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ABSTRACT. We give an explicit lower bound for almost psh
functions on some Fano manifolds. These manifolds general-
ize those introduced by Calabi in [5], and also proivde a gen-
eralization of the concept of the blowing-up of P,,,C at one
point. To this end, we use a method introduced in [4], which
consists of studying the behavior of psh functions along some
well-chosen holomorphic curves.
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1. Introduction and Statement of Results

1.1. The Manifold M Bundled in P,,C.

Let P,C be the complex projective space of complex dimension k,
and let [29, z1,..., 2] denote the homogeneous coordinates in P;C.
We define M as the sub-manifold of P,,,_1C x P,,,,C, where m > 1
and n > 0, consisting of the points

(1Z2], lzms 2m+12%, . oy 2manZ?]) € Pprim1C X Py C,

where a is a positive integer, Z = [20,21,.-.,2m-1] € Pu_1C,
[Zms Zma1s - - - s Zman] € PpC and Z¢ = [2§,2¢,...,2%_;]. Note that
dim(M) = m +n — 1, and that, in the above description, the point
[Zm, Zm+15 - - - » Zm+n) Of P,C depends on the choice of the coordinates

(20,21, - - -, Zzm—1) of the basis point [Z]. An equivalent description is
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the following:

M = {([Zo,zl,...,Zm_l],[Zm;2m+1,...,Z2m;...;

Znmt1s > ZngDyml)) € Pm—1C X PppnC s.t. Vp € {1,...n},
(Zpmt1, -+ Z(p1ym) and (26, 21, .., 2y, are (C—parallel}

We introduce two other coordinate systems, which will be more con-
venient for our later computations. We use the first, which we denote
by S, when all components are not zero; in this case, the choice of
homogeneous coordinates in the basis is immaterial, and S is given by

([21y -y 2ml)s [L; 28, ooy 20 Zmp1 (21, oy 20)s oo
Zman—1(2], ..., 23)]) € Pp1C x Py, C.

The second coordinate system, which we denote S’, is given, in the
local chart {zp # 0, 2, # 0}, when we use the description

([205 215 - -+ Zm—1], [2m; Zm41(20, 20, -« s 21 )5+ - -5
Zern(Z(()laZ(lla .. 'aZ?n—l)]) € M?
by
(1, 215« ooy 2m—1], L3 2ma1 (1, 28 ooy 20 1)5 o5

Zman (1,27, .., 20 _1)]) € M.

Thus, in order to make our proofs more readable, sometimes we shall
work in S and sometimes in S’.

1.2. The Metric g on M

First, we endow P;C by the Fubini Study metric g, whose compo-
nents, in the chart {[zo, z1, ..., zx] € PxC s.t. 29 # 0}, are given by

g)\ﬁ:(?)\ﬂln(l—i—xl—i—...—i—xk)

where z; =| z |? and O = %. Then, we consider the projec-
tions m; and mwe of M respectively on P,,_1C and P,,,C, and define
the metric g on M by

g= O”TTgm—l + ﬁﬂggmn-
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Its components in the local chart S’ are given by

Op = adypIn(l4+z1+ ... 4 2p_1)
+80pIn{l + (T + 27+ ... +25,_1)
+.oooF (i + .+ )}

where z; =| z; |2 and \,p=1,...,m —1,m+1,...,m+n. In the
coordinate system S, its components are given by

Op = adpln(zi + ...+ ) + 0 In{l + (2 + ... +27)
+rmpr (i + .2t T (2 22 )
We shall later prove

PRrOPOSITION 1.1. For « = m —na and 3 = n+ 1, the metric g
belongs to the first Chern class C1(M); therefore, M is Fano.

The metric g will be considered with & = m —na and S =n+ 1.

1.3. The Automorphisms Group G on M

Let us consider the automorphisms group G,,—1 on P,,_1C spanned
by the automorphisms o; ; and 7,9 defined V 4,5 € {0,1,...,m — 1},
1€{0,...,m—1} and 0 € [0, 27] by

O‘Z"j([ZO,...,Zi,...,Zj,...,zk,...,szl])
= [ZOa y %y y Ziy 7zk>"'aszl]
and
Tl’g([Z(), e g Ry ,Zm_l]) = [20, N ,Zleie, .. .,Zm_ﬂ.

On P,,,C, we define another automorphisms group G,,,, spanned
by:

1) ¢k, k1€ {1,...,n} defined by
O i([Zms 2me12%, o 2k 2, o 2t 2% Zmgn YY)
= ([z2my 2m+1Z% - o 2ma1 2% o 2k 2% oo Zman ZY])

where Z¢ = (2§,...,2%_,) € C™
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2) for 6 € [0,27], and [ € {0, ...,n},

/
T0(my 2mt1 2%, - 2m1 2, - Zmn Z7))

= ([zm, 2m+1 2%, . .., Zma1€ 2%, ZmanZ?)).

3) The above defined automorphisms o; ; and 7; g of Gy,—1, acting
only on Z = (zp,...,2m—1) € C™ in the description

([Zmu Zm+1Za7 s 7Zm+kZa7 s 7Zm+lZa7 s 7Zm+nZa])'

The groups G,,—1 and G, generate a natural automorphisms
group G on M, which we use later on.

