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K = Q(\/Ea V _1)
dont les 2-groupes de classes
sont de type (2,4) ou (2,2, 2)
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ABSTRACT. Let d be a square-free positive integer, K =
Q(Wd,/—=1) and Cythe 2-part of class group of K. Our
goal is to determine all d such that Co ~ Z/27 x ZLJAZ or
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1. Introduction

Plusieurs travaux réalisés au cours des dernieres années (voir par
exemple [1], [4], [18], [19]) ont été consacrés a I’étude de la structure
du 2-groupe de classes d'un corps biquadratique imaginaire. Dans
[1], A. Azizi avait déterminé tous les corps Q(v/d, v/—1) ol d est un
entier naturel sans facteurs carrés, ayant le 2-groupe de classes de
type (2, 2). De méme dans [4], I. Benhamza avait étudié le méme
probleme pour les corps biquadratiques de la forme Q(\/&, V—2) ou
d est un entier naturel sans facteurs carrés. Dans [18], T. M. Mc-
Call, C. J. Parry et R. R. Ranalliat ont déterminé tous les corps
biquadratiques imaginaires dont le 2-groupe de classes est cyclique,
et dans [19], ils avaient donné une méthode pour déterminer le rang
du 2-groupe de classes d'un corps biquadratique imaginaire; avec
cette méthode et d’autres techniques ils avaient déterminé tous les
corps biquadratiques imaginaires dont le 2-groupe de classes est de

type (2,2).
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De notre part, on va structurer le 2-groupe de classes de tous les
corps biquadratiques imaginaires de la forme Q(v/d, v/—1) ot d est
un entier naturel sans facteurs carrés, ayant une 2-partie de nombre
de classes égal a 8.

Soit K le corps biquadratique Q(v/d,+/—1), ol d est un entier
positif sans facteurs carrés et Cy le 2-groupe de classes de K au sens
large.

Dans ce travail, on va déterminer les entiers d pour lesquels Cy
est de type (2,4) ou (2,2,2).
L’étude est faite en deux étapes :

1) Détermination des entiers d tels que Cy est d’ordre 8, en utilisant
les résultats de Kaplan [12] et [13].

2) Etude de la structure de Cy dans les cas ou il est d’ordre 8, afin

de préciser les entiers d pour les quels Cy est de type (2,4) ou
(2,2,2).

2. Notations et rappels

Rappelons la définition du symbole biquadratique rationnel : Soit

p =1 (mod 4) et a tel que <a> = 1. Le symbole (a) est égal a
D P/4

1 ou -1, suivant que o' = 41 (mod p). Si a =1 (mod 8), le sym-
bole (%) est égal a (—1)%1. Le symbole dont le dénominateur est
4

composé est définit multiplicativement. Au cours du présent travail,
nous adoptons les notations suivantes :

d : Un entier naturel sans facteurs carrés.
K : Le corps biquadratique Q(v/d, v/—1).
h, ho : Le nombre (resp. le 2-nombre) de classes de K =Q(v/d,\/—1).
h(m), ha(m) : Le nombre (resp. le 2-nombre) de classes de Q(y/m)

pour un entier m de Z sans facteurs carrés.

€m ¢ L’'unité fondamentale de Q(y/m) pour un entier m de Z sans
facteurs carrés.

p, p; ¢ Des entiers premiers positifs congrus a 1 modulo 4.

q, ¢; : Des entiers premiers positifs congrus a -1 modulo 4.
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C(>n), C(n) : Un 2-groupe d’ordre Supérieur & n (resp. égal a n).

C5 : Le 2-groupe de classes de K.

C2(m) : Le 2-groupe de classes au sens strict de Q(y/m) ot un m
est un entier de Z sans facteurs carrés.

@ : L’indice d’unités de K =Q(v/d,\/—1).

(=) : Symbole quadratique.

(—)4 = Symbole biquadratique.

PROPOSITION 2.1 (Résultat de Gauss [13]). Ca(m) est le produit de
rm — 1 groupes cycliques ot 1y, est le nombre des premiers ramifiés

dans Q(v/m)/Q. En particulier 2"¢=2 /h(d) et 2"-4=1/h(—d).

