
Rend. Istit. Mat. Univ. Trieste
Volume 43 (2011), 31–51

A Proof of Monge Problem

in Rn by Stability

Laura Caravenna

Abstract. The Monge problem in Rn, with a possibly asymmetric
norm cost function and absolutely continuous first marginal, is gener-
ally underdetermined. An optimal transport plan is selected by a sec-
ondary variational problem, from a work on crystalline norms. In this
way the mass still moves along lines. The paper provides a quantita-
tive absolute continuity push forward estimate for the translation along
these lines: the consequent area formula, for the disintegration of the
Lebesgue measure w.r.t. the partition into these 1D-rays, shows that
the conditional measures are absolutely continuous, and yields unique-
ness of the optimal secondary transport plan non-decreasing along rays,
recovering that it is induced by a map.
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1. Introduction

Topic of this note is a sharp area push forward estimate relative to a solu-
tion to the Kantorovich problem in Rn, when the cost function is given by a
possibly asymmetric norm ‖·‖ and only the first marginal is assumed to be
absolutely continuous, without assuming strict convexity of the norm. In par-
ticular, this provides a proof of existence of solutions to the Monge problem
which is based on a 1-dimensional disintegration technique relying on the sta-
bility of a particular solution of the problem. Given two Borel probability
measures µ, ν ∈P(Rn), we study the minimization of the functional

IM (t) =
∫

Rn

‖t(x)− x‖ dµ(x) (MP)

among the Borel maps t : Rn → Rn whose image measure of µ is ν. We prove
that the additional optimality conditions choosen in [2] determine a unique
optimal transport map, selected also in [20], under the natural assumption that
µ is absolutely continuous w.r.t. the Lebesgue measure Ln. This assumption is
necessary, as shown in Section 8 of [3].
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The strategy is by reduction to 1-dimensional transport problems. It con-
sists mainly of an area formula for the Lebesgue measure which allows the
reduction: we prove a regularity of the disintegration along rays of the limit
plan by the one of the approximations — once convergence is established. The
limiting procedure is not based on Hopf-Lax formula of potential functions but
on a uniqueness criterion. It is a particular case of a more general result in a
forthcoming work by Bianchini and Daneri. The technique has been used in [9]
in 2007, and then [17], improved simplifying the basic estimate in [7, 18].

Before introducing this work, we present a brief review of the
main literature.

1.1. An Account on the Literature

The original Monge problem arose in 1781 for continuous masses µ, ν supported
on compact, disjoint sets in dimension 2, 3 and with the cost defined by the
Euclidean norm ([31]). Monge himself conjectured important features of the
transport, such as, with the Euclidean norm, the facts that two transport rays
may intersect only at endpoints and that the directions of the transported
particles form a family of normals to some family of surfaces.

Investigated first in [4, 21], the problem was left apart for a long period.
A fundamental improvement in the understanding came with the relaxation

of the problem in the space of probability measures ([26, 27]), consisting in the
Kantorovich formulation. Instead of looking at maps in Rn, ones considers the
following minimization problem in the space Π(µ, ν) of couplings between µ
and ν: minimizing the linear functional

IK(π) =
∫

Rn×Rn

‖y − x‖ dπ(x, y) (KP)

among the transport plans π, defined as members of the set

Π(µ, ν) = {π ∈M+ : px] π = µ, py]π = ν},

where px, py are respectively the projections on the first and on the second
factor space of Rn × Rn. Notice that Π(µ, ν) is convex, w∗-compact.

In particular, minimizers to (KP) always exist by the direct method of
Calculus of Variations. The formulation (KP) is indeed a generalization of the
model, allowing that mass at some point can be split to more destinations.
Therefore, a priori the minimum value in (MP) is higher than the one in (KP),
and the minimizers of the latter are not suitable for the former.

A standard approach to (MP) consists in showing that at least one of the
optimizers to (KP) is concentrated on the graph of a function.

This is plainly effective when the cost is given by the squared Euclidean
distance instead of ‖y − x‖: by the uniform convexity there exists a unique
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(a) One dimensional example.

Let µ be the Lebesgue measure on I1∪I2 ⊂
R and ν the Lebesgue measure on I2 ∪ I3.
Both the maps t1 translating I1 to I2, I2 to
I3 and the map t2 translating I1 to I3 and
leaving I2 fixed are optimal. Moreover, any
convex combination of the two transport
plans induced by t1, t2 is again a minimizer
for (KP), but clearly it is not induced by a
map.

{|x| ≤ 1}
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(b) Two dimensional example.

The unit ball of ‖·‖ is given by the rhom-
bus. Let µ be the Lebesgue measure Q0 ∪
Q1 ⊂ R2 and ν the Lebesgue measure on
Q2 ∪Q3. Both the maps t1, t2 translating
one of the first two squares to one of the
second to squares are optimal, and they
transport mass in different directions.

Figure 1: The optimal transport map with a generic norm is not unique.

optimizer π to (KP) of the form π = (Id, Id−∇φ)]µ for a semiconcave function
φ, the Kantorovich potential. Therefore, when µ � Ln and ν � Ln, the
optimal map is µ-a.e. defined by x 7→ x−∇φ(x) and it is one-to-one ([12, 13, 28]
are the first results, extended to uniformly convex functions of the distance
e.g. in [32, 30, 25, 15]).

