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Abstract. Here we consider the space P
n1 × · · · ×P

ns ×Qm1
× · · · ×

Qmq
. We introduce a notion of Castelnuovo-Mumford regularity in or-

der to prove two splitting criteria for vector bundles with arbitrary rank.
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1. Introduction

A well known result by Horrocks (see [8]) characterizes the vector bundles
without intermediate cohomology on a projective space as direct sum of line
bundles. This criterion fails on more general varieties. In fact there exist non-
split vector bundles on X without intermediate cohomology. These bundles are
called ACM bundles.

On a quadric hypersurface Qn there is a theorem that classifies all the ACM
bundles (see [11]) as direct sums of line bundles and spinor bundles (up to a
twist — for generalities about spinor bundles see [14]).

Ottaviani has generalized Horrocks criterion to quadrics and Grassman-
niann giving cohomological splitting conditions for vector bundles (see [13]
and [15]).

The starting point of this note is [5] where Laura Costa and Rosa Maria
Miró-Roig give a new proof of Horrocks and Ottaviani’s criteria by using dif-
ferent techniques. Beilinson’s Theorem was stated in 1978 and since then it
has become a major tool in classifying vector bundles over projective spaces.
Beilinson’s spectral sequence was generalized by Kapranov (see [9] and [10])
to hyperquadrics and Grassmannians and by Costa and Miró-Roig (see [5]) to
any smooth projective variety of dimension n with an n-block collection.

We specialize on a product X of finitely many projective spaces and smooth
quadric hypersurfaces. In [2] and [1] we introduced a notion of Castelnuovo-
Mumford regularity on quadric hypersurfaces and multiprojective spaces. We
will give a suitable definition of regularity on such a product X in order to
prove splitting criteria for vector bundle with arbitrary rank. Let E be a
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vector bundle on X. We will give two criteria which says when E is (up to a
twist) a direct sum of O or the tensor product of pull-backs of spinor bundles
on the quadric factors of X (see Theorems 2.14 and 2.15).

We thank the referee for her/his very helpful remarks.

2. Regularity on Pn1 × · · · × Pns ×Qm1
× · · · × Qmq

Let us consider a smooth quadric hypersurface Qn in P
n+1. We use the unified

notation Σ∗ meaning that for even n both the spinor bundles Σ1 and Σ2 are
considered, and for n odd, the spinor bundle Σ. In [2] we introduced the follow-
ing definition of regularity on Qn (cfr [2] Definition 2.1 and Proposition 2.4):

Definition 2.1. A coherent sheaf F on Qn (n ≥ 2) is said to be m-Qregular if

Hi(F (m − i)) = 0 for i = 1, . . . , n − 1,

Hn−1(F (m) ⊗ Σ∗(−n + 1)) = 0 and Hn(F (m − n + 1)) = 0.

We will say Qregular instead of 0-Qregular.

In [1] we introduced the following definition of regularity on P
n1 ×· · ·×P

ns

(cfr [1] Definition 4.1):

Definition 2.2. A coherent sheaf F on P
n1×· · ·×P

ns is said to be (p1, . . . , ps)-
regular if, for all i > 0,

Hi(F (p1, . . . , ps) ⊗O(k1, . . . , ks)) = 0

whenever k1 + · · · + ks = −i and −nj ≤ kj ≤ 0 for any j = 1, . . . , s.

Now we want to introduce a notion of regularity on

P
n1 × · · · × P

ns ×Qm1
× · · · × Qmq

.

We recall the definition of n-block collection:

Definition 2.3. An exceptional collection (F0, F1, . . . , Fm) of objects of D (see
[5] Definition 2.1.) is a block if ExtiD(Fj , Fk) = 0 for any i and j 6= k.

An n-block collection of type (α0, α1, . . . , αn) of objects of D is an excep-
tional collection

(E0, E1, . . . , Em) = (E0
1 , . . . , E0

α0
, E1

1 , . . . , E1
α1

, . . . , En
1 , . . . , En

αn
)

such that all the subcollections E i = (Ei
1, . . . , E

i
αi

) are blocks.