PROPOSITION 2.2 ([20]). Soit k = Q(V/d) un corps quadratique réel,

on suppose que d = dide est le produit de di et do deux mombres

premiers non congrus a 3 modulo 4. Soient h(k) le nombre de classes

de k, h*(k) le nombre de classes au sens strict de k et e 'unité

fondamentale de k. Alors

(1) On suppose que (%) = —1; alors h(k) = h™ (k) =2 (mod 4) et
N(e)=—-1.

(2) On suppose que (%) = +1; alors on a :

(i) Si (% 4= —((%)4, alors h*(k) = 2h(k) = 4 (mod 8) et

N(e)=1;

(i) Si (3—2 4= (%’)4 = —1, alors h* (k) = h(k) = 4 (mod 8) et
N(e)=-1;

(i) Si (9)a = (9)a = +1, alors h* (k) =0 (mod 8).

3. L’indice d’unités
D’apres [22] le nombre de classes h de K est donné par :
1
h = 5Qh(d)h(~d),
ou () désigne I'indice du groupe engendré par les groupes des unités

de Q(v/d), Q(v/—d) et Q(i) avec i = /—1, dans le groupe des unités
de K. Sid # 2, 3, alors @) est I'indice de Hasse de K et il est connu
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que @ =1 ou 2 (Voir [11] §21, Satz 15 ). A. Azizi a montré dans [2]
que @ = 2 si, et seulement si, 24 = 2(s + t\/g) est un carré dans
Q(\/&), ce qui est équivalent aussi a s+1 ou s—1 est un carré dans N.

Dans cette section, on va donner la valeur de () dans des cas
particuliers, pour cela on va transformer la caractérisation précédente
a une autre (qu’'on trouve déja dans le travail de [15, satz 13]).

ProproOSITION 3.1. Lindice Q est égal a 2 si, et seulement s’il existe
deux entiers rationnels x et y tels que +2 = x% — dy?.

Preuve. Soit 4 = s + tv/d 'unité fondamentale de Q(v/d), d’apres
[2] Q=2 si, et seulement si, s+1 est un carré dans N. C’est équivalent
a z2(2? F2) = t2d avec s £1 = 22, puisque d est sans facteurs carrés
alors x divise ¢, ce qui implique £2 = 22 — dy? ol t = zy.
Inversement, supposons que £2 = 2> — dy?. Posons € = so+tovd
oll 59 = 22 T 1 et ty = zy, alors la norme de € est 1 et € > 1, ainsi
e=¢e avec m € N et m > 1, puisque 2e = 2e77 = (z + V/dy)?, alors
m est impair, car sinon /2 € Q(\/&) ; et ceci n’est pas possible. Alors
2eq = (x+ \/Ey)Q(sgl)m_l, ce qui implique que 2e4 est un carré dans

@(\/g), par suite QQ=2. ]

COROLLAIRE 3.2. Si l’une des conditions suivantes est vérifiée, alors
Q=1
(1) d est congru a 1 modulo 4.

(2) 1l existe un entier impair d' qui divise d tel que d =5 (mod 8).

Preuve. (1) Supposons que @ = 2, alors il existe deux entiers ra-
tionnels = et y tels que +2 = 22 — dy?, ainsi 2 = 22 — ¢?
(mod 4), mais puisque un carré est congru a 0 ou 1 modulo 4,
alors ’equation précédente n’a pas de solutions dans Z, donc
Q=1

(2) Supposons que =2, alors il existe deux entiers rationnels
T ety t621s gue +2 2: 2 — dy?, ce qui implique (%) =
(2) = (= dy — (%) = 1, donc d' = 1 (mod 8); et ceci
est impossible.

