Rend. Istit. Mat. Univ. Trieste Volume 43 (2011), 53–60

Weakly ωb -Continuous Functions¹

Jamal M. Mustafa

ABSTRACT. In this paper we introduce a new class of functions called weakly ω b-continuous functions and investigate several properties and characterizations. Connections with other existing concepts, such as ω b-continuous and weakly b-continuous functions, are also discussed.

Keywords: *b*-Open Sets, ωb -Open Sets, Weakly *b*-Continuous Functions, Weakly ωb -Continuous Functions. MS Classification 2010: 54C05, 54C08

1. Introduction

The notion of b - open sets in topological spaces was introduced in 1996 by Andrijevic [1]. This type of sets discussed by El-Atik [2] under the name of $\gamma - open$ sets. In 2008, Noiri, Al-Omari and Noorani [4] introduced the notions of $\omega b - open$ sets and ωb -continuous functions. We continue to introduce and study properties and characterizations of weakly ωb -continuous functions.

Let A be a subset of a space (X, τ) . The closure (resp. interior) of A will be denoted by Cl(A) (resp. Int(A)).

A subset A of a space (X, τ) is called b - open [1] if $A \subseteq Cl(Int(A)) \cup Int(Cl(A))$. The complement of a b - open set is called a b - closed set. The union of all b - open sets contained in A is called the b - interior of A, denoted by bInt(A) and the intersection of all b - closed sets containing A is called the b - closed of A, denoted by bCl(A). The family of all b - open (resp. b - closed) sets in (X, τ) is denoted by BO(X) (resp. BC(X)).

DEFINITION 1.1. A subset A of a space X is said to be $\omega b - open$ [4] if for every $x \in A$, there exists a b - open subset $U_x \subseteq X$ containing x such that $U_x - A$ is countable.

The complement of an $\omega b - open$ set is said to be $\omega b - closed$ [4]. The intersection of all $\omega b - closed$ sets of X containing A is called the $\omega b - closure$ of A and is denoted by $\omega bCl(A)$. The union of all $\omega b - open$ sets of X contained in A is called the $\omega b - interior$ of A and is denoted by $\omega bInt(A)$.

¹Jamal M. Mustafa did this research during the sabbatical leave from Department of Mathematics, Al al-Bayt University, Mafraq, Jordan.

LEMMA 1.2 ([4]). For a subset of a topological space, b-opennes implies ωb – openness.

LEMMA 1.3 ([4]). The intersection of an ωb – open set with an open set is ωb – open.

LEMMA 1.4 ([4]). The union of any family of ωb – open sets is ωb – open.

2. Weakly ωb -Continuous Functions

DEFINITION 2.1. A function $f: (X, \tau) \to (Y, \rho)$ is said to be:

- (a) ω b-continuous [4] if for each $x \in X$ and each open set V in Y containing f(x), there exists an ω b open set U in X containing x such that $f(U) \subseteq V$.
- (b) weakly b-continuous [7] if for each $x \in X$ and each open set V in Y containing f(x), there exists a b-open set U in X containing x such that $f(U) \subseteq Cl(V)$.

DEFINITION 2.2. A function $f : (X, \tau) \to (Y, \rho)$ is said to be weakly ω bcontinuous if for each $x \in X$ and each open set V in Y containing f(x), there exists an ω b – open set U in X containing x such that $f(U) \subseteq Cl(V)$.

REMARK 2.3. Every ωb -continuous function is weakly ωb -continuous, but the converse is not true in general as the following example shows.

EXAMPLE 2.4. Let X = R with the usual topology τ and $Y = \{a, b\}$ with $\rho = \{\phi, Y, \{a\}\}$. Define a function $f: (X, \tau) \to (Y, \rho)$ by f(x) = a if $x \in Q$ and f(x) = b if $x \in R - Q$. Then f is weakly ω b-continuous but not ω b-continuous.

REMARK 2.5. Since every b – open set is ωb – open then every weakly bcontinuous function is weakly ωb -continuous but the converse is not true in general as the following example shows.