However, even in the case of the Euclidean norm, it is well known that this
approach presents difficulties: at Ln-a.e. point the Kantorovich potential fixes
the direction of the transport, but not the precise point where the mass goes
to. This is a feature of the problem, also in dimension one (see the example in
Figure 1a).

The data are not sufficient to determine a single transport map, since there
is no uniqueness. Uniqueness can be recovered with the further requirement of
monotonicity along transport rays ([24]).

The situation becomes even more complicated with a generic norm cost
function, instead of the Euclidean one. The symmetry of the norm plays no
role, but the loss in strict convexity of the unit ball is relevant, since the
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transport may not occur along lines and the direction of the transport can
vary (see the example in Figure 1b).

The Euclidean case, and thus the one proposed by Monge, has been rigor-
ously solved only around 2000 in [22, 35, 3, 14].

Roughly, the approaches in the last three papers is at least partially based
on a decomposition of the domain into 1-dimensional invariant regions for the
transport, called transport rays. Due to the strict convexity of the unit ball,
these regions are 1-dimensional convex sets. Due to regularity assumptions
on the unit ball and a clever countable partition of the ambient space, it is
moreover possible to reduce to the case where the directions of these segments
is Lipschitz continuous. This, by Area or Coarea formula, allows to disinte-
grate the Lebesgue measure w.r.t. the partition in transport rays, obtaining
absolutely continuous conditional probabilities on the 1-dimensional rays. In
turn, this suffices to perform a reduction argument, that we also use in the
present paper, which yields the thesis: indeed, one can fix within each ray an
optimal transport map, uniquely defined imposing monotonicity within each
ray. However, as in [9, 17, 16], we do not rely on any Lipschitz regularity of
the vector field of directions for deriving an Area formula.

This kind of approach was introduced already in 1976 by Sudakov ([34]), in
the more generality of a possibly asymmetric norm — which actually is the case
we are considering. However, its argument remains incomplete: a regularity
property of the disintegration of the Lebesgue measure w.r.t. decompositions of
the space into affine regions was not proved correctly, and, actually, stated in a
form which does not hold ([1]). Indeed, there exists a compact subset of the unit
square having measure 1 and made of disjoint segments, with Borel direction,
such that the disintegration of the Lebesgue measure w.r.t. the partition in
segments has atomic conditional measures ([29], in [2] improved by Alberti
et al.). The reduction argument described above requires instead absolutely
continuous conditional measures, in order to solve the 1-dimensional transport
problems, and therefore a regularity of the partition in transport rays must
be proved. In the case of a strictly convex norm the affine regions reduce to
lines and Sudakov argument was completed in [17]. In this paper we follow the
alternative 1-dimensional decomposition selected by the additional variational
principles, instead of the affine one considered by Sudakov. We choose the
selection of [2], chosen also in [20].

The method in [22] is based on PDEs and they introduce the concept of
transport density, widely studied since there — the very first works are [23,
1, 11, 24]. In [33] one finds more references as well as summability estimates
obtained by interpolation and a limiting procedure of the kind also of this note;
these are proved for the Euclidean distance, but they should work as well in this
setting. Given a Kantorovich potential u for the transport problem between
two absolutely continuous measures with compactly supported and smooth
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densities f+, f−, they define as transport density a nonnegative function a
supported on the family of transport rays and satisfying

−div(a∇u) = f+ − f−

in distributional sense. The above equation was present already in [5] with
different motivation. It allows a generalization to measures, and an alternative
definition introduced first in [10] for ρ := aLn is given by the Radon measure
defined on A ∈ B(Rn) as

ρ(A) :=
∫

Rn×Rn

H1 (A ∩ Jx, yK) dπ(x, y), (1)

where π is an optimal transport plan.
When the unit ball in not strictly convex, the first results available were

given in [2] for the 2-dimensional case, completely solved, and for crystalline
norms. Their strategy is to fix both the direction of the transport and the
transport map by imposing additional optimality conditions, and then to carry
out a Sudakov-type argument on the selected transports.

We follow the same strategy, and the disintegration technique from [6, 9].
A different proof of existence for general norms, with a selection based on

the same optimality conditions, has been presented in [20], improving their
argument for strictly convex norms in [19]. It does not arrive to disintegration
of measures, it is more concerned with the regularity of the transport density.
Also their argument is based on the geometric constraint that cs-monotonicity
impose on cs-optimal transference plans, and an intermediate step is to prove
that the set of initial points of secondary rays of a limit plan π, of the same
maps we consider, is Lebesgue negligible. This important observation was also
used for the solution in the special 2-dimensional case in [2], and generalized
in more dimensions in [6, 9].

1.2. Topic of this Paper

By a possibly asymmetric norm ‖·‖ we mean a continuous function Rn →
[0,+∞) having convex sublevel sets, containing the origin in the interior, and
which is positively homogeneous (λ‖x‖ = ‖λx‖ for λ ≥ 0 and x ∈ Rn). The
study of this paper lies in the context of the following general problem, difficult
due to the degeneracy and non-smoothness of the norm.