1.4. The Extremal Function ) on M
Let us consider the functions
0 0 2(m—an)
)

thh = ln{ (1= m—l -
(R e O L

1 1
[ 1) P2 Pt 20 P+

—(n+1)
(1 20ty P 12500 2] }

1 12(n
x|z [H

and

b 1n{ (EBNE )
(’ z(()o) |2 +...+ ’ Z(O) ’2)m—an

m—1

2(m—an)
m

X120 2D 12 e |- 1200 )

2(n+1)/nm
m n—1)m+1 ]

B R (E R N A D s

1 —(n+1)
(125 ymgs P 200 2)] }

i1 and 9y are functions defined on

(e UE =0) x (em U <o)
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where (zi(o) Jo<i<m—1 and (Z](-l))gsjgnm are respectively the coordi-
nates on C"™ and C""*!. They are homogeneous of degree zero in
the variables de C™ and C™*! separately. Thus, they define two
functions on P,,,_1C x P,,,,C, and, by restriction on M, two functions
on M, given by (keeping the same notations) :

(m—an)

. (xo...xn%4) m
d}l - ln{(ibo—l- —|—l‘m,1)m7(ln % (1)

mn—&—l
m
[T+ T (234 +28 )+ ATy (i .—|—mgn_1)](N+1)}

and

(m—an)

(xg...Tm—1)” ™
Y2=ln { (o + ...+ @pp—g )7 (2)
[(Zma128 - 128 1)« (T @l o Ty, )]/ }
[T+ T (@84 428 )+ A T (2. 42, )] D [T

where x; =| 2; |?, and the points of M are described by their homo-
geneous coordinates, that is:

(20, -+ Bt ]y o 2128 21281
ZmAnZ0s - - - s ZmAnZm—1))-
¥ = inf(i1,12) is then an extremal function, in the sense of

the following

THEOREM 1.2. The inequality ¢ > 1 holds, for all g-admissible and
G-invariant function ¢ € C°°(M) satisfying sup =0 on M.

Let us recall that ¢ is said to be g-admissible, when the matrix
2
of terms gxz + % is definite positive.
As an immediate consequence of theorem 1.2, we have:

COROLLARY 1.3. A sequence (pr)ren of g-admissible, G-invariant
functions satisfying sup pr = 0 cannot go to —oo outside the bound-
aries of the usual charts (described above).

Another consequence is:
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THEOREM 1.4. For all a < the inequality

n+1’

/ exp(—ayp)dv < Cst
M

holds for all g-admissible and G-invariant functions ¢ € C*(M),
satisfying supp = 0 on M. (dv is the volume element on M with
respect to the metric g).

This implies that the Tian constant of M, a(M), is greater or

equal to 5. Consequently, we have the following
COROLLARY 1.5. For allt < didTrgz/lﬂgl X (n+1) there exists a metric

gt in c1(M) such that Ricci(gy) > tg;.

The proof of corollary 1.5 uses the flow in ¢ of the Monge-Ampere

equations
logdet(¢'g™") = ~tp + f.

where ¢'\; = gxp + O is a Kéhler change of metric, and f is a
known geometric function, given by Ricci(g) — g = i00f. We proved
in [3] that, when a(M) > C, then for all 0 < < CLZ2UDH e
above Monge-Ampere equations do have solutions. We can prove
this by a method different than the one used in [3]|, using Tian’s

method for the C? estimate, given in [8]. In our case, (M) > n%rl,

so we have solutions for 0 < ¢t < anJ;ll). Consequently, for these
values of ¢,
Ricci(¢)) = —i0dlogdet(g)

—idd1og det(g'g 1 g)

—i0d1og det(g'g™1) — 100 log det(g)
—i091og(g'g™") + Ricci(g)
—i00(—tp + f) + g + i00f
—i00(—tp) + (g’ —i00p)

(t —1)i0dp + ¢’

= tg+(1-t)g

and the result holds.



ALMOST PSH FUNCTIONS 145

Finally, let us note that this type of manifolds are generally used
to prevent the existence of Kéhler-Einstein metrics. Indeed, when
a =1and n =1, M is nothing but the blowing-up of P,,C at one
point; and it is a well-known fact that it does not carry Kéahler-
Einstein metric because the Lie algebra of its holomorphic vector
fields is not reductive (Lichnerowicz and Matsushima obstructions).
If a # 1, M generalizes the manifolds introduced by Calabi in [5]
and used by Futaki in [6] to give examples of manifolds which can-
not carry Kéahler-Einstein metrics, and yet, the Lie algebra of their
holomorphic vector fields is reductive.

