ).

Since gab(x) = A(ϕa(x) − ϕb(x), ϕb(x)), we obtain

gab(x) = A(ϕa(x) − ϕb(x), ϕb(x)) = A(z + τ − z, z) = A(τ, z).

Therefore, to obtain A(τ, z) it is enough to compute gab(x).
Note that πr∗(E(Ã))x = E(Ã)y ⊕ · · · ⊕ E(Ã)y+(r−1)τ . Note also that gab is

a map from

πr∗(E(Ã))(Ub) = E(Ã)(Wb) ⊕ · · · ⊕ E(Ã)(Wb+(r−1)τ )

to
πr∗(E(Ã))(Ua) = E(Ã)(Wa) ⊕ · · · ⊕ E(Ã)(Wa+(r−1)τ ).

One easily sees that y ∈ Wb, y ∈ Wa+(r−1)τ and y + iτ ∈ Wb+iτ , y + iτ ∈
Wa+(i−1)τ for 0 < i < r. Therefore, gab(x) equals











0 g̃a b+τ (y + τ)
...

. . .

0 g̃a+(r−2)τ b+(r−a)τ (y + (r − 1)τ)
g̃a+(r−1)τ b(y) 0 . . . 0











.

It remains to compute the entries of this matrix. Since

g̃a+(r−1)τ b(y) = Ã(ϕ̃a+(r−1)τ (y) − ϕ̃b(y), ϕ̃b(y))

= Ã(z + rτ − z, z) = Ã(rτ, z)
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and

g̃a+(i−1)τ b+iτ (y + iτ) = Ã(ϕ̃a+(i−1)τ (y + iτ) − ϕ̃b+iτ (y + iτ), ϕ̃b+iτ (y + iτ))

= Ã(z + iτ − (z + iτ) = Ã(0, z + iτ) = In,

one obtains

gab(x) =











0 In
...

. . .

0 In
Ã(z) 0 . . . 0











.

Therefore,

A(z) =











0 In
...

. . .

0 In
Ã(z) 0 . . . 0











=

(

0 I(r−1)n

Ã(u) 0

)

,

which proves the required statement.

Lemma 5.16. Let Ai ∈ GLn(R), i = 1, . . . , n. Then

r
∏

i=1

(

0 I(r−1)n

Ai 0

)

= diag(Ar, . . . , A1)

Proof. Straightforward calculation.

From Theorem 5.14 and Theorem 5.15 one obtains the following:

Corollary 5.17. Let E(A) be a vector bundle of rank n on Erτ , where A :
C∗ → GLn(CV ) is a holomorphic function. Then π∗

rπr∗E(A) is defined by

diag(A(qr−1u), . . . , A(qu), A(u)).

In other words π∗
rπr∗E(A) is isomorphic to the direct sum

r−1
⊕

i=0

E(A(qiu)).

Proof. We know that π∗
rπr∗E(A) is defined by B(r, u), where

B(1, u) =

(

0 I(r−1)n

A 0

)

.
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Therefore, using Lemma 5.16, one obtains

B(r, u) =

(

0 I(r−1)n

A(qr−1u) 0

)

. . .

(

0 I(r−1)n

A(qu) 0

)(

0 I(r−1)n

A(u) 0

)

= diag(A(qr−1u), . . . , A(qu), A(u)),

which completes the proof.

Corollary 5.18. Let L ∈ E(r, 0), then π∗
rπr∗L =

⊕r
1 L.

Proof. Clear, since L = E(A) for a constant matrix A by Theorem 5.13.

Note that for a covering πr : Erτ → Eτ the group of deck transformations
Deck(Erτ/Eτ ) can be identified with the kernel Ker(πr). But Kerπr is cyclic
and equals {1, [q], . . . [q]r−1}, where [q] is a class of q = e2πiτ in Erτ . Clearly

[q]∗(E(A(u))) = E(A(qu)).

Therefore, we get one more corollary.

Corollary 5.19. Let ǫ be a generator of Deck(Erτ/Eτ ). Then for a vector
bundle E on Erτ we have

π∗
rπr∗E = E ⊕ ǫ∗E ⊕ · · · ⊕ (ǫr−1)∗E.

To proceed we need the following result.

Theorem 5.20 (Oda, [11, Theorem 1.2, (i)]). Let ϕ : Y → X be an isogeny of
g-dimensional abelian varieties over a field k, and let L be a line bundle on Y
such that the restriction of the map

Λ(L) : Y → Pic0(Y ), y 7→ t∗yL⊗ L−1,

to the kernel of ϕ is an isomorphism. Then End(ϕ∗L) = k and ϕ∗L is an
indecomposable vector bundle on X.

Theorem 5.21. Let L ∈ E(1, d) and let (r, d) = 1. Then πr∗(L) ∈ E(r, d).

Proof. It is clear that πr∗L has rank r and degree d. It remains to prove that
πr∗L is indecomposable.

We have the isogeny πr : Erτ → Er. Since Y = Erτ is a complex torus
(elliptic curve), Y ≃ Pic0(Y ) with the identification y ↔ t∗yE(ϕ0) ⊗ E(ϕ0)

−1.