O

LEMME 3.3 ([3]). Soit p un nombre premier impair. On suppose que
g9p est de norme 1. Alors Uindice d’unités de Q(/2p) est égal a 2.
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LEMME 3.4. Soient d un entier naturel sans facteurs carrés et Q
Vindice dunités de Q(v/2d,v/—1). On suppose que Q est égal a 1
et la norme de l'unité fondamentale de Q(v/2d) est égale a 1. Alors
il existe des entiers naturels sans facteurs carrés dy et do tels que
d = dyda, i,je{O, 1}, 1+j7=1et

(2
() (i) -
d2 da)
-1 2\’ (dy\ 1
(@) G) (@)=
Preuve. Soit € = x + v/2dy 1'unité fondamentale de Q(v/2d) oti x et
y sont deux entiers naturels. Puisque la norme de ¢ est égale a 1,

alors (z + 1)(z — 1) = 2dy? avec y est paire, d’apres 1'unicité de la
décomposition de (z + 1)(x — 1) en nombres premiers on trouve que

rz+1= 2i/d1y%,

x—1=2"dyy3,
oui, j € {1, 2}, dy, da € N, d1dy = d, 7 +j5 =3 et 2y1y0 = y.

Puisque @ = 1 et la norme de € est égale a 1, alors d ne peut pas

étre un nombre premier (voir Lemme 3.3), ainsi x £ 1 et 2(z £ 1) ne
sont pas des carrés dans N (voir [3] et [2]), donc d; et da sont des
entiers sans facteurs carrés et 1 = 2'dyy? — 2doy3 o i’ — 1 = i et
j' —1 = 3. On conclut que

et on trouve le résultat du lemme. O

COROLLAIRE 3.5. Si l’une des conditions suivantes est vérifiée, alors
Q=2.

(1) d=2pq ot p=—qg=1 (mod 4) et (%) =-() =1

(2) d=2q192 0t ¢1 = g2 =3 (mod 8).
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Preuve. (1) Supposons que @ = 1, alors le Lemme précédent en-

traine que
2) = 1
dy) 7

ey
d ) 7

ol pq = dids, ceci n’est pas vrai, car (%) =-(5=1

(2) De la méme fagon on démontre que si @ = 1, alors

(2 (5)-
() -

ol q1g2 = dids, par conséquent (%) = ( L) et (2 =)' (dQ1 Y =1,
ainsi (—2) (+ )9 =1 (car i,j € {0,1} et i +] = 1). Ceci
implique ( -) = 1 (q—2) = 1. Ce qui donne une contradiction,
car qp = qz = 3 (mod 8). Cela acheve la preuve du Lemme.

O

COROLLAIRE 3.6. Si d = 2pipy ot p1 = p2 = 1 (mod 4) et au
moins deuzx éléments de {(p%), (p%), (%)} valent —1, alors la norme

de l'unité fondamentale de Q(\/2p1p2) est égale a —1.

Preuve. On suppose que la norme de ¢4 est égale a 1, ona Q =1

car (,p%) =—1ou (p%) = —1 (Corollaire 3.2). De la méme fagon que

précédemment, on trouve que au moins deux éléments de {(p21 ), (p%),

<;Tg)} valent 1 et ceci n’est pas le cas. Alors la norme de l'unité
fondamentale de Q(y/2p1p2) est égale a —1. O

4. Déterminations des corps K dont le 2-groupe de
classes est d’ordre 8

On note K* le corps de genres (au sens large) et Kél) le 2-corps
de Hilbert de K. On suppose que le 2-nombre de classes de K est
égal a 8. On va donner pour chaque forme de I’entier d rencontrée
dans I’étude des corps K, des conditions nécessaires et suffisantes sur
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d. Soit p un diviseur premier du discriminant Dg de K, on désigne
par e(p) l'indice de ramification de p dans K/Q. On sait, d’apres
[14] que

I ew) = K" : Q= [K": K] - [K : Q] =4- [K": K].
p/Dk
Or on a Gal(Kél)/K) est isomorphe a Cs, alors [Kél) : K] = 8.

1 N s s
Comme K C K* C K§ ), donc nous serons amenés a distinguer les
quatre cas suivants :

. . 1
(i) K* = K.

(i) [K*: K] =2.
(i) [K*: K] = 4.
(iv) K* = K.