Example 2.4. (OPn(−n),OPn(−n + 1), . . . ,OPn) is an n-block collection of
type (1, 1, . . . , 1) on P

n (see [5] Example 2.3.(1)).



VECTOR BUNDLES ON PRODUCTS 15

Example 2.5. Let us consider a smooth quadric hypersurface Qn in P
n+1.

(E0,O(−n + 1), . . . ,O(−1),O),

where E0 = (Σ∗(−n)), is an n-block collection of type (1, 1, . . . , 1) if n is odd,
and of type (2, 1, . . . , 1) if n is even (see [5] Example 3.4.(2)).

Moreover we can have several n-block collections:

σj = (O(j), . . . ,O(n − 1), En−j ,O(n + 1), . . . ,O(n − j − 1))

where En−j = (Σ∗(n − 1)) and 1 ≤ j ≤ n (see [6] Proposition 4.4).

We need the following notation:

Notation. Let X,Y be two smooth projective varieties of dimension n and
m. Let (G0, . . . ,Gn), Gi = (Gi

0, . . . , G
i
αi

) be a n-block collection for X and

(E0, . . . , Em), Ej = (Ej
0, . . . , E

j
βj

) a m-block collection for Y (see [5]).

We denote by Gi ⊠ Ej the set of all the bundles Gi
k ⊠ Ej

m on X × Y such
that Gi

k ∈ Gi and Ej
m ∈ Ej .

For any 0 ≤ k ≤ n + m, we define Fk = Gi ⊠ Ej where i + j = k.
Let us consider first X = P

n ×Qm.

Definition 2.6. On P
n we consider the n-block collection:

(E0, . . . En) = (O(−n),O(−n + 1), . . . ,O)

and on Qm we consider the m-block collection:

(G0, . . .Gm) = (O(−m + 1),G1, . . . ,O)

where G1 = (Σ∗(−m + 1)).
A coherent sheaf F on X is said to be (p, p′)-regular if, for all i > 0,

Hi(F (p, p′) ⊗ En−j ⊠ Gm−k) = 0

whenever j + k = i, −n ≤ −j ≤ 0 and −m ≤ −k ≤ 0.

Remark 2.7. If m = 2 Definition 2.6 coincides with Definition 2.2 on P
n ×

P
1 × P

1. In fact the 2-block collection on Q2 is

(O(−1), {Σ1(−1),Σ2(−1)},O) = (O(−1,−1), {O(−1, 0),O(0,−1)},O).

In particular when n = 0, F is regular if

H2(F (−1,−1)) = H1(F (0,−1)) = H1(F (−1, 0)) = 0.
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This definition is not equivalent to the definition of Qregularity on Q2 but it is
a good definition of regularity. In fact, let F be a regular coherent sheaf. Since
H1(F (−1, 0)) = 0 from the exact sequence

0 → O(−1, 0) → O2 → O(1, 0) → 0,

tensored by F we see that H0(F (1, 0)) is spanned by

H0(F ) ⊗ H0(O(1, 0)).

Moreover if we tensor the above sequence by F (−1,−1), we have
H2(F (−2,−1)) = 0. From the sequences

0 → F (−2, 0) → F 2(−1, 0) → F → 0

and
0 → F (−1,−1) → F 2(0,−1) → F (1,−1) → 0,

we see that H1(F ) = H1(F (1,−1)) = 0 and then F (1, 0) is regular.

Remark 2.8. If m = 0 we can identify X with P
n and the sheaf F (k, k′) with

F (k). Under this identification F is (p, p′)-regular in the sense of Definition
2.6, if and only if F is p-regular in the sense of Castelnuovo-Mumford.

In fact, let i > 0, Hi(F (p, p′)⊗En−j ⊠Gm−k) = Hi(F (p−j)) = 0 whenever
j + k = i, −n ≤ −j ≤ 0 and −m ≤ −k ≤ 0 if and only if Hi(F (p − j)) = 0
whenever −i ≤ −j ≤ 0 if and only if Hi(F (p − i)) = 0.