Primary Transport Problem. Consider the Monge-Kantorovich optimal
transport problem

min
π∈Π(µ,ν)

∫
‖y − x‖dπ(x, y) (2)

between two positive Radon measures µ, ν with the same total variation, assum-
ing that µ� Ln.
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In order to avoid triviality we suppose that there exists a transport plan
with finite cost. Since there is no uniqueness by the lack of strict convexity,
one considers the family Op ⊂ Π(µ, ν) of minimizers to the primary problem.
We call the members of Op the optimal primary transport plans. Let φ be a
Kantorovich potential for this primary problem, by which we mean a function
φ : Rn → R such that

φ(x)− φ(y) ≤ ‖y − x‖ ∀(x, y) ∈ Rn × Rn (3a)
φ(x)− φ(y) = ‖y − x‖ for π-a.e. (x, y), ∀π ∈ Op. (3b)

We select then particular minimizers by the following secondary problem.

Secondary Transport Problem. Consider a strictly convex norm | · |. Study

min
π∈Op

∫
|y − x|dπ(x, y) = min

π∈Π(µ,ν)

∫
cs(x, y) dπ(x, y) (4)

where the secondary cost function cs is defined by

cs(x, y) :=

 |y − x| if φ(x)− φ(y) ≤ ‖y − x‖,

+∞ otherwise.

This selection criterion has been applied first to the case of crystalline norms
in [2], where in Section 4 one can also find the equivalence of the two mini-
mizations in (4), by a general a variational argument based on Γ-convergence
(applied also in the proof of Proposition 7.1 of [3]). The point of this paper is to
show how to adapt the disintegration technique from [6, 9] in order to provide
an area formula for the disintegration w.r.t. the rays of a plan which is optimal
also for the secondary transport problem. Then one can apply the Sudakov-
type argument to deduce existence and uniqueness of the optimal transport
plan π monotone along rays which solves the secondary problem (4). In par-
ticular, this provides a different and simple proof of the existence result in [20].
We try to sketch it after some statements, the proofs are in Section 2.

We obtain more precisely the following. Let ε → 0+ and let tε be the
optimal transport map, non decreasing along rays, between µ and ν for the
strictly convex norm

cε(x, y) := ‖y − x‖+ ε|y − x|.
This map satisfies an absolutely continuity push forward estimate (below) that
we want to prove in the limit. Restrict the attention for example to any part
S of the domain {x · e ≤ h−} where the map tε is valued in {x · e ≥ h+}.
Lemma 2.17 of [17] proves that the maps satisfy the following area estimate:(

h+ − t
h+ − s

)n−1

Hn−1(σsεS) ≤ Hn−1(σtεS) ≤
(
t− h−
s− h−

)n−1

Hn−1(σsεS), (5)
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Figure 2: Area estimates of sections. The worst and better cases are obtained
when the transport rays (right strip) are rays of cones (left and intermediate
strips). Indeed, the proof can be made by cone approximations and a limit-
ing procedure.

where σsεS, σtεS are the intersections of the segments Jx, tε(x)K, for x ∈ S, with
the hyperplanes Hs = {x · e = s}, Ht = {x · e = t} and h− < s ≤ t < h+.
This estimate means that, moving a transversal section along rays, the area
can either increase or decrease at most as if we were moving between Hh− and
Hh+ along cones with vertices respectively on Hh− or Hh+ . See Figure 2.

Theorem 1.1. The maps tε converge in measure to the cs-optimal transport
map monotone along rays.

This implies pointwise convergence up to subsequence, and then by the
minimality condition one has immediately that tε−t converges to zero in L1(µ).
By the Γ-convergence argument quoted above ([2]), t and tε should moreover
satisfy the asymptotic expansion∫

‖t(x)− x‖εdµ =
∫
‖tε(x)− x‖dµ+ ε

∫
|tε(x)− x|dµ+ o(ε).

We sketch now the proof. If µε, νε are finite Radon measures w∗-converging
to µ, ν, by the theory of Γ-convergence any w∗-limit π of cε-optimal transport
plans πε in Π(µε, νε) is a cs-optimal transport plan in Π(µ, ν) (e.g. Th. 4.1
in [3]). The convergence in µ-measure of a sequence of maps tε to a map t is
equivalent to the w∗-convergence of the plans (Id, tε)]µ to (Id, t)]µ: then the
theorem follows

- providing the stated regularity of one limit plan π of πε (Proposition 1.4);

- observing that it is the unique cs-optimal transport plan monotone along
rays (Lemma 1.6).
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Remark 1.2. By uniqueness, the convergence holds also for different approx-
imations, e.g. approximating contemporary ν by finitely many masses νε w∗-
converging to ν.

Before stating these auxiliary results, we remind some standard notations.

Recall 1.3. By transport set associated to a set Γ ⊂ Rn × Rn we refer to
the set

T =
{
z : z ∈ Jx, yK, (x, y) ∈ Γ

}
,

where Jx, yK denotes the segment from x to y with endpoints, Lx, yM without. The
transport set associated to a transport plan π is then a transport set associated
to some Γ such that π(Γ) = 1. This definition is motivated by the fact that
the optimal transport w.r.t. a strictly convex norm cost moves the mass along
straight lines, as a consequence of the fact that the triangular inequality is strict
when points are not aligned.

