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On the Solvability Conditions

for a Linearized Cahn-Hilliard Equation

Vitaly Volpert and Vitali Vougalter

Abstract. We derive solvability conditions in H4(R3) for a fourth
order partial differential equation which is the linearized Cahn-Hilliard
problem using the results obtained for a Schrödinger type operator with-
out Fredholm property in our preceding work [17].
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1. Introduction

Consider a binary mixture and denote by c its composition, that is the fraction
of one of its two components. Then the evolution of the composition is described
by the Cahn-Hilliard equation (see, e.g., [1, 11]):

∂c

∂t
= M∆

(

dφ

dc
− K∆c

)

, (1)

where M and K are some constants and φ is the free energy density. From the
Flory-Huggins solution theory it follows that

dφ

dc
= k1 + k2c + k3T (ln c − ln(1 − c)),

ki, i = 1, 2, 3, are some thermodynamical constants and T is the temperature
(see, e.g., [8]). We note that the constants k1, k2 and K characterize interaction
of components in the binary medium. They can be positive or negative. If the
components are identical, that is the medium is not in fact binary, they are
equal to zero. In this case, equation (1) is reduced to the diffusion equation.

Denote the right-hand side of the last equality by F (T, c). If the variation of
the composition is small, then we can linearize it around some constant c = c0:

F (T, c) ≈ k1 + k2c + k3T (α + β(c − c0)).
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where α = ln(c0/(1 − c0)) and β = 1/(c0(1 − c0)). Substituting the expression
for F (T, c) into (1), we obtain

∂u

∂t
= M∆

(

k1 + k2c0 + αk3T + (k2 + k3βT )u − K∆u
)

, (2)

where u = c − c0.
The existence, stability and some properties of solutions of the Cahn-Hil-

liard equation have been studied extensively in recent years (see, e.g., [3, 6, 11]).
In this work we investigate the existence of stationary solutions of equation (2),
which we write as

∆(∆u + V (x)u + au) = f(x), (3)

where

V (x) = −k3βT0(x)

K
, f(x) =

αk3

K
∆T0(x) + g(x), a = −k2 + k3βT∞

K
.

Here we use the representation T (x) = T∞ + T0(x), where T∞ denotes the
value of the temperature at infinity and T0(x) decays as |x| → ∞; g(x) is a
source term.

Thus, from the physical point of view, we study the existence of stationary
composition distributions depending on the temperature distribution, which
enters both in the coefficient of the equation and in the right-hand side. If
the temperature distribution is constant, that is T0(x) ≡ 0, then we obtain a
homogeneous equation with constant coefficients. It can have either only trivial
solution, in which case the composition distribution is also constant, c ≡ c0,
or, if the spectrum contains the origin, a nonzero eigenfunction. This case
corresponds to the phase separation.

In this work we study the case of a nonuniform temperature distribution,
such that T0(x) does not vanish identically. We will formulate the conditions of
the existence of the solution. If a solution does not exist, then this can signify
that the assumption about small variation of the composition is not applicable.
Instability of the homogeneous in space solution results in phase separation
with strong composition gradients.

From the mathematical point of view, we consider a linear elliptic equation
of the fourth order in R3. There are two principally different cases. If the
essential spectrum of the corresponding elliptic operator does not contain the
origin, then the operator satisfies the Fredholm property, its image is closed
and equation (3) is solvable if and only if f(x) is orthogonal to all solutions of
the homogeneous adjoint equation. The essential spectrum can be determined
through limiting operators [15]. If the coefficients of the operator have limits
at infinity, the essential spectrum can be easily found by means of Fourier
transform (see below). If it contains the origin, then the operator does not
satisfy the Fredholm property and the Fredholm alternative is not applicable.
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In spite of apparent simplicity of equation (3), its solvability conditions in the
non-Fredholm case are not known. In the case of the second order equation,
solvability conditions were recently obtained in our previous works [17]–[20].
In this work we will apply these results to study the fourth order equation.