EXAMPLE 2.6. Let $X = Y = \{a, b, c\}, \tau = \{\phi, X, \{c\}, \{a, b\}, \{a, b, c\}\}$ and $\rho = \{\phi, Y, \{a, b\}, \{c, d\}\}$. Define a function $f : (X, \tau) \to (Y, \rho)$ by f(a) = a, f(b) = d, f(c) = c and f(d) = b. Then f is weakly ω b-continuous but not weakly b-continuous.

THEOREM 2.7. A function $f : (X, \tau) \to (Y, \rho)$ is weakly ω b-continuous if and only if for every open set V in Y, $f^{-1}(V) \subseteq \omega bInt[f^{-1}(Cl(V))]$.

Proof.

⇒) Let $V \in \rho$ and $x \in f^{-1}(V)$. Then there exists an $\omega b - open$ set Uin X such that $x \in U$ and $f(U) \subseteq Cl(V)$. Therefore, we have $x \in U \subseteq f^{-1}(Cl(V))$ and hence $x \in \omega bInt[f^{-1}(Cl(V))]$ which means that $f^{-1}(V) \subseteq \omega bInt[f^{-1}(Cl(V))]$. (⇐) Let $x \in X$ and $V \in \rho$ with $f(x) \in V$. Then $x \in f^{-1}(V) \subseteq \omega bInt[f^{-1}(Cl(V))]$. Let $U = \omega bInt[f^{-1}(Cl(V))]$. Then U is $\omega b - open$ and $f(U) \subseteq Cl(V)$.

THEOREM 2.8. Let $f : (X, \tau) \to (Y, \rho)$ be a weakly ω b-continuous function. If V is a clopen subset of Y, then $f^{-1}(V)$ is ω b – open and ω b – closed in X.

Proof. Let $x \in X$ and V be a clopen subset of Y such that $f(x) \in V$. Then there exists an $\omega b - open$ set U in X containing x such that $f(U) \subseteq Cl(V)$. Hence $x \in U$ and $f(U) \subseteq V$ and so $x \in U \subseteq f^{-1}(V)$. This shows that $f^{-1}(V)$ is $\omega b - open$ in X. Since Y - V is a clopen set in Y, so $f^{-1}(Y - V)$ is $\omega b - open$ in X. But $f^{-1}(Y - V) = X - f^{-1}(V)$. Therefore $f^{-1}(V)$ is $\omega b - closed$ in X. Hence $f^{-1}(V)$ is $\omega b - open$ and $\omega b - closed$ in X.

THEOREM 2.9. A function $f : (X, \tau) \to (Y, \rho)$ is weakly ω b-continuous if and only if for every closed set C in Y, ω bCl[$f^{-1}(Int(C))$] $\subseteq f^{-1}(C)$.

Proof.

- ⇒) Let C be a closed set in Y. Then Y C is an open set in Y so by Theorem 2.8 $f^{-1}(Y C) \subseteq \omega bInt[f^{-1}(Cl(Y C))] = \omega bInt[f^{-1}(Y Int(C))] = X \omega bCl[f^{-1}(Int(C))]$. Thus $\omega bCl[f^{-1}(Int(C))] \subseteq f^{-1}(C)$.
- (⇐) Let $x \in X$ and $V \in \rho$ with $f(x) \in V$. So Y V is a closed set in Y. So by assumption $\omega bCl[f^{-1}(Int(Y - V))] \subseteq f^{-1}(Y - V)$. Thus $x \notin \omega bCl[f^{-1}(Int(Y - V))]$. Hence there exists an ωb – open set U in X such that $x \in U$ and $U \cap f^{-1}(Int(Y - V)) = \phi$ which implies that $f(U) \cap Int(Y - V) = \phi$. Then $f(U) \subseteq Y - Int(Y - V)$, so $f(U) \subseteq Cl(V)$, which means that f is weakly ωb -continuous.

THEOREM 2.10. Let $f : (X, \tau) \to (Y, \rho)$ be a surjection function such that f(U)is ωb – open in Y for any ωb – open set U in X and let $g : (Y, \rho) \to (Z, \sigma)$ be any function. If gof is weakly ωb -continuous then g is weakly ωb -continuous.