A set Γ ⊂ Rn × Rn is cs-monotone if for all finite number of points
{(xi, yi)}i=1,...,M belonging to Γ one has the following inequality:

cs(x0, y0) + · · ·+ cs(xM , yM ) ≤ cs(x0, y1) + · · ·+ cs(xM−1, yM ) + cs(xM , y0).

In turn a transport plan π is cs-monotone if there exists a cs-monotone set Γ
such that π(Γ) = 1. In this case, secondary rays of π are those (nontrivial)
segments Jx, yK such that (x, y) ∈ Γ, where one can assume that

(x, y) ∈ Γ, Jz, wK ⊂ Jx, yK =⇒ (z, w) ∈ Γ, (6a)
(x, y), (z, w) ∈ Γ, Jz, wK ∩ Jx, yK = Jz, yK =⇒ (x,w) ∈ Γ. (6b)

Initial/terminal points of secondary rays are usually intended to be the ini-
tial/terminal points of secondary rays maximal w.r.t. inclusion. A plan π is
monotone (non decreasing) along rays if there exists Γ, π(Γ) = 1, such that
if (x, y), (z, w) ∈ Γ then Jz, wK 6⊂ Lx, yM, or equivalently (y − w) · (x − z) ≥ 0
when aligned.

Proposition 1.4. There exists a cs-optimal transport π ∈ Π(µ, ν) such that
the disintegration of the Lebesgue measure w.r.t. the rays of π has conditional
probabilities equivalent to the Hausdorff 1-dimensional measure on the rays.
The area estimates (5) hold.

Corollary 1.5. A cs-optimal transport π ∈ Π(µ, ν) is induced by a Borel map.

The corollary is based on the 1-dimensional result: by the disintegration
the transport in Rn reduces to transports on the 1-dimensional rays. The new
measures to be transported are the conditional probabilities of µ and ν: then
by Proposition 1.4 each conditional probability providing the first marginal on
the relative ray is absolutely continuous and therefore the optimal transport
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problem can be solved by a map (a full proof is e.g. in [17], Th. 3.2). In par-
ticular the absolutely continuous disintegration implies that the (measurable)
set of initial points is Lebesgue negligible, because its Hausdorff 1-dimensional
measure on each ray is 0.

Having Proposition 1.4, at µ-a.e. point there is a unique outgoing secondary
ray of π, because by cs-monotonicity there can be more outgoing rays only at
initial points and the set of initial points is negligible. Then one can see by
considering convex combinations that any other cs-optimal transport plan π′

must have that same vector field of secondary rays direction, so that Lemma 1.6
below applies yielding the uniqueness stated in Theorem 1.1.

Lemma 1.6. If there exists a Borel vector field fixing the direction of the
secondary transport ray of any cs-optimal transport plan π′ ∈ Π(η, ξ) at
η-a.e. point, there exists at most one cs-optimal plan in Π(η, ξ) monotone
along rays.

Proofs are provided in Section 2, here we just sketch some ideas. We remark
that by [7] the absolute continuity of Proposition 1.4 follows by the simplified
area push forward estimate

µ(A) > 0 ⇒ µ(At) > 0 for a L1-positive set of times t,

where At is the set of points in A translated of length t along any secondary
ray they belong to. In this classical setting one can also prove the quantitative
full estimate (5), which is clearly stronger.

This push forward area estimate for the secondary rays of the selected trans-
port plan π is the main issue of this paper. It is derived by a compactness
argument, and estimates (5) on approximating maps. In particular, it can be
obtained as in the literature if one knows that there is just one cs-optimal
transference plan monotone along rays (Section 2.2). It is not difficult however
to establish that the optimal transport monotone along rays is unique if the
direction e.g. of terminal points is fixed for almost every point w.r.t. the target
measure (Lemma 2.1, Section 2.1).

We then split our transport plan into partial transports, restrictions of π on
suitable regions of Rn×Rn. Moreover, we split them into fictional intermediate
ones which are easily seen to be the unique cs-optimal transport plans, mono-
tone along rays, among their marginals. More precisely, for a model transport
from B1/2(0) to {x · e ≥ 1}, the first fictional transport goes from B1/2(0) to
an intermediate section of the transport set, transversal to the rays, with an
hyperplane Hλ, while the second from Hλ to {x · e ≥ 1}. Let η be the tar-
get measure of the first one, and the source of the second one (see Figure 3).
By standard geometric considerations implied by cs-optimality and then cs-
monotonicity, one can deduce that the direction of the first transport is fixed
at η-a.e. point. This allows a reduction to the previous cases, yielding the area
push forward estimate for these partial transports, restrictions of π.
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Having the area push forward estimate everything is done. We recover that
the set of initial points is Lebesgue negligible (e.g. Lemma 2.20 in [17], coming
from [9]). This implies again the uniqueness of the optimal transport plan
monotone along rays (Lemma 1.6 below), and thus full estimates.

In Section 3 we stress some standard consequences of the disintegration
result, and of the quantitative estimates. Namely, they provide some regularity
of the divergence of rays directions vector field — a kind of Green-Gauss formula
holds on special sets — and it allows moreover an explicit expression for the
transport density. We give finally an example of the fact that the global optimal
Kantorovich potential for the secondary problem with the cost cs does not exist
in general, but only on countably many sets which partition µ-all of Rn.