Lemma 2.9. (1) Let H be a generic hyperplane of P
n. If F is a regular coherent

sheaf on X = P
n ×Qm, then F|L1

is regular on L1 = H ×Qm.
(2) Let H ′ be a generic hyperplane of Qm. If F is a regular coherent sheaf

on X = P
n ×Qm, then F|L2

is regular on L2 = P
n × H ′.

Proof. (1) We follow the proof of [7] Lemma 2.6. We get this exact cohomology
sequence:

Hi(F (−j, 0) ⊗O ⊠ Gm−k) → Hi(F|L1
(−j, 0) ⊗O ⊠ Gm−k) →

→ Hi+1(F (−j − 1, 0) ⊗O ⊠ Gm−k).

If j+k = i, −n ≤ −j ≤ 0 and −m ≤ −k ≤ 0, we have also −n−1 ≤ −j−1 ≤ 0,
so the first and the third groups vanish by hypothesis. Then also the middle
group vanishes and F|L1

is regular.
(2) We have to deal also with the spinor bundles. First assume m even, say

m = 2l. We have Σ1|Qm−1

∼= Σ2|Qm−1

∼= Σ. Let k = m − 1 and j = m − 1 − i

(i ≥ m − i). Let us consider the exact sequences

0 → O(−j) ⊠ Σ1(−m) → O(−j) ⊠ O(−m + 1)2
l

→

→ O(−j) ⊠ Σ2(−m + 1) → 0
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tensored by F .
Since Hi(F ⊗ O(−j) ⊠ Σ2(−m + 1)) = Hi(F ⊗ En−j ⊠ G1) = 0 and

Hi+1(F (−j,−m + 1)) = Hi+1(F ⊗ En−j ⊠ G0) = 0, we also have Hi+1(F ⊗
O(−j) ⊠ Σ1(−m)) = 0.

From the exact sequences

0 → O(−j) ⊠ Σ1(−m + 1) → O(−j) ⊠ Σ1(−m + 2) →

→ O(−j) ⊠ Σ1|Qm−1
(−m + 2) → 0

tensored by F , we get

Hi(F (−j, 0) ⊠ Σ1(−m + 1)) → Hi(F (−j, 0) ⊠ Σ1|Qm−1
(−m + 1)) →

→ Hi+1(F (−j, 0) ⊠ Σ1(−m))

If i ≥ m − 1 and j = m − 1 − i, the first and the third groups vanish by
hypothesis. Then also the middle group vanishes. In the same way we can
show that also Hi(F (−j, 0) ⊠ Σ2|Qm−1

(−m + 1)) = 0.

Assume now m odd, say m = 2l + 1. We have Σ|Qm−1

∼= Σ1 ⊕ Σ2. We can

consider the exact sequences

0 → O(−j) ⊠ Σ(−m) → O(−j) ⊠ O(−m + 1)2
l+1

→

→ O(−j) ⊠ Σ(−m + 1) → 0

tensored by F . Then we argue as above.
All the others vanishing in Definition 2.6 can be proved as in (1) and we

can conclude that F|L2
is regular.

Proposition 2.10. Let F be a regular coherent sheaf on X = P
n ×Qm then

1. F (p, p′) is regular for p, p′ ≥ 0.

2. H0(F (k, k′)) is spanned by

H0(F (k − 1, k′)) ⊗ H0(O(1, 0))

if k − 1, k′ ≥ 0; and it is spanned by

H0(F (k, k′ − 1)) ⊗ H0(O(0, 1))

if k, k′ − 1 ≥ 0 and m > 2.