Proof. Let $y \in Y$. Since f is surjection, there exists $x \in X$ such that f(x) = y. Let $V \in \sigma$ with $g(y) \in V$, so $(gof)(x) \in V$. Since gof is weakly ωb -continuous there exists an ωb -open set U in X containing x such that $(gof)(U) \subseteq Cl(V)$. By assumption H = f(U) is an ωb -open set in Y and contains f(x) = y. Thus $g(H) \subseteq Cl(V)$. Hence g is weakly ωb -continuous.

DEFINITION 2.11. A function $f : (X, \tau) \to (Y, \rho)$ is called ω b-irresolute if $f^{-1}(V)$ is ω b - open in (X, τ) for every ω b - open set V in (Y, ρ) .

THEOREM 2.12. If $f : (X, \tau) \to (Y, \rho)$ is ω b-irresolute and $g : (Y, \rho) \to (Z, \sigma)$ is weakly ω b-continuous then gof $: (X, \tau) \to (Z, \sigma)$ is weakly ω b-continuous.

Proof. Let $x \in X$ and $V \in \sigma$ such that $(gof)(x) = g(f(x)) \in V$. Let y = f(x). Since g is weakly ωb -continuous. So there exists an ωb – open set W in Y such that $y \in W$ and $g(W) \subseteq Cl(V)$. Let $U = f^{-1}(W)$. Then U is an ωb – open set in X as f is ωb -irresolute. Now $(gof)(U) = g(f(f^{-1}(W))) \subseteq g(W)$. Then $x \in U$ and $(gof)(U) \subseteq Cl(V)$. Hence gof is weakly ωb -continuous.

THEOREM 2.13. If $f: (X, \tau) \to (Y, \rho)$ is weakly ω b-continuous and $g: (Y, \rho) \to (Z, \sigma)$ is continuous then $gof: (X, \tau) \to (Z, \sigma)$ is weakly ω b-continuous.

Proof. Let $x \in X$ and W be an open set in Z containing (gof)(x) = g(f(x)). Then $g^{-1}(W)$ is an open set in Y containing f(x). So there exists an $\omega b - open$ set U in X containing x such that $f(U) \subseteq Cl(g^{-1}(W))$. Since g is continuous we have $(gof)(U) \subseteq g(Cl(g^{-1}(W))) \subseteq g(g^{-1}(Cl(W))) \subseteq Cl(W)$.

THEOREM 2.14. A function $f: X \to Y$ is weakly ω b-continuous if and only if the graph function $g: X \to X \times Y$ of f defined by g(x) = (x, f(x)) for each $x \in X$, is weakly ω b-continuous.

Proof.

- ⇒) Suppose that f is weakly ωb -continuous. Let $x \in X$ and W be an open set in $X \times Y$ containing g(x). Then there exists a basic open set $U_1 \times V$ in $X \times Y$ such that $g(x) = (x, f(x)) \in U_1 \times V \subseteq W$. Since f is weakly ωb -continuous there exists an $\omega b - open$ set U_2 in X containing x such that $f(U_2) \subseteq Cl(V)$. Let $U = U_1 \cap U_2$ then U is an $\omega b - open$ set in X with $x \in U$ and $g(U) \subseteq Cl(W)$.
- \Leftarrow) Suppose that g is weakly ωb -continuous. Let $x \in X$ and V be an open set in Y containing f(x). Then $X \times V$ is an open set containing g(x)and hence there exists an $\omega b - open$ set U in X containing x such that $g(U) \subseteq Cl(X \times V) = X \times Cl(V)$. Therefore, we have $f(U) \subseteq Cl(V)$ and hence f is weakly ωb -continuous.

THEOREM 2.15. If $f : (X, \tau) \to (Y, \rho)$ is a weakly ω b-continuous function and Y is Hausdorff then the set $G(f) = \{(x, f(x) : x \in X)\}$ is an ω b - closed set in $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) - G(f)$. Then $y \neq f(x)$. Since Y is Hausdorff, there exist two disjoint open sets U and V such that $y \in U$ and $f(x) \in V$. Since f is weakly ωb -continuous, there exists an ωb – open set W containing x such that $f(W) \subseteq Cl(V)$. Since V and U are disjoint, we have $U \cap Cl(V) = \phi$ and hence $U \cap f(W) = \phi$. This shows that $(W \times U) \cap G(f) = \phi$. Then G(f)is ωb – closed.