2. Proof

We show the convergence of the optimal maps tε, non decreasing along rays,
for the transport problem

cε(x, y) := ‖y − x‖+ ε|y − x|

to the optimal map non decreasing along rays for the transport problem

min
π∈Π(µ,ν)

∫
cs(x, y) dπ(x, y), cs(x, y) :=

{
|y−x| if φ(x)−φ(y) ≤ ‖y − x‖,
+∞ otherwise.

Section 2.1 remarks a uniqueness criterion relying on the fact that the di-
rection of the transport is fixed at almost every point w.r.t. the source or target
measure, that we state for the case we are considering.

We prove then by stability absolutely continuity area estimates for a limit
plan. The estimates are quantitative as in [9], we indeed follow the same basic
argument. In Section 2.2 we first prove this estimate in a simpler case, assuming
that the support of the w∗-limit of (Id, tε)]µ is cs-cyclically monotone and that
µ, ν are concentrated on disjoint balls. Then it is generalized in Section 2.3 by
a countable partition satisfying some uniform estimates, and by the uniqueness
of these cs-optimal partial transports among their marginals.

2.1. A Uniqueness Remark

Consider two probability measures η, ξ ∈ P(Rn). We stress uniqueness of
the cs-optimal transport plan (monotone along rays) when the direction of
the transport is fixed e.g. at terminal points, by disintegration along rays and
uniqueness of the optimal transport map in dimension one — known fact that
does not require absolutely continuity assumptions.
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Lemma 2.1. If there exists a Borel vector field fixing the direction of the
secondary transport ray of any cs-optimal transport plan π′ ∈ Π(η, ξ) at
η-a.e. point, then there is a unique cs-optimal plan in Π(η, ξ) monotone
along rays.

Proof. Given any cs-optimal transport plans π̄, π′ ∈ Π(η, ξ), consider a trans-
port set T of (π′ + π̄)/2.

By cs-monotonicity the secondary rays composing T can bifurcate only at
endpoints. Moreover, by definition of terminal points both π, π′ leave them
fixed, and thus they coincide there; let us directly assume that the set of termi-
nal points is η-negligible. Since by assumption at η-a.e. initial point of T there
is precisely one secondary transport ray, then the vector field of secondary rays
r′q is single valued η-a.e.: secondary rays {rq}q partition η-almost all T .

We recall that rays can be parametrized w.l.o.g. by countably many compact
subsets of hyperplanes. Let h denote the quotient projection, and θ = h]η the
quotient measure. Consider the disintegration of η, π̄, π′

η =
∫
ηqθ(q) , π̄ =

∫
π̄qθ(q) , π′ =

∫
π′qθ(q)

respectively w.r.t. secondary transport rays {rq}q and w.r.t. the partition {rq×
Rn}q. In particular, we show that π̄q and π′q have the same second marginal ξq
for θ-a.e. q: indeed for any θ-measurable A and Borel S

ξ(h−1(A) ∩ S)
π′∈Π(η,ξ)

= π′([0, 1]× (h−1(A) ∩ S))

=
∫
A

π′q([0, 1]× S)θ(dq)

=
∫
A

ξ′q(S)θ(dq),

and the same holds for π̄ with the second marginals ξ̄q. Therefore, it must be
ξ̄q = ξ′q and π̄q, π′q are monotone, 1-dimensional, |y − x|-optimal transports in
Π(µq, ξq), even if we do not know whether ξq � H1xrq .

By the uniqueness of transport plans in dimension one (see e.g. Prop. 4.5
in [2]), then π and π̄ must coincide.

2.2. Example

Before treating the general case, we consider an example where we assume
that the support of the limit plan is cs-monotone. Even if by the theory of
Γ-convergence the limit plan π is cs-optimal and then cs-monotone, since the
cost cs is just l.s.c. this hypothesis is indeed a restriction: we have π(Γ) = 1
for some cs-monotone set Γ, which can be taken σ-compact but in general not
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closed. Moreover, if we restrict π to a compact set, then we loose in general
the information that it is obtained by a limit.

If we knew the uniqueness of the cs-optimal transport plan π, monotone
along rays, then we could instead restrict π to a compact subset of Γ and we
could apply to this restriction π′ e.g. the statement below. Indeed, this restric-
tion is still the unique cs-optimal transport between its marginals: the transport
plans induced by the cε-optimal transport maps between the marginals of π′

would necessarily w∗-converge to π′.
Focus on an elementary domain. Let µ = fLnxC for a compact C ⊂ B1/2(0)

and f > 0 on C, let e be a unit vector. Consider a sequence of continuous
transport maps tεj : C → {x · e ≥ 1} which are cεj -optimal and such that
(Id, tεj

)]µ is weakly∗ convergent to a plan π.
We denote by Γ the support of π, extended by (6), and by T the relative

transport set. The flux on secondary rays of π is the multivalued map x 7→ σt(x)
which moves points along rays defined by

σt(x) =
{
z : (x, z) ∈ Γ, z · e = x · e + t

}
.

The domain Dom(σh) of σh is the set of x such that σh(x) is nonempty.