2. Proof of the Results

Proof of Proposition 1.1. Our goal is to find a condition on «
and 3 such that the quantity

ngm:(1+|2’1 |2+...—|—‘me1 |2)a><

B
{140 2mar Pt 2man B)X (o] 21 P2t | 2 P}

written in the local chart {zy # 0, 2z, # 0} (which justifies the reason
for the notation Fj,,), is a metric on the line bundle A=l
Then, its Ricci will be exactly the metric ¢ and will, by definition,
belong to ¢1 (M), so that M will be Fano. Let us write the conditions
which make (3) intrinsic in A™"T* M. The first change of charts we
consider is

(Pl(zlv sy Zm—13fm41y - v Zm-l—n)
1 2 Zm—1 a o
= IR yRmA41”R1s -+ s Am+nfl |
21 21 21
its Jacobian J; verifies
9 1
‘ J1 ‘ - 2(m—an) °
| 21 |

In the new chart, the expression of Fp ,, becomes

1
Fl,m = WFO,WH
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and the first condition, i.e. : @ = m — an, holds.
Now, let us consider the change of charts:

©2(Z1y vy Zm—15 Zmt1y - - - » Zmtn)
. ( . 1 Zm+2 zm—i—n)
= 1”15 ”m—1; ) st :
Zm+1 2m+1 Zm+1
Its Jacobian Jy verifies
Y .
‘ Zm+1 |2(n+1)
and Fp,, becomes
F = 1 F
0,m+1 = m 0,m -

This yields the second condition, i.e. 8 = n 4+ 1. We easily verify
that these conditions also hold for the other changes of charts; thus,
M is Fano.

Proof of theorem 1.2. The proof requires four lemmas. In each
step, we use the G-invariance of functions

@([z(]v s ,mel], [Zma Zm+1(28, cees Zgn—l); cees
Zm+ﬂ(zg7 R Zf%—l)]) ’

which allows us to consider them in the form

o([xo, -y Tm—1], [Tm, Tm+1 (TG, - -, T _1)5 -+ -5
xm-l—n(x& T ’xglfl)])7

where z; =| z; |> 0. Then, in S, we can write the function ¢ as:

1o ]y [L (0 )i T (0 )i

Tmn-1(21; - w)]).
LEMMA 2.1. Let ¢ € C>®(M), be a g-admissible G-invariant func-
tion. Then, for all z; =| z; |> 0,
(o —=V)([z1, ..y zm], [ (2, .o 28 g (2, o 2d))s e s
Tmn—1(21, ..., Th)])
> (@ — ) (M), [15,¢ 1 (075 g a ), (3)

where W™ = (h,...,h) € C™ and { = (x1...2p)"™.
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Proof. We proceed by induction. Assume that, for 1 < p < m and
for all (z1,...,7m) € R™! (z; > 0),

(o —V)([z1, .y xm], [ (2, o 28 emgr (2, o Tl)s e s
Tnn—1(21, - T,)])
> (=) ([(x1. .. 2p) P, (21 ap) P 2l 2],
[1; ((x1 ...xp)a/p,...,(xl...xp)a/p,xg+1,...,x%);
R (C T L ...:z:p)a/p,xg+1,...,x%);...;
Tt (@1 2p) P, (1 ap) P2l 2 )]), (4)

which is obviously verified for p = 1. Now, assume that inequality (4)
did not hold for p + 1. Then, there would be a point (uq,...,un) €
R™, with u; > 0 for all 7, such that

(@ — V) ([uty -« -y um], [1; (U, .oy um)s U1 (Ul ooyt )5 e
Umyn—1 (U, - .o U,)])
< (=) ([(u1 -« wps)PT o (ugops)P T ],
15 (w1 upe )P ()P Ul )
U1 (w1 - .. up+1)a/p+,1. ooy (ug . .UP+1)a/p+ U gy Upn )5
U1 (U1 - )P ()P g u)]).

Using the G-invariance of ¢, we can assume that u; < ... < up,.
On the other hand, taking into account the G-invariance of ¢ and
the induction assumption (4) at the points

(7 P T T O ) 1 B 3 (7 S s VA P T
U 1 (U5 -y Uy U gy ey Uy )5 e
U —1(UT 5 + - oy U, Uy gy oy Uy )])
and
([ug, ..« Upt1, UL, Upt2s - o U], [15 (us, . .. ,ug+1,u‘1l,ug+2, ceus);
U1 (UG - -y Uy g, UT 5 U gy Upy )5 oo

Uppn—1 (UG, + - Up 1, UT, Up oy oo Uy )])
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of M, we can write