THEOREM 2.16. If $f : X_1 \to Y$ is ω b-continuous, $g : X_2 \to Y$ is weakly ω bcontinuous and Y is Hausdorff, then the set $A = \{(x_1, x_2) \in X_1 \times X_2 : f(x_1) = g(x_2)\}$ is ω b - closed in $X_1 \times X_2$. Proof. Let $(x_1, x_2) \in (X_1 \times X_2) - A$. Then $f(x_1) \neq g(x_2)$ and there exist open sets V_1 and V_2 in Y such that $f(x_1) \in V_1$, $g(x_2) \in V_2$ and $V_1 \cap V_2 = \phi$, hence $V_1 \cap Cl(V_2) = \phi$. Since f is ωb -continuous there exists an ωb – open set U_1 in X_1 containing x_1 such that $f(U_1) \subseteq V_1$. Since g is weakly ωb -continuous there exists an ωb – open set U_2 in X_2 containing x_2 such that $g(U_2) \subseteq Cl(V_2)$. Now $U_1 \times U_2$ is an ωb – open set in $X_1 \times X_2$ with $(x_1, x_2) \in U_1 \times U_2 \subseteq (X_1 \times X_2) - A$. This shows that A is ωb – closed in $X_1 \times X_2$.

THEOREM 2.17. If (Y, ρ) is a regular space then a function $f : (X, \tau) \to (Y, \rho)$ is weakly ω b-continuous if and only if it is ω b-continuous

Proof.

- ⇒) Let x be any point in X and V be any open set in Y containing f(x). Since (Y, ρ) is regular, there exists $W \in \rho$ such that $f(x) \in W \subseteq Cl(W) \subseteq V$. Since f is weakly ωb -continuous there exists an ωb – open set U in X containing x such that $f(U) \subseteq Cl(W)$. So $f(U) \subseteq V$. Therefore, f is ωb -continuous.
- \Leftarrow) Clear.

DEFINITION 2.18. Any weakly ω b-continuous function $f : X \to A$, where $A \subseteq X$ and $f_A = f \mid_A$ is the identity function on A, is called weakly ω b-continuous retraction.

THEOREM 2.19. Let $f : X \to A$ be a weakly ω b-continuous retraction of X onto A where $A \subseteq X$. If X is a Hausdorff space, then A is an ω b - closed set in X.

Proof. Suppose that A is not $\omega b - closed$ in X. Then there exist a point $x \in \omega bCl(A) - A$. Since f is weakly ωb -continuous retraction, we have $f(x) \neq x$. Since X is Hausdorff, there exist two disjoint open sets U and V such that $x \in U$ and $f(x) \in V$. Then we have $U \cap Cl(V) = \phi$. Now, Let W be any $\omega b - open$ set in X containing x. Then $U \cap W$ is an $\omega b - open$ set containing x and hence $(U \cap W) \cap A \neq \phi$ because $x \in \omega bCl(A)$. Let $y \in (U \cap W) \cap A$. Since $y \in A$, $f(y) = y \in U$ and hence $f(y) \notin Cl(V)$. This gives that f(W) is not a subset of Cl(V). This contradicts the fact that f is weakly ωb -continuous. Therefore A is $\omega b - closed$ in X.

DEFINITION 2.20. A space X is called:

- (a) $\omega b T_1$ if for each pair of distinct points x and y in X, there exist two ωb open sets U and V of X containing x and y, respectively, such that $y \notin U$ and $x \notin V$.
- (b) $\omega b T_2$ if for each pair of distinct points x and y in X, there exist two ωb open sets U and V of X containing x and y, respectively, such that $U \cap V = \phi$

THEOREM 2.21. If for each pair of distinct points x and y in a space X there exists a function f of X into a Hausdorff space Y such that

- 1) $f(x) \neq f(y)$
- 2) f is ωb -continuous at x and
- 3) f is weakly ω b-continuous at y,

then X is $\omega b - T_2$.