Let us assume that the potential V (x) is a smooth function vanishing at
infinity. The precise conditions on it will be specified below. The function f(x)
belongs to the appropriate weighted Hölder space, which will imply its square
integrability, and a is a nonnegative constant. We will study this equation in R3.

The operator
Lu = ∆(∆u + V (x)u + au)

considered as acting from H4(R3) into L2(R3) (or in the corresponding Hölder
spaces) does not satisfy the Fredholm property. Indeed, since V (x) vanishes at
infinity, then the essential spectrum of this operator is the set of all complex λ
for which the equation

∆(∆u + au) = λu

has a nonzero bounded solution. Applying the Fourier transform, we obtain

λ = −ξ2(a − ξ2), ξ ∈ R
3.

Hence the essential spectrum contains the origin. Consequently, the operator
does not satisfy the Fredholm property, and solvability conditions of equa-
tion (3) are not known. We will obtain solvability conditions for this equation
using the method developed in our previous papers [17]–[20]. This method is
based on spectral decomposition of self-adjoint operators.

Obviously, the problem above can be conveniently rewritten in the equiva-
lent form of the system of two second order equations







−∆v = f(x),

−∆u − V (x)u − au = v(x)
(4)

in which the first one has an explicit solution due to the fast rate of decay of
its right side stated in Assumption 3, namely

v0(x) :=
1

4π

∫

R3

f(y)

|x − y|dy (5)

with properties established in Lemma A1 of the Appendix. Note that both
equations of the system above involve second order differential operators with-
out Fredholm property. Their essential spectra are σess(−∆) = [0, ∞) and
σess(−∆ − V (x) − a) = [−a, ∞) for V (x) → 0 at infinity (see, e.g., [9]), such
that neither of the operators has a finite dimensional isolated kernel. Solvabil-
ity conditions for operators of that kind have been studied extensively in recent
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works for a single Schrödinger type operator (see [17]), sums of second order
differential operators (see [18]), the Laplacian operator with the drift term
(see [19]). Non Fredholm operators arise as well while studying the existence
and stability of stationary and travelling wave solutions of certain reaction-
diffusion equations (see, e.g., [5, 7, 16]). For the second equation in system (4)
we introduce the corresponding homogeneous problem

−∆w − V (x)w − aw = 0. (6)

We make the following technical assumptions on the scalar potential and the
right side of equation (3). Note that the first one contains conditions on V (x)
analogous to those stated in Assumption 1.1 of [17] (see also [18, 19]) with the
slight difference that the precise rate of decay is assumed not a.e. as before but
pointwise since in the present work the potential function is considered to be
smooth.

Assumption 1. The potential function V (x) : R3 → R satisfies the estimate

|V (x)| ≤ C

1 + |x|3.5+δ

with some δ > 0 and x = (x1, x2, x3) ∈ R3 such that

4
1

9

9

8
(4π)−

2

3 ‖V ‖
1

9

L∞(R3)‖V ‖
8

9

L
4

3 (R3)
< 1 and

√
cHLS‖V ‖

L
3

2 (R3)
< 4π.

Here and further down C stands for a finite positive constant and cHLS given
on p.98 of [12] is the constant in the Hardy-Littlewood-Sobolev inequality

∣

∣

∣

∫

R3

∫

R3

f1(x)f1(y)

|x − y|2 dxdy
∣

∣

∣
≤ cHLS‖f1‖2

L
3

2 (R3)
, f1 ∈ L

3

2 (R3).

Here and below the norm of a function f1 ∈ Lp(R3), 1 ≤ p ≤ ∞ is denoted
as ‖f1‖Lp(R3).

Assumption 2. ∆V ∈ L2(R3) and ∇V ∈ L∞(R3).