Proof. (1) We want to prove part (1) by induction. Let F be a regular coherent
sheaf, we want show that also F (1, 0) is regular. We follow the proof of [7]
Proposition 2.7.
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Consider the exact cohomology sequence:

Hi(F (−j, 0) ⊗O ⊠ Gm−k) → Hi(F (−j + 1, 0) ⊗O ⊠ Gm−k) →

→ Hi(F|L1
(−j + 1, 0) ⊗O ⊠ Gm−k)

If j + k = i, −n ≤ −j ≤ 0 and −m ≤ −k ≤ 0, the first group vanishes because
F is regular and the third group vanishes by the inductive hypothesis. Then
also the middle group vanishes. A symmetric argument shows the vanishing
for F (0, 1). We only have to check the vanishing involving the spinor bundles.
We have the sequences

Hi(F (−j, 0) ⊠ Σ∗(−m + 1)) → Hi(F (−j, 1) ⊠ Σ∗(−m + 1)) →

→ Hi(F (−j, 1) ⊠ Σ∗|Qm−1
(−m + 1))

If k = m− 1 and j = m− 1− i (i ≥ m− i), the first group vanishes because F

is regular and the third group vanishes by the inductive hypothesis. Then also
the middle group vanishes.

(2) We will follow the proof of [7] Proposition 2.8.
We consider the following diagram:

H0(F (k − 1, k′)) ⊗ H0(O(1, 0))
µ
−→ H0(F (k, k′))

↓ σ ↓ ν

H0(F|L1
(k − 1, k′)) ⊗ H0(OL1

(1, 0))
τ
−→ H0(F|L1

(k, k′))

Note that σ is surjective if k − 1, k′ ≥ 0 because H1(F (k − 2, k′)) = 0
by regularity.

Moreover also τ is surjective by (2) for F|L1
.

Since both σ and τ are surjective, we can see as in [12] page 100 that µ is
also surjective.

In order to prove that H0(F (k, k′)) is spanned by H0(F (k, k′ − 1)) ⊗
H0(O(0, 1)) if k, k′ − 1 ≥ 0, we can use a symmetric argument since for m > 2
the spinor bundles are not involved in the proof.

Remark 2.11. If F is a regular coherent sheaf on X = P
n ×Qm (m > 2) then

it is globally generated.
In fact by the above proposition we have the following surjections:

H0(F ) ⊗ H0(O(1, 0)) ⊗ H0(O(0, 1)) →

→ H0(F (1, 0)) ⊗ H0(O(0, 1)) → H0(F (1, 1)),

and so the map
H0(F ) ⊗ H0(O(1, 1)) → H0(F (1, 1))
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is a surjection.
Moreover we can consider a sufficiently large twist l such that F (l, l) is

globally generated. The commutativity of the diagram

H0(F ) ⊗ H0(O(l, l)) ⊗O → H0(F (l, l)) ⊗O
↓ ↓

H0(F ) ⊗O(l, l) → F (l, l)

yields the surjectivity of H0(F ) ⊗ O(l, l) → F (l, l), which implies that F is
generated by its sections.

If m = 2, then F is globally generated by Remark 2.7 and [1] Remark 2.6.

Now we generalize Definition 2.6:

Definition 2.12. Let us consider X = P
n1 × · · · × P

ns ×Qm1
× · · · × Qmq

.
On P

nj (where j = 1, . . . , s) we consider the nj-block collections:

(Ej
0, . . . E

j
n) = (O(−nj),O(−nj + 1), . . . ,O)

and on Qml
(where l = 1, . . . , q) we consider the mq-block collections:

(Gl
0, . . .G

l
m) = (O(−ml + 1),Gl

1, . . . ,O)

where Gl
1 = (Σ∗(−ml + 1)).

A coherent sheaf F on X is said to be (p1, . . . , ps+q)-regular if, for all i > 0,

Hi(F (p1, . . . , ps+q) ⊗ E1
n1−k1

⊠ · · · ⊠ Es
ns−ks

⊠ G1
m1−h1

⊠ · · · ⊠ Gq
mq−hq

) = 0

whenever k1 + · · ·+ ks + h1 + · · ·+ hq = i, −nj ≤ −kj ≤ 0 for any j = 1, . . . , s
and −ml ≤ −hl ≤ 0 for any l = 1, . . . , q.

Remark 2.13. As above can be proved (by using exactly the same arguments)
that, if F is regular then is globally generated and F (k1, . . . , ks+q) is regular
when k1, . . . , ks+q ≥ 0.