4.1. Cas K* = Kél)

Dans ce cas H e(p) = 2°, alors si 2 est totalement ramifié dans

p/Dk
K, 2 figure dans la décomposition de d, par suite d est le produit

de 3 nombres premiers impairs et 2. Si 2 est n’est pas totalement
ramifié, alors 2 ne divise pas d et il est produit de quatre nombres
premiers impairs, en tout cas d = mwymemym4 avec les m; sont des
nombres premiers, d’apres le résultat de Gauss 22/h(d) et 23/h(—d)
et on sait que h = $Qh(d)h(—d), alors 16/h ce qui est impossible

CONCLUSION 1. Si la 2-partie du nombre de classes de K est égale
a 8, alors K* # Kél).

4.2. Cas [K*: K| =2

Dans ce cas H e(p) = 23, alors les formes possibles pour d

p/Dx
sont :

1) d=pipz oupy =p2 =1 (mod 4);
2) d=2potup=1 (mod 4);
3) d=pgoup=—q=1 (mod 4);
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4) d=2q ouqg=—1 (mod 4);
5) d=qiga ot q1 = g2 = —1 (mod 4).

On va essayer de donner d’autres conditions sur d pour que la
2-partie du nombre de classes de h soit égale a 8 et éliminer certaines
formes de d.

(1) d = p1p2 o1 p1 = p2 =1 (mod 4).

a)

On suppose que (p )=1.

D’apres [13, paragraphe 11, cas 1] Ca(—d) = C(> 2) - C(> 4),
alors 8/h(—d). De plus Ca(— d) =C(2) - C(4) si, et seulement
si, pr = 1, po =5 (mod 8) et (p—2)4 = —1 ou bien p; = py =
5 (mod 8) et (g )4 ( >)4. D’autre part, on sait que le 2-
groupe de classes de Q(\f ) est cyclique, alors la Proposition
2.2 indique que Cy(d) = C2(> 2) et que Cy(d) = Ca(> 4) si,
et seulement si, (52)s = (£2)4; et Co(d) = C(2) dans le cas
contraire. Comme d = 1 (mod 4), alors = 1, ce qui nous
permet de voir que hy = 8 si, et seulement si, hao(d) = 2 et
ha(—d) = 8, ceci est équivalent & p; = 1, p2 = 5 (mod 8) et

(B)a= (ﬁf)zx =1

On suppose (;7;) =-1.

La proposition 2.2 implique que h(d) =2 (mod 4) et la norme

de l'unité fondamentale de Q(,/p1p2) est égal a-1; alors Q = 1
¢ M)

et h=—=

et seulement si, la 2-partie de h(—d) est égale a 8; et d’apres
[13, paragraphe 11, cas 1] c’est possible si, et seulement si,
I'une des conditions suivantes est vérifiée p; =py =5 (mod 8)

ot (p1p2)4(2p%)4(2p2)4 =—loup; =p2 =1 (mod 8) et (

—1 ot p1ps = a® + V.

h(—d). Il vient que la 2-partie de h est égale & 8 si,

a-l—b)

CONCLUSION 2. La 2-partie de h est égale a 8 si, et seulement si,
l'une des conditions suivantes est vérifiée :

i) ppt =1, p2 =5 (mod 8), (—)—let( )4 = (p2)4—1

ii) pr=p2 =5 (mod 8), (1) =1 et (22

i) = -1,
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iii) p1 = p2 =1 (mod 8), (B) = —1 et (a%rb) = —1 ot pip2 =
a? + b,

(2) d=2poup=1 (mod 4).

a) p=5 (mod 8).
Dans ce cas h(d) = h(—d) = 2 (mod 4) ([12]) et la norme
de I'unité fondamentale de Q(1/2p) est égale a -1 (Proposition
2.2), alors la 2-partie de h est égale a 2, par conséquent ce cas
est a rejeter.

b) p=1 (mod 8).
D’aprés [5], p = a® + 16b% et selon [12], 4/h(d) et 4/h(—d) o
2/h(d) et 4/h(—d), alors ho = 8 si, et seulement si, ha(d) =
hao(—d) =4 et Q@ =1 ou ho(—d) = 2ha(d) =4 et Q =2, dans

ce cas on a besoin du lemme suivant :

LEMME 4.1. On suppose que p =1 (mod 8), alors

i) ho(2p) = 4 si, et seulement si, (%)4 = (§)a = —1 et la norme
de l'unité fondamentale de Q(\/2p) est égale a —1.
i) ho(2p) = 2 si, et seulement si, (%)4 = —(5)4 et la norme de

lunité fondamentale de Q(+/2p) est égale a 1.
iii) ho(—2p) =4 si, et seulement si, (%)4 =—1.