We will use the notation

(f1(x), f2(x))L2(R3) :=

∫

R3

f1(x)f̄2(x)dx,

with a slight abuse of notations when these functions are not square integrable,
like for instance some of those used in the Assumption 3 below. Let us introduce
the auxiliary quantity

ρ(x) := (1 + |x|2) 1

2 , x = (x1, x2, x3) ∈ R
3 (7)
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and the space Cµ
a (R3), where a is a real number and 0 < µ < 1 consisting of

all functions u for which

uρa ∈ Cµ(R3).

Here Cµ(R3) stands for the Hölder space such that the norm on Cµ
a (R3) is

defined as

‖u‖C
µ

a (R3) := supx∈R3 |ρa(x)u(x)| + supx,y∈R3

|ρa(x)u(x) − ρa(y)u(y)|
|x − y|µ .

Then the space of all functions for which

∂αu ∈ Cµ

a+|α|(R
3), |α| ≤ l,

where l is a nonnegative integer is being denoted as Cµ+l
a (R3). Let P (s) be the

set of polynomials of three variables of the order less or equal to s for s ≥ 0
and P (s) is empty when s < 0. We make the following assumption on the right
side of the linearized Cahn-Hilliard problem.

Assumption 3. Let f(x) ∈ Cµ
6+ε(R

3) for some 0 < ε < 1 and the orthogonality
relation

(f(x), p(x))L2(R3) = 0 (8)

holds for any polynomial p(x) ∈ P (3) satisfying the equation ∆p(x) = 0 .

Remark. A good example of such polynomials of the third order is

a

2
x3

1 +
b

2
x1x

2
2 +

c

2
x1x

2
3,

where a, b and c are constants, such that 3a + b + c = 0. The set of admissi-
ble p(x) includes also constants, linear functions of three variables and many
more examples.

By means of Lemma 2.3 of [17], under our Assumption 1 above on the
potential function, the operator −∆ − V (x) − a is self-adjoint and unitarily
equivalent to −∆ − a on L2(R3) via the wave operators (see [10, 14])

Ω± := s − limt→∓∞eit(−∆−V )eit∆

with the limit understood in the strong L2 sense (see, e.g., [13] p.34, [4] p.90).
Therefore, −∆−V (x)−a on L2(R3) has only the essential spectrum σess(−∆−
V (x)−a) = [−a, ∞). Via the spectral theorem, its functions of the continuous
spectrum satisfying

[−∆ − V (x)]ϕk(x) = k2ϕk(x), k ∈ R
3, (9)
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in the integral formulation the Lippmann-Schwinger equation for the perturbed
plane waves (see, e.g., [13] p.98)

ϕk(x) =
eikx

(2π)
3

2

+
1

4π

∫

R3

ei|k||x−y|

|x − y| (V ϕk)(y)dy (10)

and the orthogonality relations

(ϕk(x), ϕq(x))L2(R3) = δ(k − q), k, q ∈ R
3 (11)

form the complete system in L2(R3). We introduce the following auxiliary
functional space (see also [19, 20])

W̃ 2,∞(R3) := {w(x) : R
3 → C | w,∇w, ∆w ∈ L∞(R3)}. (12)

As distinct from the standard Sobolev space we require here not the bounded-
ness of all second partial derivatives of the function but of its Laplacian. Our
main result is as follows.

Theorem 4. Let Assumptions 1, 2 and 3 hold, a ≥ 0 and v0(x) is given by (5).
Then problem (3) admits a unique solution ua ∈ H4(R3) if and only if

(v0(x), w(x))L2(R3) = 0 (13)

for any w(x) ∈ W̃ 2,∞(R3) satisfying equation (6).

Remark. Note that ϕk(x) ∈ W̃ 2,∞(R3), k ∈ R
3, which was proven in Lemma

A3 of [19]. By means of (9) these perturbed plane waves satisfy the homo-
geneous problem (6) when the wave vector k belongs to the sphere in three
dimensions centered at the origin of radius

√
a.

2. Proof of the Main Result

Armed with the technical lemma of the Appendix we proceed to prove the
main result.