(= )([ut, . Upy Upt1s - o U], [15 (5. .. ,ug,ugﬂ, coour); (6)
Upp 1 (U ooy Uy WP gy ey U )
U1 (UL, - -5 Uy Uy gy oo s Uy )])
> (o =) ([(ug - up) P (- up) P s ),
1 ((u )P, ()P Ul u);
Umn41 (g - ..up)a/p, vy (ur . ..up)“/p,u;H, e U )5
U1 (- up)®P, o ()Pl ),
and
(=) ([uz, .« Upg1, Uty Upg2, - - -, U, (7)
([Lug, -y up g, Ul Uy gy e ey Uy )
U1 (UG5 -y Uy 1, UT 5 U gy ey Uy ) e
Umnpn—1(UG, -+ 5 Up g, UT, U oy e e ey Uy )])
> (=) ([(ug -+ upe) VP, oy (g ey )P wr, g, -y i),
15 (2 )P, (2 )P Ul g, )
Ut (U2 - )P, ()P U ul gy U)o
Umn1((Ug . . ups1)YP, . (ug .. .up+1)a/p,u‘f,ug+2, o ur ).
Now, let us consider the curve C, of equation
tPrp1 =ur. . Upyr,
in the real plane
0t st mpra, upya, - um], [5G (%t 21, Upay - Uppy)s
U1 (B T, Up gy Uy ) e
Umnn—1 ("5 " X, U gy U )]
where ¢ and x,11 are variables. The points
Pr=([(ug - up) P (g up) P s ),
L5 ()P ()Pl U
U1 ((ug - ..up)“/p, ooy (g .up)“/p,u;,”H, ce U )y
U1 (w1 o up) Py ()Pl u)])
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and
P, = 1/p 1/p
= ([(u2 .. upp1) P, (U2 upg1) P U, upya, - oo U,
[1; ((uQ s up-l-l)a/p? cee (u2 s up+1)a/p7 u(lla Ug+27 cee 7u$n);
U1 ((uz . . .up+1)“/p, ooy (ug .. .up+1)a/p,u‘1l,u;+2, U 750 H
Umtn—1((ug . .. Up+1)a/p, vy (ug . up+1)“/p, Uf, U oy -5 Uy )],
belong to this curve. Note that we cannot have u; = ... = w1, for,
otherwise, (5) would be an equality.
Taking into account that we have chosen u; < ... < wup,qq, the

points P, and P, (which are different) are on different sides of the
diagonal ¢ = )4 of the plane described above.
Note that the curve C' intersects this diagonal at the point

Py = ([(u1 .. ups))YPFY (g )P e, um],  (8)
[1; ((uq .. .up+1)a/p+1, cey(ug . up+1)a/p+1,ug+2, RN Ti
U1 ((ug .. .up+1)a/p+1, coy(ug . up+1)a/p+l, Upyoseoo s Up)ie- -
Umn—1((ug ... up+1)“/p+1, ceey (ug . .up+1)a/p+l, Upioys - Um)) s

which appears in inequality (5). On the other hand, using rela-
tions (5), (6) and (7), we obtain that

(o =)(B3) > (9 =) (P1) et (¢ — ) (P3) > (¢ = ¥)(P2),

which proves that the function (¢ — 1) reaches a local maximum
on the curve C. Consequently, the restriction of the G-invariant
function (¢ — 1) to the holomorphic curve (that we denote again by
C) &Pz = uy ... upyq of the complex dimensional 2-plane

3o Gy Ry Up42s - oo s Um ],y [ L3 yre S yUp2y e v o s U )5 e vy
{(s,---, & 2u uml, [15 (8%, ..., €% 2% up Uy
uerl(Eaa--'agaazavug—f—%"'vu?n);
um+n71(£a3"'7£aazaaug+27"'7u;ln—1)])}’

reaches a local maximum at a point P = C((). Let us set

C(C) - ([17cl<<),.”7cmfl(g)]’[1
O, Cm O
C(O(CH Q) - O HOMD,
)

CME) = ——(& and  CF(&) =CH().
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Note that, by the continuity of (¢ — 1), we can always choose
the point

([wty .oy um], [1; (uf, .o ul))s Umepr (Ul oy ud )

in inequality (5), so that
(u1 .. .um)“/m(um+1 .. .um_,_n_l)l/" 7'5 1.

Thus, the equation of C, as well as the definition of ¥; and 1 (given
by (1) and (2)), show that every point of the curve C satisfies

P&, & 2 upra, - um]s (1567 6% 2% U s U )
U1 (%5 6% 2% Uy oy U )5
Umn—1(§% -, &% 2% up gy up)])
F (6, & 2 upra,y - um)s [1, (8% 6% 2% Uy Uy )
Umn+1(§%, -, 6% 2% U0y Uy )5
Umtn—1(§% - .. ,f“,z“,ug+2, o ur ). (9)

Consequently, we can assume that ¥ = 1)1 in a neighborhood of

P, the proof being exactly the same if we assume 1 = 9 in a
neighborhood of P. Therefore,
62 82(@ — ¢1) 2 -
— - C = ———"=—=(C())C CH(O) <0
seE (P~ PO} = TP OO QT <
Since
&

B 8Z>\8§u — 9

the previous inequality expresses the fact that the Hermitian form

of the matrix
9?2 % (p —
o+ L _ (o — 1)
02)0%Z, A 02)\0%Z, A

is negative at P = C'(¢). This contradicts the g-admissibility of ¢ at
P. Tt follows that inequality (4) holds also for p + 1, and lemma 2.1
is proven. O
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In the next lemma, it is more convenient, for our computations, to
use the chart given by {zyp # 0} and {z,, # 0} in the parametrization
(20, 215 -« + s Zm—1], [2m} Zm+1(205 215 -y 21 )5 -« -5
Zman (205 2%, - -y 2m_1)] -
O

LEMMA 2.2. Let ¢ € C®(M), be a g-admissible G-invariant func-
tion. Then, for all x; =| z; |> 0,

(=)L, 21,y Tm—1], (L 21 (L, 28, T 1)5 - 5
Tt (L 21, 25, 1)])
> (=)L 21, zma], [ AL 2,2 )5
ALz, xm )]s (10)

where X = (Tyyt1 - . Tongn) /™.