Preuve. 1) et ii) Conséquent de la Proposition 2.2.

iii) D’apres [12] hao(—2p) = 4 si, et seulement si, 2 ne divise pas
b, la loi de réciprocité biquadratique ([13, Théoréme 1]) implique
que (%)4 = (—=1) il vient que ho(—2p) = 4 si, et seulement si,

(2)a=—1. O

CONCLUSION 3. La 2-partie de h est égale a 8 si, et seulement st,
d = 2p vérifie l'une des conditions suivantes :

- (%)4 =(5)a=—-1letp=1 (mod8).

- (%)4 =—(8)a=-1etp=1 (mod38).

(3) d = pgoup = —q =1 (mod 4). D’apres [13] et [12]
Cy(d) = ( ) C(2) si, et seulement si, (%) =—loup=5 (mod 8);

et 4/h(—d) si, et seulement si, (2) = 1, alors si (£) = —1, ho(d) =
ha(—d) =2, on a 8 ne divise pas h.
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a) p=5 (mod 8) et (§> =1.
Dans ce cas Co(d) = C(2) - C(2) et Q=1 (Corollaire 3.2), alors
ho(d) = 2. Par suite hy = 8 si, et seulement si, ha(—d) =
8. D’autre part, on sait d’apres [12] que ha(—d) = 8 si, et
seulement si, (_7‘1)4 = 1 et 16 ne divise pas h(—d). P. A. Leonard
et K. S. Williams ont donné dans [17, Théoreme 2, p. 222 une
condition nécessaire et suffisante pour que h(—pq) soit divisible
par 16. Ils ont montré que si p = 1 (mod 4), ¢ = 3 (mod 4),

(B)y =1et (%)4 = 1, alors il existe X, Y et Z des entiers

q
naturels tels que :

pX?—qY? - Z? =1, (1)

(XY)=(Y,2)=(2,X)=1ptYZ qt XZ, (2
X impair, Y pair, Z=1 (mod 4). (3)
De plus 16 divise h(—pq) si, et seulement si, (%)4 = (22).
Dans les cas suivants b) et ¢), ho = 8 si, et seulement si, hy(d) =
ho(—d) =4 et Q = 1.

b) p=1 (mod 8), ¢ =3 (mod 8) et (£) = 1.

D’apres [13, paragraphe 5] p = u? + 2v? et ¢ = w? + 222 et
ho(d) = 4 si, et seulement si, 'un au moins des {(W*%), (%)4}
est égal a -1.

c) p=1 (mod8), ¢ =7 (mod 8) et (g) =1.
D’apres [13, paragraphe 5] on a p = 2e? — d?, ¢ = 2r? — 5% et
ha(d) = 4 si, et seulement si, I'un au moins des {(es‘;fdr), (£)a}
est égal a -1.

Dans les deux cas b) et ¢) on a ho(—d) = 4 si, et seulement si,

(51)a = —1. Puisque p = 1 (mod 8), donc ()4 = ()4, alors on a
la conclusion suivante :

CONCLUSION 4. ho = 8 si, et seulement si, d vérifie l'une des condi-
tions suivantes :

- p=5 (mod 8), (g) = —(%)4 =1 et (%)4

et Z sont des entiers naturels vérifient (1)

~p=1(mod8), (£)=—(1)a=1et Q=1

=—(%), o0 X, Y
s et

(2) et (3).
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(4) d = 2q o ¢ = —1 (mod 4). D’apres [12], h(d) est impair;
et 8/ha(—d) si et seulement si ¢ = —1 (mod 16). Le Lemme 3.3
entraine que ) = 2, alors hy = 8 si, et seulement si, ¢ = —1 (mod 16)
et 16 ne divise pas h(—d). Or P. A. Leonard et K. S. Williams ont
donné dans [16, Théoréme 3, p. 205] une condition nécessaire et
suffisante pour que h(—q) soit divisible par 16. Ils ont montré que
sid=2qonq=u?-20%=—1 (mod 16), (u,v) € N2 et u = 1
(mod 16), alors

h(—2¢) =0 (mod 16) < <Z> = 1.