Lemma 2.2. If the support of π is cs-monotone, the transport set T satisfies
the estimate (

1− t
1− s

)n−1

Hn−1
(
S
)
≤ Hn−1

(
σt−sS

)
(7)

for all compact S ⊂ C ∩{x · e = s}∩Dom(σt−s) and s < t ≤ 1. The symmetric
estimate holds similarly.

Corollary 2.3. If there exists a unique cs-optimal transport plan π, it is in-
duced by a transport map satisfying the absolutely continuous push forward
estimates of the kind (5).

The corollary follows by the elementary restriction argument above.

Proof of Lemma 2.2. Since π is concentrated on the compact set Γ, by the
weak convergence for every δ > 0

0 = π
({

(x, y) : dist((x, y),Γ) ≥ δ
})

≥ lim sup
εj→0

{(
(Id, tεj

)]µ
)({

(x, y) : dist((x, y),Γ) ≥ δ
})}
≥ 0.

Thus µ({x : dist((x, tεj (x)),Γ) ≥ δ}) tends to 0 as εj → 0. Up to a subse-
quence, one can require then

µ(Jj) < 2−j with Jj :=
{
x : dist((x, tεj (x)),Γ) > 2−j

}
.
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Define the intermediate hyperplanes

Hλ= {x : x · e = λ}.

Notice that Hn−1(Jj ∩Hλ) converges to 0 for L1-a.e. λ, being 1Ji
converging

to 0 Ln-a.e.
Up to a translation, we set s = 0. Let S be any compact subset of C∩{x·e =

0} ∩ Dom(σt). Since secondary transport rays are identified by the compact,
cs-monotone set Γ, which is the support of π suitably extended by (6), and
since S is also compact, notice then that σt(S) is compact, too.

Let h→ σhj be the analogous flux along secondary rays of tεj
and set

Kj := σtj(S \ Jj) ⊂ {x · e = t}.

Being compact, Kj converges in the Hausdorff distance, up to subsequence, to
a compact set K. Moreover, since by construction d((x, tεj

(x)),Γ) ≤ 2−j out
of Jj , we have that K ⊂ σt(S) = σt(S). By the u.s.c. of the Hausdorff measure
and the regularity of the approximating vector field we conclude

Hn−1(σt(S)) ≥ Hn−1(K) ≥ lim sup
j
Hn−1(Kj)

≥ lim
j

{
(1− t)n−1Hn−1(S \ Jj)

}
= (1− t)n−1Hn−1

(
S
)
,

where the last equality holds ifHn−1(Jj∩Hλ) goes to 0. The thesis holds as well
also for the remaining (L1-negligible) values of s by the lower semicontinuity
of Hn−1, being for λ decreasing to s

Hn−1(Bδ(S) ∩Hs) ≤ lim inf
λ↓s

Hn−1(Bδ(σ
λ−sS) ∩Hλ).

2.3. Proof of Proposition 1.4

We disintegrate here the Lebesgue measure on the transport set T , associated
to any w∗-limit π of (Id, tεj

)]µ, w.r.t. the partition into secondary rays: we show
by a quantitative area push forward estimate that the conditional probabilities
are absolutely continuous. We basically reduce to the case of the example in
Lemma 2.2.

The idea is the following. In the model case of a transport B1/2(0) →
{x · e ≥ 1}, we see the optimal transport plan we selected as a composition of
two other optimal transport plans: B1/2(0)→ Hλ and Hλ → {x ·e ≥ 1}, where
Hλ is an intermediate section transversal to the rays. The two intermediate
transports should still be cs-optimal, and moreover they basically share the
same secondary rays as their composite plan. The terminal points of secondary
rays of the first, coinciding with the initial ones of the second, should then be
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Figure 3: Decomposition of the transport.

fixed — because of cs-monotonicity applied to the composite plans. Then the
intermediate transports we selected are the unique optimal transports between
their marginals by Lemma 1.6. In particular, Lemma 2.2 applies for these
transports yielding the area estimate, which holds both for the intermediate
and composite transports.

Since the property of the proposition is local, up to a countable partition
and similarity transformations we are allowed to decompose π into countably
many restrictions of it, that we place on a model set. Notice moreover that, up
to the present purpose, one does not need to consider the restriction of π to the
diagonal, i.e. the fixed points, because also removing them the secondary rays
of the transport set remain the same. They matter only in order to determine
later the transport map solving the Monge problem with the given marginal.

Renewing the notations for the marginals of these partial plans, we assume

µ� LnxB1/2(0) and ν({x · e ≥ 1}) = 1.

We now denote by tε the cε-optimal maps monotone along ray from µ to ν. If,
by Lusin theorem, we also assume that the maps tε are continuous by restricting
them to suitable compact sets, then we are in a setting where the second
marginal is in general different from ν, w∗-converging to it:

tε : B1/2(0)→ {x · e ≥ 1} and νε := (tε)]µ.

The w∗-limit π of a sequence (Id, tε)]µ, after showing the uniqueness, will turn
out to be precisely one of the restrictions originally considered.

View each map tε as the composition of two cε-optimal transports (Fig-
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ure 3): for λ ∈ (1/2, 1)

t1ε(x) := x+ λ[(e− x) · dε(x)]dε(x), t2ε(x) := tε((t1ε)
−1(x)),

dε(x) :=
tε(x)− x
|tε(x)− x| .