Proof. As in lemma 2.1, we proceed by induction. Assume that, for
1 <p<mnand for all (Z;s1,...,Tmin) € R (z; > 0),

(=)L, wma [ omr (L, 2h )5

T2,y )])
> (p— W)L, s, [1
(Tm+1 - - .:cm_i_p)l/p(l,ach, e T )5
(Zmst - Toap) VP (L 28,2,
Trtp1 (L @], @, )
T (1,25, 2% )]), (11)

which is obviously verified for p = 1. Assume that inequality (11)
did not hold for p 4+ 1. Then, there would exist a point

(UL, .oy U1y - - oy Umtn) € R™, with 4l > 0 for all 4, such that
(o =)L w1,y um—1],
(L umar(Luf, g )i Uman (L uf, g, o))
<(p—=)([1,u1y. . um—1],[1;
(Um+1--~um+p+1)1/p+1(1vutllv Uy 1)5- -3
(Umy1 - - um+p+1)1/p+1(1v uf, U 1),
Unppr2(L s Uy g)5 e U (1w, g, q)]). (12)
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Using the G-invariance of ¢, we can assume that u,+1 < ... <
Um+n- On the other hand, taking into account the G-invariance of
¢, and the induction assumption (11) at the points

(L, uty oy Umet], [ tmpr (Lud, ooy ud )55
um—l—P(la utfa ey u?%—l); um+p+1(17ucll7 s ?u%—l)s
um+n(17u61l> ceey ugn—l)])
and
([Lula ce ,Umfl], [1; um+2(17u61l7 EEE u?n—l); R
um+p+1(1au(1la s 7ugn—1);um+1(1aullla cee augn—1)§
Um+p+2(1aullla oo 7u?n—1); s ;uern(l,U(f, T ’ug”b—l)])

of M, we obtain

(o — )1, uty ..oy um—1], [ Umpr (L ud, o up )55 (13)
Umnp(Lul, oo 1) Umpr1 (1w, o up, 1) 5
Umn (Lt g, 1))
> (e =)L u1s - umel,

[1; (w1 - - .um+p)1/p(1,u‘f, U )5
(um—i-l s um-‘rp)l/p(l?u(ll’ T 7u2171)7
Ump1 (LUt .o, ); -
Umn (10T, -y U q)])s

and
(o —)([1,uty ..oy um—1], [L; umpo (L, ul, . o up )55 (14)

Umtp+1 (L0t g )i uman (1w, g, )

Umnpr2(L,ud, o up 1) s Umgn (Lol o up, 1))

> (=)L ur,. .o um],
(15 (g2t pr) P (Ll y)s s

(Urmt2 - U 1) P08 udy )y 1 (1,08, ul, ),

um_t,_p_t,_z(l,u(ll, ces ,U?nfl)Q S um—‘rn(la utlla ce u%,l)]).
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As in the previous lemma, we consider the curve C' (we keep the
same notation), given by

P = U1 - Umgpt1
of the real plane
{([Lu, .y um—t], [L;E(1, 0, s 1)5
t(L,uf, .. upm )i (Luf, o U 1) U2 (Ll o up, 1)
Umen (LUt U )D

parameterized by (¢, ). The points

Ql = ([1,U1,...,Um_1],[1;

(Umnt1 - Urntp) VP (LU, ol )
(Uit - ) VP (LU, ul 1)t prt (1Ll o ul )i
Umen (L uf,s s Uy q)])
and
QZ = ([1,U1,...,Um71],[1;
(Ut -+ Umapr1) P ud, o ud y); .
(Urmt2 -+ Urnap1) P ud, o ud 1); g (1,0, ul )
Umpr2(L,ud, o up 1) Uman (L u, g, q)]),
belong to this curve, and we cannot have u,,+1 = ... = Upyp1, for,
otherwise, (12) would be an equality. Since upmi1 < ... < Upgpt1,

the two different points ()1 and @) are from different sides of the di-
agonal ¢t = x of the above described plane, and the curve C' intersects
this diagonal at the point

Qs = ([Liur,...,um-1], (15)
(15 (g1 - o) P 0, w5
(um_H...um+p+1)1/p+1(1,u%,... Upn—1);
a2 (LU, 681t (L, 02, )

of inequality (12). On the other hand, using relations (12), (13)
and (14), we obtain that

(o =¥)(@3) > (¢ —¥)(Q1) et (p —P)(Q3) > (¢ — ) (Q2),
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which proves that the function (¢ — 1) reaches a local maximum
on the curve C. Consequently, the restriction of the G-invariant
function (¢ — ) to the holomorphic curve (again denoted by C)
&P% = U1 - . . Umyps1 Of the complex dimensional 2-plane

{([Lug, .oy um—1], [L;E(L uf, oy ud ) &L ud, .o ul q);
Z(lauclla i -7u?n71);um+p+2(17u(117 s 7ulrln71); SRR
um-l—n(l:u(ll: v 7u%7,—l>])}7

reaches a local maximum at a point @ = C({). By the continuity of
(¢ — 1), we can choose the point

(L, ur, .oy umet], [1; W (L, 0, o up, 1)
um—‘rn(l? u%? R u'lrln—l)])
in inequality (12), so that
(uq .. .um,l)a/m(umﬂ .. .um+n)1/” # 1.