92 OLEKSANDR IENA

We know that L = E(ϕ0)
d ⊗ L̃ for some L̃ = E(a) ∈ E(1, 0), a ∈ C∗. Since

t∗y(L̃) = t∗y(E(a)) = E(a) = L̃, as in the proof of Theorem 5.12 one gets

Λ(L)(y) = t∗y(L) ⊗ L−1 = t∗y(E(ϕ0)
d ⊗ L̃) ⊗ (E(ϕ0)

d ⊗ L̃)−1

= t∗y(E(ϕ0)
d) ⊗ t∗y(L̃) ⊗ E(ϕ0)

−d ⊗ L̃−1 = t∗y(E(ϕ0)
d) ⊗ E(ϕ0)

−d

= t∗y(E(ϕd
0)(z)) ⊗ E(ϕ−d

0 ) = E(ϕd
0(z + η)) ⊗ E(ϕ−d

0 )

= E(ϕd
0(z + η)ϕ−d

0 (z)) = E(exp(−2πidη)) = t∗dy(E(ϕ0)) ⊗ E(ϕ0)
−1,

where η ∈ C is a representative of y. This means that the map Λ(L) corresponds
to the map

dY : Erτ → Erτ , y 7→ dy.

Since Kerπr is isomorphic to Z/rZ, we conclude that the restriction of dY to
Kerπr is an isomorphism if and only if (r, d) = 1. Therefore, using Theo-
rem 5.20, we obtain the required statement.

Now we are able to prove the following main theorem:

Theorem 5.22.

(i) Every indecomposable vector bundle F ∈ EEτ
(r, d) is of the form πr′∗(L

′⊗
Fh), where (r, d) = h, r = r′h, d = d′h, L′ ∈ EEr′τ

(1, d′).

(ii) Every vector bundle of the form πr′∗(L
′ ⊗ Fh), where L′ and r′ are as

above, is an element of EEτ
(r, d).

Proof 1.

(i) By [1, Lemma 26] we obtain F ≃ EA(r, d) ⊗ L for some line bundle
L ∈ E(1, 0). By [1, Lemma 24] we have EA(r, d) ≃ EA(r′, d′)⊗Fh, hence
F ≃ EA(r′, d′) ⊗ Fh ⊗ L.

Consider any line bundle L̃ ∈ EEr′τ
(1, d′). Since by Theorem 5.21

πr′∗(L̃) ∈ E(r′, d′), it follows from [1, Lemma 26] that there exists a
line bundle L′′ such that EA(r′, d′) ⊗ L ≃ πr′∗(L̃) ⊗ L′′.

Using the projection formula, we get

F ≃ πr′∗(L̃) ⊗ L′′ ⊗ Fh

≃ πr′∗(L̃⊗ π∗
r′(L′′) ⊗ π∗

r′(Fh))

≃ πr′∗(L
′ ⊗ π∗

r′(Fh))

for L′ = L̃⊗ π∗
r′(L′′).

Since Fh is defined by a constant matrix we obtain by Theorem 5.14 that
π∗

r′(Fh) is defined by f r′

h , which is has the same Jordan normal form as
fh. Therefore, π∗

r′(Fh) ≃ Fh and finally one gets F ≃ πr′∗(L
′ ⊗ Fh).
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(ii) Consider F = πr′∗(L
′⊗Fh). As above Fh = π∗

r′(Fh). Using the projection
formula we get

F = πr′∗(L
′ ⊗ Fh) = πr′∗(L

′ ⊗ π∗
r′(Fh)) = πr′∗(L

′) ⊗ Fh.

By Theorem 5.21 πr′∗(L
′) is an element from EEτ

(r′, d′). Therefore,
πr′∗(L

′) = EA(r′, d′) ⊗ L for some line bundle L ∈ EEτ
(1, 0). Finally

we obtain

F = πr′∗(L
′) ⊗ Fh

= EA(r′, d′) ⊗ L⊗ Fh

= EA(r′h, d′h) ⊗ L

= EA(r, d) ⊗ L,

which means that F is an element of EEτ
(r, d).

Remark 5.23. Since any line bundle of degree d′ is of the form t∗xE(ϕ0) ⊗
E(ϕ0)

d′
−1, Theorem 5.22(i) takes exactly the form of Proposition 1 from [12],

which was given without any proof.

Any line bundle of degree d′ over Erτ is of the form E(a) ⊗ E(ϕd′

), where
a ∈ C∗. Therefore, L′ ⊗ Fh = E(a) ⊗ E(ϕd′

0 ) ⊗ E(Ah) = E(ϕd′

0 Ah(a)). Using
Theorem 5.15 we obtain the following:

Theorem 5.24. Indecomposable vector bundles of rank r and degree d on Eτ

are exactly those defined by the matrices

(

0 I(r′−1)h

ϕd′

0 Ah(a) 0

)

,

where (r, d) = h, r′ = r/h, d′ = d/h, ϕ0(u) = q−
r
2u−1, q = e2πiτ , a ∈ C∗, and

Ah(a) =











a 1
. . .

. . .

a 1
a











∈ GLh(C).

Note that if d = 0, we get h = r, r′ = 1, and d′ = 0. In this case the
statement of Theorem 5.24 is exactly Theorem 5.13.
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