We use our notion of regularity in order to proving some splitting criterion
on X = P

n1 × · · · × P
ns ×Qm1

× · · · × Qmq
.

Theorem 2.14. Let E be a rank r vector bundle on X = P
n1 × · · · × P

ns ×
Qm1

× · · · × Qmq
(m1, . . . ,mq > 2).

Set d = n1 + · · · + ns + m1 + · · · + mq.
Then the following conditions are equivalent:

1. for any i = 1, . . . , d − 1 and for any integer t,

Hi(E(t, . . . , t) ⊗ E1
n1−k1

⊠ · · · ⊠ Es
ns−ks

⊠ G1
m1−h1

⊠ · · · ⊠ Gq
mq−hq

))

vanishes whenever k1 + · · · + ks + h1 + · · · + hq = i, −nj ≤ −kj ≤ 0 for
any j = 1, . . . , s and −ml ≤ −hl ≤ 0 for any l = 1, . . . , q.
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2. There are r integer t1, . . . , tr such that E ∼=
⊕r

i=1
O(ti, . . . , ti).

Proof. (1) ⇒ (2). Let us assume that t is an integer such that E(t, . . . , t) is
regular but E(t − 1, . . . , t − 1) is not.

By the definition of regularity and (1) we can say that E(t− 1, . . . , t− 1) is
not regular if and only if

Hd(E(t − 1, . . . , t − 1) ⊗O(−n1, . . . ,−ns,−m1 + 1, . . . ,−mq + 1)) 6= 0.

By Serre duality we have that H0(E∨(−t, . . . ,−t)) 6= 0.

Now since E(t, . . . , t) is globally generated by Remark 2.11 and
H0(E∨(−t, . . . ,−t)) 6= 0 we can conclude that O is a direct summand of
E(t, . . . , t).

By iterating these arguments we get (2).

(2) ⇒ (1). By Künneth formula for any i = 1, . . . ,m + n − 1 and for any
integer t,

Hi(O(t, . . . , t) ⊗ E1
n1−k1

⊠ · · · ⊠ Es
ns−ks

⊠ G1
m1−h1

⊠ · · · ⊠ Gq
mq−hq

)) = 0

whenever k1 + · · ·+ ks + h1 + · · ·+ hq = i, −nj ≤ −kj ≤ 0 for any j = 1, . . . , s
and −ml ≤ −hl ≤ 0 for any l = 1, . . . , q.

Then O satisfies all the conditions in (1).

Theorem 2.15. Let E be a rank r vector bundle on X = P
n1 × · · · × P

ns ×
Qm1

× · · · × Qmq
(m1, . . . ,mq > 2).

Set d = n1 + · · · + ns + m1 + · · · + mq.

Then the following conditions are equivalent:

1. for any i = 1, . . . , d − 1 and for any integer t,

Hi(E(t, . . . , t) ⊗ E1
n1−k1

⊠ · · · ⊠ Es
ns−ks

⊠ G1
m1−h1

⊠ · · · ⊠ Gq
mq−hq

))

vanishes whenever k1 + · · · + ks + h1 + · · · + hq ≤ i, −nj ≤ −kj ≤ 0 for
any j = 1, . . . , s and −ml ≤ −hl ≤ 0 for any l = 1, . . . , q except when
k1 = n1, . . . , ks = ns and hl = ml − 1 for any l = 1, . . . , q.

Moreover

Hm1−1(E(t, . . . , t) ⊗O ⊠ · · · ⊠ O ⊠ O(−m1 + 1) ⊠ · · · ⊠ O) = . . .

· · · = Hmq−1(E(t, . . . , t) ⊗O ⊠ · · · ⊠ O ⊠ O ⊠ · · · ⊠ O(−mq + 1)) = 0.

2. E is a direct sum of bundles O and O(0, . . . , 0) ⊠ Σ∗ ⊠ · · · ⊠ Σ∗ with
some twist.
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Proof. (1) ⇒ (2). First we see the proof when X = P
n ×Qm.