CONCLUSION 5. La 2-partie de h est égale a 8 si, et seulement si q =
u? — 2v? = —1 (mod 16), (u,v) € N, u =1 (mod 16) et (%) = —1.

(5) d = q1g2 o1 g1 = g2 = —1 (mod 4) et (Z—;) = —(g—f) =1.
Dans ce cas, on a h(d) est impair (|21, lemme 5] et () = 1 (Corollaire
3.2), alors hy = 8 si, et seulement si, ha(—d) = 16. Nous trouvons
dans [13, p. 354] que 8/h(—d) si, et seulement si, g2 = —1 (mod 8).
En conséquence, nous pouvons distinguer deux sous-cas :
a) d=qiq2 ou q1 = g2 = —1 (mod 8) et (g—;) = —(g—f) =1.
Dans ce sous-cas, P. Kaplan a montré dans [13, Proposition
B, p. 354] que 16/h(—d) si, et seulement si, (<) = 1 ou

a2
q1q2 = 2¢? — d?. Par consequent hy = 8 si, et seulement si,

(q%) =1 et 321 h(—d).
b) d = qigz o 1 = 3 (mod 8), g2 = —1 (mod 8) et (L) =
~(2)=1
Dans ce sous-cas, P. Kaplan n’a pas caractérisé la divisibilité
de h(—d) par 16, mais K. Hardy et K. S. Williams ont prouvé
dans [10, Théoreme 8, p. 194] que

0 (mod 16), si (EX+Yy_1q.
h(—pq) = { &

8 (mod 16), si (E2HY)— 1.

22 = K2 X2 4+ 2IXY +2mY?% et 1 = 12 — 2k*m.  (4)

En résumé nous avons.
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THEOREME 4.2. Soient d un entier naturel sans facteurs carrés, K =

Q(Vd,/=1), h le nombre de classes de K et K* le corps de genres
de K. Alors la 2-partie de h est égale a 8 et [K* : K] = 2 si et
seulement si d vérifie l'une des conditions suivantes

) d = pip2 ot p1 = p2 = 1 (mod 4) et l'une des conditions sui-
vantes est vérifice :

) pr=1,p2=5 (mod 8), (&) =1 et (B), = —(E2), =1.

i) p1 = po =5 (mod 8), (B) = —1 et (B2)4(32),(%2), =
—1.

iii) pr = p2 =1 (mod 8), (Z—;) =—1let (a%rb) = —1 ot p1p2 =
a? + b2

b) d = 2p ot p = 1 (mod 8) et p vérifie l'une des conditions sui-
vantes :

i) (3)a=—-(§1=-1.
c) d=pqoup=—q=1 (mod 4) et l'une des conditions suivantes
est vérifiée :

i) p=5 (mod 8), (8) = —(P)a=1et (£)s=—(3) ou X
et Z sont des entiers naturels vemﬁent (1), (2) et (3).

i) p=1 (mod 8), (£) =—(I)a=1et Q=1
d) d = 2q ot ¢ = u? — 20> = —1 (mod 16), (u,v) € N2, u = 1
(mod 16) et (¥) = —1.
) d=qig2 ot g1 = -1 (mod 4), g2 = -1 (mod 8), (L) = —(¥) =
1 et l'une des conditions suivantes est vérifiée

) ¢t =—1 (mod 8), () =1 ot qig2 = 2¢2 —d? et 321 h(—d).
2
) ¢ =3 (mod8), (BEXHY) — 1 04 2, = K*X? 4+ 21XY +
2mY?2, g = 1% — 2k®>m et 324 h(

—d).
4.3. Cas [K*: K] =4
Dans ce cas H e alors les formes possibles pour d sont
p/Dk

) d=pipaps ol p1 =pa =p3 =1 (mod 4)
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2) d=2pipsoup; =pa=1 (mod 4);

3) d=2pgoup=—q=1 (mod 4);

4) d =2q1q2 o g1 = g2 = —1 (mod 4);

5) d=pgigz o p=—q =—q2 =1 (mod 4);
6) d=qigaq3 ot 1 = g2 = g3 = —1 (mod 4);
7) d=pipag o py =p2 = —q=1 (mod 4).