Proof of Theorem 4. The linearized Cahn-Hillard equation (3) is equivalent to
system (4) in which the first equation admits a solution v0(x) given by (5).
The function v0(x) ∈ L2(R3) ∩ L∞(R3) and |x|v0(x) ∈ L1(R3) by means of
Lemma A1 and Assumption 3. Then according to Theorem 3 of [20] the
second equation in system (4) with v0(x) in its right side admits a unique
solution in H2(R3) if and only if the orthogonality relation (13) holds. This
solution of problem (3) ua(x) ∈ H2(R3) ⊂ L∞(R3) via the Sobolev embedding
theorem, a ≥ 0 satisfies the equation

−∆ua − V (x)ua − aua = v0(x).
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We use the formula

∆(V ua) = V ∆ua + 2∇V.∇ua + ua∆V (14)

with the “dot” denoting the standard scalar product of two vectors in three
dimensions. The first term in the right side of (14) is square integrable since
V (x) is bounded and ∆ua(x) ∈ L2(R3). Similarly ua∆V ∈ L2(R3) since ua(x)
is bounded and ∆V is square integrable by means of Assumption 2. For the
second term in the right side of (14) we have ∇ua(x) ∈ L2(R3) and ∇V is
bounded via Assumption 2, which yields ∇V.∇ua ∈ L2(R3) and therefore,
∆(V ua) ∈ L2(R3). The right side of problem (3) belongs to L2(R3) due to
Assumption 3. Indeed, since supx∈R3 |ρ6+εf | ≤ C, we arrive at the estimate

|f(x)| ≤ C

(ρ(x))6+ε
, x ∈ R

3 (15)

with ρ(x) defined explicitly in (7). Hence from equation (3) we deduce that
∆2ua ∈ L2(R3). Any partial third derivative of ua is also square integrable due
to the trivial estimate in terms of the L2(R3) norms of ua and ∆2ua, which are
finite. This implies that ua ∈ H4(R3).

To investigate the issue of uniqueness we suppose u1, u2 ∈ H4(R3) are two
solutions of problem (3). Then their difference u(x) = u1(x)− u2(x) ∈ H4(R3)
satisfies equation (3) with vanishing right side. Clearly u, ∆u ∈ L2(R3) and
V u ∈ L2(R3). Therefore, v(x) = −∆u − V (x)u − au ∈ L2(R3) and solves the
equation ∆v = 0. Since the Laplace operator does not have any nontrivial
square integrable zero modes, v(x) = 0 a.e. in R3. Hence, we arrive at the
homogeneous problem (−∆ − V (x) − a)u = 0, u(x) ∈ L2(R3). The operator
in brackets is unitarily equivalent to −∆− a on L2(R3) as discussed above and
therefore u(x) = 0 a.e. in R3.

3. Appendix

Lemma A1. Let Assumption 3 hold. Then v0(x) ∈ L2(R3) ∩ L∞(R3) and
xv0(x) ∈ L1(R3).

Proof. According to the result of [2], for the solution of the Poisson equa-
tion (5) under the condition f(x) ∈ Cµ

6+ε(R
3) and orthogonality relation (8)

given in Assumption 3 we have v0(x) ∈ Cµ+2
4+ε (R3). Hence supx∈R3 |ρ4+εv0| ≤ C,

such that

|v0(x)| ≤ C

(ρ(x))4+ε
, x ∈ R

3.

The statement of the lemma easily follows from definition (7).
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Remark. Note that the boundedness of v0(x) can be easily shown via the argu-
ment of Lemma 2.1 of [17], which relies on Young’s inequality. The square in-
tegrability of v0(x) can be proven by applying the Fourier transform to it, using
the facts that f(x) ∈ L2(R3), |x|f(x) ∈ L1(R3) and its Fourier image vanishes
at the origin since it is orthogonal to a constant by means of Assumption 3.
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