Let ξε := (t1ε)]µ be the intermediate measure on Hλ := {x : x · e = λ}, which
is the source of t2ε and the target of t1ε. Notice that t1ε is injective, by the
cε-monotonicity, so that t2ε is well defined ξε-a.e.

By compactness, the transport plans π2
ε , π1

ε associated to t1ε, t
2
ε w
∗-converge,

up to a subsequence, to plans π1 ∈ Π(µ, ξ), π2 ∈ Π(ξ, ν) — where ξ, ν are the
w∗-limit of ξε, νε. By the theory of Γ-convergence (see e.g. Th. 4.1 in [3]) π1,
π2 are cs-optimal transport plans. Moreover, since for all π̂ ∈ Π(µ+ ξε, νε+ ξε)∫

cε(x, t1ε(x))µ(dx) +
∫
cε(z, t2ε(z))ξ(dz) =

∫
cε(x, tε(x))µ(dx) ≤

∫
cεπ̂,

by the cε-optimality of (Id, t1ε)]µ+ (Id, t2ε)]ξε also π1 + π2 is cs-optimal.
Since (maximal) secondary rays of π1 + π2 go from B1/2(0) to {x · e ≥ 1},

the direction of the transport is unique at ξ-a.e. point. The measurability of
this vector field follows from the fact that there is a representative with a σ-
compact graph, because π1 +π2 is concentrated on a σ-compact set. Observing
that π1 � π1 +π2 and that π1 is monotone along rays, then Lemma 1.6 states
that π1 is the only cs-optimal transport plan from µ to ξ monotone along rays.

The uniqueness of π1 yields the basic push forward estimate (7) for π1 by
Corollary 2.3. However, this estimate coincides with the basic push forward
estimate also for the cs-optimal transports π1 + π2 ∈ Π(µ+ ξ, ν + ξ) and for

Π(µ, ν) 3 π(dx, dy) :=
∫
π2
z(dy)π1(dx, dz), where π2(dz, dy) =

∫
π2
z(dy)ξ(dz),

which share the same transport set T .
This yields a one-sided estimate, but it is enough in order to deduce by

a density argument that the set of initial points of π is negligible (precisely
Lemma 2.20 in [17], proved before in [9]). Indeed, if we could take a point x̄ of
density one for the set of initial points E , then we would reach an absurd: on
one hand moving them along the ray directions, close to e, they are no more
initial points and therefore they do not belong to the set E ; on the other hand
the one-sided estimate implies that x̄ is a point of positive density for these
translated points.

As remarked in Section 2.1, then uniqueness hold and one finds by the
limiting procedure the full estimates giving the statements of the proposition.
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3. Some Remarks

The first corollary of the previous computations is the following disintegration.

Theorem 3.1. The family of secondary transport rays {rq}q∈Q can be parame-
terized by a Borel subset Q of countably many hyperplanes. The transport set
T = ∪q∈Qrq is Borel and there exists a Borel function γ such that the following
disintegration of LnxT holds: ∀ϕ either integrable or positive∫

T
ϕ(x)dLn(x) =

∫
Q

{∫
rq

ϕ(s)γ(s)dH1(s)
}
dHn−1(q)

The set of endpoints of rays is Lebesgue negligible.

Denote by d the unit vector field of secondary rays directions, defined Ln-
a.e. on T . The quantitative estimates, as in the previous works in Rn, imply
a further regularity of the density γ. We omit the proof and precise formulas,
analogous to the one of Proposition 4.17 in [16].

Lemma 3.2. For Ln-a.e. x the real function

λ 7→ γ(x+ λd(x))

is locally Lipschitz, with locally finite total variation, for x, x+λd(x) belonging
to a same ray.

Moreover, as e.g. in [16] the function

∂λγ(x+ λd(x))
γ(x+ λd(x))

=:
(

div d
)

a.c.
(x)

is of particular interest, as we explain below motivating the abuse of notation.

3.1. Divergence of the Rays Directions Vector Field

Consider a compact subset Z of the transport set T made of secondary trans-
port rays which intersect an hyperplane H at points which are in the relative
interior of the rays. Then the divergence of the vector field d l1Z is a Radon
measure.

Lemma 3.3. There exist nonnegative measures η+, η−, concentrated respectively
on initial and terminal points of secondary rays of Z, such that

div(d l1Z) =
(

div d
)

a.c.
(x)LnxZ − η+ + η−.

If the initial points are on a same hyperplane H− and the terminal points on
a same hyperplane H+ orthogonal to a unit direction e, then the measures µ±

are just |d · e|Hn−1 on the relative hyperplane.
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The proof relies on the disintegration theorem for reducing the integrals∫
Z ∇ϕ · dLn on the rays, where ϕ is a test function. The factor γ appears in

the area formula, and on each ray by the estimates providing BV regularity
one can integrate by parts (see the proof of Lemma 2.30 in [17]).

It follows then that the distributional divergence of d is a series of measures.
We remark however that in general the divergence of d is just a distribution,
and it may fail to be a measure (see e.g. Examples 4.2, 4.3 in [17]). As well,
the function

(
div d

)
a.c.

could fail to be locally integrable.