De la méme facon que précédemment, on va étudier chaque cas.

(1) d = p1p2ps ol py = p2 = p3 =1 (mod 4). d = pipaps
implique que 4/h(d) et 8/h(—d), alors 16/h donc ce cas est a rejeter.

(2) d =2p1p2 o p1 =p2 =1 (mod 4). D’apres [13], Ca(d) et
Cy(—d) sont de type (2,2) si et seulement si au moins deux éléments
de {(p%), (p%), (%)} valent -1. Dans ce cas le Corollaire 3.6 montre
que Q = 1(la norme de 'unité fondamentale est égale & —1). On
conclut alors que la 2-partie de h est égale a 8 si, et seulement si, au
moins deux éléments de {(p%), (p%), (B)} valent -1.
(3)d=2pgoup=—qg=1 (mod 4). Dans ce cas on a 2/h(d)
et 4/h(—d), alors hy = 8 si, et seulement si

hg(—d) = 4h2(d) =8 et Q = 1,
ou ho(—=d)=ha(d)=4 et Q=1,
ou hg(—d) = 2h2(d) =4 et Q=2.

D’apres [13, paragraphe 6 cas D = 2pq| et [13, paragraphe 11 cas
4] on a ha(d) = 2 si, et seulement si, p = 5 (mod 8) ou (§> = —1,
4/ho(d) si, et seulement si, p =1 (mod 8) et (%) =1et ho(—d) =4

si, et seulement si, deux ou trois des {(%), (%), (£)} valent -1, alors
le cas ha(—d) = ha(d) = 4 ne peut pas se produire; et ho(—d) =
2ha(d) = 4 si, et seulement si, deux ou trois des {(%), (%), (£)} valent
-1. Les résultats de [13, paragraphe 11 cas 4 | montrent que ho(—d) =

8 si, et seulement si, p = —g =1 (mod 8), (g) = —1 et 16 ne divise

pas p+qoup=5 (mod8), ¢ =—1 (mod8) et (£) =—(51)s=1.

Mais d’apres Corollaire 3.5 sip = —g = 1 (mod 8) et (%) = —1, alors
@ = 2. Enfin, on remarque que si Q = 2, alors il existe = et y tel que

_ 2 2 2\ _ 2y _ 2% =2pgy®\ _ a2y _
+2 =2 — 2pqy”, donc () = () = (") =(5) =1
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CONCLUSION 6. La 2-partie de h est égale a 8 si, et seulement si, on
se trouve dans l'une des situations suivantes :

- p=1 (mod 8), ¢ =3 (mod 8) et (%) =—1.

~p=5(mod8), ¢=—1 (mod8) et (&) = —(3})s=1.

(4) d = 2q19q2 o1 g1 = g2 = —1 (mod 4) et (%) = —(%) =
1. Dans ce cas on a 2/h(d) et 4/h(—d), alors hy = 8 si, et seule-
ment si,
hg(—d) = 4h2(d) =8 et Q = 1,
ou ho(—d)=ha(d)=4 et Q=1,
ou hg(—d) = 2h2(d) =4 et Q=2

D’apres [13, paragraphe 10, cas D = 2qq'] et [13, paragraphe 11,

cas 7] on a ho(d) = 2 si, et seulement si, (q%) = —1ou (q%) =—1;
4/ho(d) si, et seulement si, ¢ = g2 = —1 (mod 8) et ho(—d) = 4
si, et seulement si, g1 = —1 (mod 8) et g2 = 3 (mod 8), alors le cas

ho(—d) = ha(d) = 4 ne peut pas se produire ; et ho(—d) = 2ha(d) = 4

si, et seulement si, ¢ = —1 (mod 8) et g2 = 3 (mod 8). Mais cette

derniere condition ne peut pas se produire avec = 2, en effet

supposons que Q = 2, alors il existe deux entiers rationnels x et
42

: - +
y tels que £2 = 22 — dy?, ce qui entraine (q—l) = (q—f) = 1, donc

(q%) = (q%) = +1; et ce qui n’est pas le cas. Les résultats de [13,
paragraphe 11 cas 7] montrent que ho(—d) = 8 si, et seulement si,

I’'une des conditions suivantes est vérifiée :

- q1 =Qq2 = 3 (mod 8) et (ﬁ) =—1.