Thus, the equation of C, as well as the definition of ¥; and 2 (given
by (1) and (2)), yield that

V(L ua, ] [LE(L g, g )i €L u g, )

2(L,uf, ..o 1) Umgpr2 (L, ul, o up q)5 .
U (1,0 - U 1))
7 Ya([Lut, .o um ], [5E(L uf, g, )5 €L uf, o ug, )
2(L,uf, .o 1) Umgpr2 (1wl o up, q)5 .
Umn (Lt g, 1)) (16)

on C. Then, without loss of generality, we can assume that v = i1
in a neighborhood of Q). We conclude then as in lemma 2.1, reaching
a contradiction with the g-admissibility of ¢ at Q. O
As a consequence of lemmas 2.2 and 2.1, we have
LEMMA 2.3. Let ¢ € C*°(M), be a g-admissible G-invariant func-
tion. Then, for all x; =| z; |> 0,
(=)L, 21,y zm—1], [LXme1 (L, 28, -y )5 (17)
Tman(l, 28,z 1))

)
> (o — ) (L], 115 ™)),
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where = (Tpy1 - - .mm+n)1/"($1 .. .mm_l)“/m

Proof. Inequality (10) of lemma 2.2, followed by inequality (3) of
lemma 2.1 leads to

(e —)([1, 21,y zm—1], (L @me1 (L, 28, -y )5 -
Tmtn (1,2, 2 1)])
> (p=¥)([1, 21, 2m—1],
ALz, 2l ) A L2, )
= (p=)(A "2, wmo1)),
(AL 2, 22 ) A (L 28,
(w-—dﬁth-n,ymL[k%y%-~,y%%--¢(y%-~,yﬁﬂ)
plml

> (o — ) (U], [ s sl
where
A= (Tma1--- xm+n)1/”,
y o= A yo = AV Ym = A%y,
and
o= (Y ym)™

= )\((El e mm_l)a/m

(Tt - - Tog) (@1 1) ™

Finally, we claim:

LEMMA 2.4. Let ¢ € C®(M) be a g-admissible, G-invariant func-
tion, verifying sup =0 on M. Then, Vu > 0,

(¢ =)L), (15 4] = 0. (18)

Proof. Consider the point Ry € P,,,C where ¢ reaches its maximum
(equal to zero). Using the G-invariance of ¢, we can write Ry as

Ro = ([vo, - -+ s Vm—1], [Vm; Um+1 (VG - - -, Up_1); - - -5

Um-i-n(vg’ cee )U?n,fl)])v
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where the positive reals v; verify vg > vy > ... > vy—1 and vpy1 >
Um42 = ... > Umin. We have two separate cases, according to
whether v, # 0, or v, = 0.

Case A : v, # 0. In this case, we use the coordinates system
M given in {vy # 0,v,, # 0} by fixing v9 = 1 and v, = 1; thus, Ry
is of the form

Ro = ([1,u1 .-y tm—1], [1; Umpr (L, uf o yul )5

u9n+n(17 u? cee 7“?)@*1)])7

where the reals u; are such that 1 > uy > ... > u,,—1 and 3721“ >

o> :U?n_m. Proceeding by contradiction, assume there is a point

Ry = (10, [1:¢5°™),

such that (o > 0 and

(p —¢)(R1) <0. (19)
We separately consider the two following sub-cases: upy,4+1 < (o and
Um+1 2> Go-

® Unt1 < (o
We introduce the auxiliary function g ,,, given by
xm—an

m = 1 0
¢0, . { (:L‘(] —+ ...+ :Umil)mfan

ez, 4 (128 + o T2 ) e

X

(@mtnag + ...+ $n+m$$n—1)]_(n+l)}-

Since ¢ is a non positive function, we obtain that
(¢ = won) ([1, 0], [1;00771]) = ([1, 00"~ 1], [1;00"1]) < 0. (20)
On the other hand, the identities ¢(Rp) = 0 and g, < 0 yield

(¢ = Yo,m)(Ro) > 0. (21)

If Ry # ([1,00™= 1] [1;00™]), then v, (Ro) < 0, and inequality (21)
is strict. If Ry = ([1, 0™~ 1], [1;00""]), we can choose another point
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R in the neighborhood of Ry, such that (¢ — 9om)(R) > 0. In-
deed, if (¢ — ¥om) < 0 in any neighborhood of Ry, then, since
(o —10.m)(Ro) =0, (¢ —1o,m) reaches a local maximum local at Ry,
and this contradicts the admissibility of ¢ at this point (recall that
Oxa(@ — Yo,m)(Ro) = (9xm + Oxp)(Ro)). In conclusion, we deduce
that there exists a point Ry, given by

(Lyar, ... am—1], [L;am+1(1, a8, ..o a0 _1);. .
am—i—n(l’ CL?, s 70%71)])
satisfying
(¢ = Yom)(Rp) > 0. (22)