In this case the condition (1) is the following:
for any i = 1, . . . ,m + n − 1 and for any integer t,

Hi(E(t, t) ⊗O(j, k)) = 0

whenever j + k = −i, −n ≤ k ≤ 0 and −m ≤ j ≤ 0 (j 6= −m + 1).
Moreover Hk+m−1(E(t, t) ⊗O(k) ⊠ Σ∗(−m + 1)) = 0 for −n ≤ k < 0 and

Hm−1(E(t, t) ⊗O ⊠ O(−m + 1)) = 0.
Let us assume that t is an integer such that E(t, t) is regular but E(t−1, t−1)

is not.
By the definition of regularity and (1) we can say that E(t− 1, t− 1) is not

regular if and only if one of the following conditions is satisfied:

i Hd(E(t − 1, t − 1) ⊗O(−n,−m + 1)) 6= 0.

ii Hn+m−1(E(t − 1, t − 1) ⊗O(−n) ⊠ Σ∗(−m + 1)) 6= 0.

Let us consider one by one the conditions:

(i) Let Hd(E(t−1, t−1)⊗O(−n,−m+1)) 6= 0, we can conclude that O(t, t)
is a direct summand as in the above theorem.

(ii) Let Hn+m−1(E(t, t) ⊗O(−n − 1) ⊠ Σ∗(−m)) 6= 0.

Let us consider the following exact sequences tensored by E(t, t):

0 → O(−n − 1) ⊠ Σ∗(−m) → O(−n) ⊠ Σ∗(−m) → . . .

· · · → O(1) ⊠ Σ∗(−m) → O ⊠ Σ∗(−m) → 0,

by using the vanishing conditions in (1) we can see that there is a surjec-
tion from

Hm−1(E(t, t) ⊗O ⊠ Σ∗(−m))

to
Hn+m−1(E(t, t) ⊗O(−n − 1) ⊠ Σ∗(−m)).

Let us consider now the following exact sequence tensored by E(t, t):

0 → O ⊠ Σ∗(−m) → O ⊠ O2
([ m+1

2
])

(−m + 1) → . . .

· · · → O ⊠ O2
( m+1

2
)

(−2) → O ⊠ Σ∗(−1) → 0.

By using the vanishing conditions in (1) as above (but here we need also the
condition Hm−1(E(t, t) ⊗ O ⊠ O(−m + 1)) = 0) we can see that there is a
surjection from

H0(E(t, t) ⊗O ⊠ Σ∗(−1))



22 EDOARDO BALLICO AND FRANCESCO MALASPINA

to
Hm−1(E(t, t) ⊗O ⊠ Σ∗(−m))

and we can conclude that

H0(E(t, t) ⊗O ⊠ Σ∗(−1)) 6= 0.

This means that there exists a non zero map

g : E(t, t) → O ⊠ Σ∗.

On the other hand

Hn+m−1(E(t, t) ⊗O(−n − 1) ⊠ Σ∗(−m)) ∼=

∼= H1(E∨(−t,−t) ⊗O ⊠ Σ∗(−1)).

Let us consider the following exact sequences tensored by E∨(−t,−t):

0 → O ⊠ Σ∗(−1) → O ⊠ O2
([ m+1

2
])

→ O ⊠ Σ∗ → 0.

Since

H1(E∨(−t,−t)) ∼= Hn+m−1(E(t − n − 1, t − m)) = 0

we can conclude that

H0(E∨(−t,−t) ⊗O ⊠ Σ∗) 6= 0.

This means that there exists a non zero map

f : O ⊠ Σ∗ → E(t, t).

Then, by arguing as in [1] Theorem 1.2, we see that the composition of the
maps f and g is not zero so must be the identity and we have that O ⊠ Σ∗ is
a direct summand of E(t, t).

On X = P
n1 ×· · ·×P

ns ×Qm1
×· · ·×Qmq

(m1, . . . ,mq > 2), Let us assume
that t is an integer such that E(t, . . . , t) is regular but E(t−1, . . . , t−1) is not.

By the definition of regularity and (1) we can say that E(t− 1, . . . , t− 1) is
not regular if and only if one of the following conditions is satisfied:

(i) Hd(E(t − 1, . . . , t − 1) ⊗O(−n1, . . . ,−ns,−m1 + 1, . . . ,−mq + 1)) 6= 0.