3.2. Transport Density

We now stress another known consequence of the disintegration theorem: one
can write the expression of the transport density, vanishing approaching initial
points along secondary transport rays, relative to optimal secondary transport
plans in terms of the conditional measures µq, νq, q ∈ Q of µ, ν for the ray
equivalence relation. In particular, one can see its absolute continuity. It
does not vanish approaching terminal points — see Example 3.5 below taken
from [24]. We omit the verification, since it is quite standard (see e.g. Section
8 in [9]).

Let f , the Radon-Nycodim derivative of µ w.r.t. Ln, and γ, introduced in
the disintegration, be Borel functions from Rn to R such that

µxT =
∫
Q

µq dHn−1(q) =
∫
Q

(fγH1xrq) dHn−1(q) νxT =
∫
Q

νq dHn−1(q).

Let q : T → Q be the Borel multivalued quotient projection. Set d = 0 where
D is multivalued.

Lemma 3.4. A solution ρ ∈M+
loc(Rn) to the transport equation

div(ρd) = µ− ν

is given by

ρ(x) =
(µq(x)−νq(x))(La(x), xM)

γ(x)
Ln(x)xT =

(
1T(x)
γ(x)

∫
Lt̃−1(x),xM

fγ dH1

)
Ln(x).

(8)

Example 3.5 (Taken from [24]). Consider in R2 the measures µ = 2L2xB1 and
ν = 1

2|x|3/2L2B1, where | · | here denotes the Euclidean norm. A Kantorovich

potential is provided by |x|. The transport density is ρ = (|x|− 1
2 − |x|)L2xB1.

While vanishing towards ∂B1, the density of ρ blows up towards the origin.
Concentrating ν at the origin, the density would be instead ρ = −|x|2xB1.
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3.3. Example of no Global Secondary Potential

We show here that in general there exists no function φs which satisfies on the
whole transport set relative to two measures µ, ν

φs(x)− φs(y) = cs(x, y) for x, y on a same secondary ray (9a)
φs(x)− φs(y) ≤ cs(x, y) ∀(x, y) ∈ T × T . (9b)

It would otherwise provide a global Kantorovich potential for the secondary
transport problem, which exists only up to a countable partition of the domain.
The secondary cost function was defined by

cs(x, y) :=

 |y − x| if φ(x)− φ(y) = ‖y − x‖,

+∞ otherwise.

Consider in R2 the norm ‖x‖ = |P1x| + |P2x|, where P1, P2 are the pro-
jections on the first and second component, and let | · | denote the Euclidean
norm. We show for simplicity of notations a transport problem with atomic
marginals, the example can then be adapted spreading the mass as in the pic-
tures of Figure 4. Consider the transport among the measures

µ =
∞∑
i=1

4/hi∑
j=−1

(hi/12)2δwij
+(1/24)2δw∞ ν =

∞∑
i=1

4/hi∑
j=−1

(hi/12)2δzij
+(1/24)2δz∞

where hi = 2−i−1, w∞ = (−1.5, 0), z∞ = (−1.5, 1) and
w1,−1 = (0, 0)

wi,−1 =
(
−∑i,−1

k=1 2hk, 0
)

wij = wi,−1 + (−hi, jhi/4)

zi,−1 = wi,−1 + (0, 1) i ∈ N

zij = wij + (hi/2, 0) j = 0, . . . , 4/hi.

Let π be the transport plan induced by the map t which translates each wik to
zik. It is an optimal one for the primary problem: one can see it for example
by duality, noticing that the function

φ(x) = ‖x− z1,−1‖

is a Kantorovich potential. Moreover, one can immediately verify that it is also
cs-optimal. In this case, one can take

cs(x, y) :=

 |y − x| if {P1y ≥ P1x, P2y ≥ P2x},

+∞ otherwise.



A PROOF OF MONGE PROBLEM IN RN BY STABILITY 49
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1

Figure 4: Non existence of a global secondary potential. LHS: back on the path
along the arrows the secondary potential must go to −∞. RHS (rotated): the
mass is spread so that the primary potential is unique, up to constants.

However, no cs-monotone carriage Γ of π is contained in the cs-
subdifferential of a cs-monotone function φs, which by definition would sat-
isfy (9). Indeed, suppose the contrary. Then, considering the path in the figure
and applying repeatedly the maximal growth equality (9a) (full line) and the
Lipschitz inequality (9b) (dashed line), one finds

φs(w(i+1),−1) ≤ φs(wi,−1),−1 +
hi
2

+
hi
2

(√
5

2
− 1
)
· 4
hi

+
3hi
2

= φs(wi,−1) +
√

5− 3 + 2hi.

For every potential φs finite on w1,−1, we find therefore that φs(wi,−1)→ −∞
for i → ∞, as well as every other φs(wij). This implies that φs must be −∞
on w∞: for all i, j

φs(w∞) ≤ φs(wij) + ‖wij − w∞‖,
which implies φs(w∞) = −∞.

Remark 3.6. One could think that the problem is that the primary potential we
have chosen is not the right one. However, this is not the case. A completely
similar behavior happens spreading the mass as in the second picture of Figure 4
(rotated of −π/2), but there the primary potential is unique, up to constants.
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