By the continuity and G-invariance of ¢, we have the additional
conditions 1 > a1 > ... > am—1 > 0and (o > amy1 > ... > Gmyn >
0. On the other hand, the inequality (19), as well as the definitions

of Ry, ¥o,m, 1, and 1 = inf(s)1,12) imply that
(0 = vYom)(R1) = (o —¥1)(R1) < (¢ —9)(R1) <0.  (23)
Consider now the curve

0,1] 3t — c(t) = ([1,t,tMnez)/nan) - ynam—)/(na))

)

In(am+1/¢0) In(amy1af/¢o) In(am+105,_1/S0)
[L; Gt ™o Gt e, Got a1 Feees
1n<am+n/CO) 1n<am+n”'(11/C0> ln(a’m-‘-’na?n—l/c())
Cot Inaj 7C0t Inaj e 7<0t Inay ])

It is easy to verify that this is a curve in M and that, because of
our assumption, all its components are positive . We have that
c(0) = ([1,0"=1] [1;0"™]])), ¢(a1) = R} and, finally, c(1) = Rj.
At these points, using respectively (20), (22) and (23), we deduce
that (¢ —o,m) is respectively negative, positive, and negative. The
invariance by exp(if) allows us to deduce that (¢ — tg,) reaches
a maximum on the holomorphic curve given by the complexified
version of the above described curve. This is in contradiction with
the admissibility of (.
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® Upnt1 > (o

In this case, we need another auxiliary function, given by
xS"L—CLTL "
(x() + ...+ xm_l)m—‘m
(28 11)" T T 4+ (T1 28 4 F T2 q) 4

(gl + o+ T, )],

w(],m—&-l = In

We have
(@ = Yo,m+1)(Ro) > 0. (24)

By the continuity of (¢ —10,m+1), we can assume, as in the preceding
sub-case, that there is a point R}, whose components a; are strictly

positive and close to the u;. Fori € {0,...,m —1},k € {1,...,n},

let us set Br; = % where ag = 1. The conditions we

chose (as allowed by the G-invariance of the functions), that is, 1 >
ap > ... > ap-1 and apmyp1 > ... > Apon, show that VE, i, -0 ; <
—Bio = —w. On the other hand, the condition w11 > (o
(near am41) shows that at least —f o is positive. Setting

R. = c(e)

— ([L,e,eMa)/(ner)  (nam-)/(na)] [y, Cosw,
In(amm 4147 /<¢0) In(ay,+1ap, _1/¢0) In(am4n /)
g M GoE o1 joo3Coe e
In(@m naf/Co) 1n(@m 4 nom—1/¢)
<05 e PR 7C0€ tnay

we have that

lim g 41 (Re) = lim ln{
e—0 e—0
1
(1+e2+c@maz)/(mar) 4 4 c@mam—1)/(nar)ym—an X

Cg(n+1)€2(n+1)ﬁl,o }
[14+(3e2004. .. BePrm—1 4 4 (2e20n0 ... (Ze2finm—1]nt]
_ $2(n+1)(=B10)
= In lim, [+ 20FDBro) ¢ 1 20 D)(Brm1) |t
=1Inl=0,
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(—f1,0) being the larger of the positive powers in the fraction above.
Since p(R:) < 0, taking into account (24), we deduce that there
exists g such that

(¢ = Yom+1)(Reg) < —Yomt1(Re) < (9 — Yomt1)(Ro).  (25)

On the other hand, the inequality (19), and the definitions of Ry,
Y0,m+1, Y2 and ¥ = inf(t)1, ¥2) imply that

(¢ = Yom+1)(R1) = (@ —2)(R1) < (¢ —v)(R1) <0. (26)

By virtue of (25), (24) and (26), we deduce that (¢ —1,m+1) reaches
a local maximum on the curve

lc0,1] 3t — (t) = ([1, ¢, tIma2)/(na) - y(nam—1)/(nay))

In(am11/40) In(ap,4+1a%/<¢0) In(am,4+1a5, _1/<¢0)
[1’ Cot Inaj 7<0t Inaj e <0t Inaj ’ L. ’
In(am+n/Co) ln(am+nacf/<0) ln(am+naa"L71/C0)
Cot Inaq ,Cot Inaq Y. 7<0t Inaq

(because c(g9) = Re,, c(a1) = Ry and ¢(1) = Ry). This is in contra-
diction with the admissibility of (.

Case B : u,, = 0. In this case, we work in the domain of the
chart of M, given by {z0 # 0,zn+1 # 0}, where the points are
written as

(1, 215« oy 2m—1], [2m; (1, 25, ooy 21 )5 Zme2 (L, 205 oy 2 1) -+
Zm+n(]-, leza R Z’?n—l)])'

Then, the point Ry where ¢ reaches its maximum (equal to zero)
can be written as

Ro = ([L,u1,. . um—1],[0; (L, uf,...,ul_1);
Umpo(Lyud, oo ul )i Umen (L ud, .o ul, _1)]).