(ii) Hn1+···+ns+m1−1+···+mq−1(E(t − 1, . . . , t − 1) ⊗ O(−n1, . . . ,−ns) ⊠

Σ∗(−m1 + 1) ⊠ · · · ⊠ Σ∗(−mq + 1)) 6= 0.

Let us consider one by one the conditions:
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(i) Let Hd(E(t− 1, . . . , t− 1)⊗O(−n1, . . . ,−ns,−m1 + 1, . . . ,−mq + 1)) 6=
0, we can conclude that O(t, . . . , t) is a direct summand as in the
above theorem.

(ii) Let Hn1+···+ns+m1−1+···+mq−1(E(t, . . . , t) ⊗O(−n1 − 1, . . . ,−ns

− 1) ⊠ Σ∗(−m1) ⊠ · · · ⊠ Σ∗(−mq)) 6= 0.

Let us consider the following exact sequences tensored by E(t, . . . , t):

0 → O(−n1 − 1, . . . ,−ns − 1) ⊠ Σ∗(−m1) ⊠ · · · ⊠ Σ∗(−mq) → . . .

· · · → O(0,−n2 − 1, . . . ,−ns − 1) ⊠ Σ∗(−m1) ⊠ · · · ⊠ Σ∗(−mq) → 0,

0 → O(0,−n2 − 1, . . . ,−ns − 1) ⊠ Σ∗(−m1) ⊠ · · · ⊠ Σ∗(−mq) → . . .

· · · → O(0, 0,−n3 − 1, . . . ,−ns − 1) ⊠ Σ∗(−m1) ⊠ · · · ⊠ Σ∗(−mq) → 0,

. . .

0 → O(0, . . . , 0,−ns − 1) ⊠ Σ∗(−m1) ⊠ · · · ⊠ Σ∗(−mq) → . . .

· · · → O(0, . . . , 0) ⊠ Σ∗(−m1) ⊠ · · · ⊠ Σ∗(−mq) → 0.

Since all the bundles in the above sequences are

E1
n1−k1

⊠ · · · ⊠ Es
ns−ks

⊠ G1
m1−h1

⊠ · · · ⊠ Gq
mq−hq

with decreasing indexes, by using the vanishing conditions in (1) we can see
that there is a surjection from

Hm1−1+···+mq−1(E(t, . . . , t) ⊗O(0, . . . , 0) ⊠ Σ∗(−m1) ⊠ · · · ⊠ Σ∗(−mq))

to

Hn1+···+ns+m1−1+···+mq−1(E(t, . . . , t)⊗

⊗O(−n1 − 1, . . . ,−ns − 1) ⊠ Σ∗(−m1) ⊠ · · · ⊠ Σ∗(−mq)).

Let us consider now the following exact sequences on Qm1
× · · · ×Qmq

for any
integer p:

0 → Σ∗(−m1) ⊠ · · · ⊠ Σ∗(p − 1) → Σ∗(−m1) ⊠ · · · ⊠ O(p)2
([

mq+1
2

])

→

→ Σ∗(−m1) ⊠ · · · ⊠ Σ∗(p) → 0.
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We get the long exact sequence

0 → Σ∗(−m1) ⊠ · · · ⊠ Σ∗(−mq) → Σ∗(−m1) ⊠ . . .

· · · ⊠ O(−mq + 1)2
([

mq+1
2

])

→ · · · → ⊠Σ∗(−m1) ⊠ · · · ⊠ Σ∗(−1) → 0.

In the same way we can get

0 → Σ∗(−m1) ⊠ · · · ⊠ Σ∗(−mq−1) ⊠ Σ∗(−1) → Σ∗(−m1) ⊠ . . .

· · · ⊠ O(−mq−1 + 1)2
([

mq−1+1

2
])

⊠ Σ∗(−1) → . . .

· · · → ⊠Σ∗(−m1) ⊠ · · · ⊠ Σ∗(−1) ⊠ Σ∗(−1) → 0,

. . .