Proof. Since $f(x) \neq f(y)$ and Y is Hausdorff, there exist open sets V_1 and V_2 of Y containing f(x) and f(y), respectively, such that $V_1 \cap V_2 = \phi$, hence $V_1 \cap Cl(V_2) = \phi$. Since f is ωb -continuous at x, there exists an ωb – open set U_1 in X containing x such that $f(U_1) \subseteq V_1$. Since f is weakly ωb -continuous at y, there exists an ωb – open set U_2 in X containing y such that $f(U_2) \subseteq Cl(V_2)$. Therefore we obtain $U_1 \cap U_2 = \phi$. This shows that X is $\omega b - T_2$.

DEFINITION 2.22. A space X is called Urysohn [5] if for each pair of distinct points x and y in X, there exist open sets U and V such that $x \in U, y \in V$ and $Cl(U) \cap Cl(V) = \phi$.

THEOREM 2.23. Let $f : (X, \tau) \to (Y, \rho)$ be a weakly ω b-continuous injection. Then the following hold:

- (a) If Y is Hausdorff, then X is $\omega b T_1$.
- (b) If Y is Urysohn, then X is $\omega b T_2$.

Proof.

- (a) Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Then $f(x_1) \neq f(x_2)$ and there exist open sets V_1 and V_2 in Y containing $f(x_1)$ and $f(x_2)$, respectively, such that $V_1 \cap V_2 = \phi$. Then we obtain $f(x_1) \notin Cl(V_2)$ and $f(x_2) \notin Cl(V_1)$. Since f is weakly ωb -continuous, there exist $\omega b - open$ sets U_1 and U_2 with $x_1 \in U_1$ and $x_2 \in U_2$ such that $f(U_1) \subseteq Cl(V_1)$ and $f(U_2) \subseteq Cl(V_2)$. Hence we obtain $x_2 \notin U_1$ and $x_1 \notin U_2$. This shows that X is $\omega b - T_1$.
- (b) Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Then $f(x_1) \neq f(x_2)$ and there exist open sets V_1 and V_2 in Y containing $f(x_1)$ and $f(x_2)$, respectively, such that $Cl(V_1) \cap Cl(V_2) = \phi$. Since f is weakly ωb -continuous there exist ωb -open sets U_1 and U_2 in X with $x_1 \in U_1$ and $x_2 \in U_2$ such that $f(U_1) \subseteq Cl(V_1)$ and $f(U_2) \subseteq Cl(V_2)$.Since $f^{-1}(Cl(V_1)) \cap f^{-1}(Cl(V_2)) = \phi$ we obtain $U_1 \cap U_2 = \phi$. Hence X is $\omega b - T_2$.

DEFINITION 2.24. A function $f: X \to Y$ is said to have a strongly ωb - closed graph if for each $(x, y) \in (X \times Y) - G(f)$ there exist an ωb - open subset U of X and an open subset V of Y such that $(x, y) \in U \times V$ and $(U \times Cl(V)) \cap G(f) = \phi$.

THEOREM 2.25. If Y is a Urysohn space and $f : X \to Y$ is weakly ωb -continuous, then G(f) is strongly ωb -closed.

Proof. Let $(x, y) \in (X \times Y) - G(f)$. Then $y \neq f(x)$ and there exist open sets V and W in Y with $f(x) \in V$ and $y \in W$ such that $Cl(V) \cap Cl(W) = \phi$. Since f is weakly ωb -continuous, there exists an ωb – open subset U of X containing x such that $f(U) \subseteq Cl(V)$. Therefore we obtain $f(U) \cap Cl(W) = \phi$ and hence $(U \times Cl(W)) \cap G(f) = \phi$. This shows that G(f) is strongly ωb – closed in $X \times Y$.

THEOREM 2.26. Let $f : (X, \tau) \to (Y, \rho)$ be a weakly ω b-continuous function having strongly ω b - closed graph G(f). If f is injective, then X is ω b - T_2 .

Proof. Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Since f is injective, $f(x_1) \neq f(x_2)$ and $(x_1, f(x_2)) \notin G(f)$. Since G(f) is strongly $\omega b - closed$, there exist an $\omega b - open$ subset U of X containing x_1 and an open subset V of Y such that $(x_1, f(x_2)) \in U \times V$ and $(U \times Cl(V)) \cap G(f) = \phi$ and hence $f(U) \cap Cl(V) = \phi$. Since f is weakly ωb -continuous, there exists an $\omega b - open$ subset W of Xcontaining x_2 such that $f(W) \subseteq Cl(V)$. Therefore, we have $f(U) \cap f(W) = \phi$ and hence $U \cap W = \phi$. This shows that X is $\omega b - T_2$.