Using the G-invariance of ¢, we can also assume that 1 > u; > ... >
Ump—1 and 1 > Upmq2 > ... > Upgyn. We shall prove an equivalent
version of lemma, 2.4, that is

(¢ — )], (¢, 1)) > 0 (27)
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for all ¢ > 0.
Proceeding by contradiction, assume there exists a point

Rpngr = ([1I™], [Go; 107™0))

of M with (p > 0 and

(¢ = ¥)(Rm+1) <0. (28)

Consider the auxiliary function v ,,+1 introduced above. Since ¢ is
negative, we obtain that

(¢ — tom+1)([1, 01 [0; 1, olmm =117 (29)
= o([1, 01 [0; 1, 0tmm= 1]y < 0.

On the other hand, since p(Rp) = 0 and ¢ m4+1 < 0,

(¢ = Yo,m+1)(Ro) = —tom+1(Ro) > 0, (30)

this inequality being strict as soon as
Ro # ([1,00" 1], [0; 1,00~ 1])

If Ry = ([1,0™=1],[0; 1,00~ 1), it suffices to consider a point close
to Ro on which the inequality is strict. Indeed, when ¢ — g m+1 <0
in a neighborhood of Ry, then ¢ — g ,4+1 admits a local maximum
at Ro, which is in contradiction with the admissibility of ¢ at Ry.
So, as in case A, there exists a point

R6 = ([17cla v ,Cm,]_], [Cma (17 C%v ey C?n—l);
Cm+2(]., C%, ceey C%,l); ceey Cm+n(17 C?’ S 70%71)])
satisfying
(¢ — Yom+1) (1) > 0. (31)

By the continuity and G-invariance of ¢, and since ¢, is close to
Uy, = 0, we can assume that (o > ¢y, >0,1>c1 > ... > ¢p1 >0
and 1 > ¢pq2 > ... > ¢pyn > 0. On the other hand, the inequal-
ity (28) and the definitions of Ry,11, Y0 m+1, ¥2, and ¢ = inf (1, ¢2)
imply that

(0= Yom+1)(Rmt1) = (¢ = ¥2)(Rmy1) < (¢ —¥)(Rmy1) < 0. (32)
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We now introduce another curve v on M, defined by

[0,1] 5t — (t) = ([1, £, tne)/(ner) - ylnem)/(nen))

[COtln(?:qu{(O) : (1’ ta, t(lncg)/(lncl)’ o ,t(lncihl)/(lncl))

I

(t(ln cm+2)/(lncl)’t(lncm+gc‘f)/(ln cl)’ o ,t(lncm+gc;’n71)/(lncl))

I

(t(ln cm+n)/(lncl)’t(lncm+nc‘f)/(1n cl)’ o ,t(lnchrann_l)/(ln Cl))D

All the exponents appearing in this curve are positive, so that v(0) =
([1’ O[m_l]}v [O; 1’0[nm—1}])’ 7(01) = Ry and 7(1) = Rpyy1. Then,
by (29), (31) and (32), we deduce that (¢ — 1 m+1) is respectively
negative, positive and negative. Again, the invariance by exp(i6)
allows us to conclude that (¢ — %o m+1) reaches a maximum on the
holomorphic curve given by the complexified version of «. This is in
contradiction with the admissibility of ¢. It follows that (27) holds
and lemma 2.4 is proven. ]

2.1. Proof of Theorem 1.4

Let ¢ € C*°(M) be a g-admissible and G-invariant function with a
null supremum on M. According to theorem 1.2, ¢ > 1); therefore,
for all a > 0,

/M exp(—ap)dv < /M exp(—at)dv.

To obtain the values of « for which the last integral converges, we
estimate [, exp(—at1)dv and [, exp(—arpz)dv. Indeed,

/exp(—aw)dv = / exp(—a1/1)dv—|—/ exp(—aw))dv
M 1<tz P2<eh1

— [ ep(-avdet [ exp(-avs)do
h1<ep2 Ya<y

< / exp(—oaj}l)dv—l—/ exp(—atpa)dv
1 <92 Ya<y

<

/ exp(—apy)dv + / exp(—ann)dv,
M M
and

/M exp(—ai )dv + /M exp(—athy)dv < 2/ exp(—at)dv.

M
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We mention that we can avoid the very hard computation of the
element volume dv (or equivalently of det(g)), by means of the fol-
lowing remark. If we write g); in the form gyz = Oxzlog K, the
quantity [K det(g)] is intrinsic since we chose the metric g in ¢ (M)
(same proof as in proposition 1.1). Thus, we can deduce that there
exist two constants C; and (5, such that

C Cy
“1o <2,
7 Sdetlg) < 2

Using the preceding notations (with d = m 4+ n — 1), and setting

r=x1+...+Tm, s=1+@+...+22) X (1 +Zpmy1+...+2xq),

we obtain that
N Cdxi N... Ndxy

rm—an 8n+1

dv

Then,

L = /M exp(—any )dv

N/ dri N ... Ndxg
T IR (2. ) (Mman) p(m—an) (1-a) g(n+1) (1-a)

1

P ) and

which converges for o <

I —/M exp(—aba)dv

N/ dri A...Ndxg
TURE (21 ) (T - g) Y p(mean)(1-a) g(nt 1) (1-a)

3 n
which converges for o < T

In conclusion, [,, exp(—aw)dv exists for o < 1/(n+ 1).
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