0 → Σ∗(−m1) ⊠ Σ∗(−1) ⊠ · · · ⊠ Σ∗(−1) →

→ O(−m1 + 1)2
([

m1+1
2

])

⊠ Σ∗(−1) ⊠ · · · ⊠ Σ∗(−1) → . . .

· · · → Σ∗(−1) ⊠ · · · ⊠ Σ∗(−1) → 0.

Then on P
n1 × · · · ×P

ns ×Qm1
× · · · ×Qmq

we can obtain the following exact
sequence tensored by E(t, . . . , t):

0 → O(0, . . . , 0) ⊠ Σ∗(−m1) ⊠ · · · ⊠ Σ∗(−mq) → . . .

· · · → O(0, . . . , 0) ⊠ Σ∗(−1) ⊠ · · · ⊠ Σ∗(−1) → 0.

By using the vanishing conditions in (1) as above we can see that there is a
surjection from

H0(E(t, . . . , t) ⊗O(0, . . . , 0) ⊠ Σ∗(−1) ⊠ · · · ⊠ Σ∗(−1))

to

Hm1−1+···+mq−1(E(t, . . . , t) ⊗O(0, . . . , 0) ⊠ Σ∗(−m1) ⊠ · · · ⊠ Σ∗(−mq))

and we can conclude that

H0(E(t, . . . , t) ⊗O(0, . . . , 0) ⊠ Σ∗(−1) ⊠ · · · ⊠ Σ∗(−1)) 6= 0.

This means that there exists a non zero map

g : E(t, . . . , t) → O(0, . . . , 0) ⊠ Σ∗ ⊠ · · · ⊠ Σ∗.
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On the other hand

Hn1+···+ns+m1−1+···+mq−1(E(t, . . . , t) ⊗O(−n1 − 1, . . . ,−ns − 1)⊠

⊠ Σ∗(−m1) ⊠ · · · ⊠ Σ∗(−mq)) ∼=
∼= Hq(E∨(−t, . . . ,−t) ⊗O(0, . . . , 0) ⊠ Σ∗(−1) ⊠ · · · ⊠ Σ∗(−1)).

Let us consider the following exact sequences tensored by E∨(−t, . . . ,−t):

0 → O(0, . . . , 0) ⊠ Σ∗(−1) ⊠ · · · ⊠ Σ∗(−1) → . . .

· · · → O(0, . . . , 0) ⊠ Σ∗ ⊠ · · · ⊠ Σ∗ → 0.

By using the Serre duality and the vanishing conditions in (1) we can con-
clude that

H0(E∨(−t, . . . ,−t) ⊗O(0, . . . , 0) ⊠ Σ∗ ⊠ · · · ⊠ Σ∗) 6= 0.

This means that there exists a non zero map

f : O(0, . . . , 0) ⊠ Σ∗ ⊠ · · · ⊠ Σ∗ → E(t, . . . , t).

Then, by arguing as in [1] Theorem 1.2, we see that the composition of the maps
f and g is not zero so must be the identity and we have that O(0, . . . , 0)⊠Σ∗ ⊠

· · · ⊠ Σ∗ is a direct summand of E(t, . . . , t).
By iterating these arguments we get (2).
(2) ⇒ (1). We argue as in Theorem 2.14. Since Hi(Qn,Σ∗(e)) 6= 0 if and

only if i = 0 and e ≥ 0 or i = n and e ≤ −n − 1, we have that O(0, . . . , 0) ⊠

Σ∗ ⊠ · · · ⊠ Σ∗ and O satisfy all the conditions in (1).
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[3] A.A. Bĕılinson, Coherent sheaves on P

n and problems in linear algebra, Funk-
tsional. Anal. i Prilozhen. 12 (1978), 68–69.
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Università di Trento

Via Sommarive 14, 38123 Povo, Trento, Italy

E-mail: ballico@science.unitn.it

Francesco Malaspina

Dipartimento di Matematica

Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy

E-mail: francesco.malaspina@polito.it

Received May 18, 2009

Revised October 7, 2009