DEFINITION 2.27. A space X is said to be ω b-connected if X can not be written as a union of two non-empty disjoint ω b – open sets.

THEOREM 2.28. If X is an ω b-connected space and $f: X \to Y$ is weakly ω b-continuous surjection then Y is connected.

Proof. Suppose that Y is not connected. Then there exist two non-empty disjoint open sets U and V in Y such that $U \cup V = Y$. Hence, we have $f^{-1}(U) \cap f^{-1}(V) = \phi$, $f^{-1}(U) \cup f^{-1}(V) = X$ and since f is surjection we have $f^{-1}(U) \neq \phi \neq f^{-1}(V)$. By Theorem 2.8, we have $f^{-1}(U) \subseteq \omega bInt[f^{-1}(Cl(U))]$ and $f^{-1}(V) \subseteq \omega bInt[f^{-1}(Cl(V))]$. Since U and V are clopen we have $f^{-1}(U) \subseteq \omega bInt[f^{-1}(U)]$ and $f^{-1}(V) \subseteq \omega bInt[f^{-1}(U)]$ and $f^{-1}(V)$ are ωb -open. This implies that X is not ωb -connected which is a contradiction. Therefore Y is connected. □

DEFINITION 2.29. A topological space (X, τ) is said to be:

- (a) almost compact [3] if every open cover of X has a finite subfamily whose closures cover X.
- (b) almost Lindelöf [6] if every open cover of X has a countable subfamily whose closures cover X.

DEFINITION 2.30. A topological space (X, τ) is said to be ω b-compact (resp. ω b-Lindelöf) if every ω b – open cover of X has a finite (resp. countable) subcover. THEOREM 2.31. Let $f : X \to Y$ be a weakly ω b-continuous surjection. Then the following hold:

- (a) If X is ω b-compact, then Y is almost compact.
- (b) If X is ω b-Lindelöf, then Y is almost Lindelöf.

Proof.

- (a) Let $\{V_{\alpha} : \alpha \in \Delta\}$ be a cover of Y by open sets in Y. For each $x \in X$ there exists $V_{\alpha_x} \in \{V_{\alpha} : \alpha \in \Delta\}$ such that $f(x) \in V_{\alpha_x}$. Since f is weakly ωb -continuous, there exists an ωb open set U_x of X containing x such that $f(U_x) \subseteq Cl(V_{\alpha_x})$. The family $\{U_x : x \in X\}$ is a cover of X by ωb open sets of X and hence there exists a finite subset X_0 of X such that $X \subseteq \cup \{U_x : x \in X_0\}$. Therefore, we obtain $Y = f(X) \subseteq \cup \{Cl(V_{\alpha_x}) : x \in X_0\}$. This shows that Y is almost compact.
- (b) Similar to (a).

- [1] D. ANDRIJEVIĆ, On b-open sets, Mat. Vesnik 48 (1996), 59–64.
- [2] A.A. EL-ATIK, A study on some types of mappings on topological spaces, M.Sc. Thesis, Tanta University, Egypt (1997).

References

- [3] T. NOIRI, Between continuity and weak continuity, Boll. Unione Mat. Ital. 9 (1974), 647–654.
- [4] T. NOIRI, A. AL-OMARI AND M.S.M. NOORANI, On ωb-open sets and b-Lindelöf spaces, Eur. J. Pure Appl. Math. 1 (2008), 3–9.
- [5] S. WILLARD, *General topology*, Addison Wesley, London (1970).
- [6] S. WILLARD AND U.N.B. DISSANAYAKE, The almost Lindelöf degree, Canadian Math. Bull. 27 (1984), 452–455.
- [7] U. SENGUL, Weakly b-continuous functions, Chaos Solitons Fractals 41 (2009), 1070–1077.

Author's address:

Jamal M. Mustafa Faculty of Science, Department of Sciences Jerash University Jerash, Jordan E-mail: jjmmrr971@yahoo.com

> Received February 6, 2011 Revised March 21, 2011