~ q1=3 (mod 8), g = —1 (mod 8) et (X)) = 1.
Ou X, Y, k et | des entiers vérifient I'equation (4). Mais la premiere
condition ne peut pas se produire avec Q = 1 (Corollaire 3.5); or,

puisque qi1g2 = 5 (mod 8), alors dans la deuxiéme condition on a
Q@ =1 (Corollaire 3.2).

CONCLUSION 7. La 2-partie de h est égale a 8 si, et seulement st,
2 2

g1 = 3 (mod 8), g2 = —1 (mod 8) et ('k)f]i:Y') = —1 ou 2¢qy =

E2X?2 4+ 21XY +2mY? et ¢ = 1?2 — 2K*m.

(5) d = pgigz ou p = —q1 = —q2 = 1 (mod 4) et (%) =
—(g—f) = 1. On sait, d’apres le résultat de Gauss que 2/h(d) et
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8/h(—d), alors hy = 8 si, et seulement si, ha(d) = 2, ha(—d) = 8 et
Q@ = 2. En utilisant les mémes techniques qui se trouve dans [13], on
trouve la proposition suivante :

PROPOSITION 4.3. Soient p, q1 et qo trois nombres premiers tels que

pP=-q=—q¢=1 (mod4) et (L)=—(L)=1, alors C2(—pq1¢2)
est de type (2,2,2) si, et seulement si, l'une des conditions suivantes

est vérifiée :
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Preuve. Les caracteres génériques sont (), (71), (72) et (57)-
Posons €1 = (q%) = (%)7 €2 = (q%) = (%)7 €3 = (123)7 €4 = (q%)?

€5 = (q%) Les formes ambigués simples sont équivalentes a :

f=11,0,pq1¢2], 91 = [P, 0, q1G2), g2 = [q1, 0, g2}, 93 = [q2, 0, pg1].

1
L [2’1’ —1-1;611%]7]{;1 _ {2p’p’p+2mqﬂ7

+ +
k? = |:2q17q17 (h2pqz:|7k3 = |:2q27q27 (]22pq1:| .
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Le tableau des caractéres de ces formes est :

fl o | 92| 93| ki ko ks h
m
— 1 £1€2 €1 €9 | €1€E92€3 £1€3 €3E9 €3
p
m
— 1| e | —e1 | —1| e4e1 —E€481 —E&4 €4
4
m
— 1 €9 1 €9 E9€5 €5 £92E5 £5
q2
—1
— 1 1 -1 -1 E3EYER | —EZEYEF | —E3EYERF | £3E4E5
m

On sait, d’apres le résultat de Gauss que Cy(—d) est le produit de
3 groupes cycliques, alors Cy(—d) est de type (2,2, 2) si, et seulement
s’'il n’y a pas de forme ambigué simple autre que f dans le genre
principal, c’est équivalent de dire que les formes autre que f prennent
la valeur -1 au moins pour un caractére, alors Cy(—pgq1q2) est de type
(2,2,2) si, et seulement si, I'une des conditions de la proposition
est vérifiée. O

Sid=pggzoip=—q =—-¢ =1 (mod 4)et (L) =—(&)=1,
on dit que d est de type 1, si p, q1 et go vérifient 'une des trois
premieres conditions de la Proposition 4.3 et de type 2, dans le cas
ou d vérifie 'une des cinq dernieres conditions de la proposition 4.3.

D’apres [13, paragraphe 9, cas D = pqq’] on a : ha(d) = 2 si, et
seulement si, e = (L) = —1 ou ez = (L) = —1 et puisque d = 1
(mod 4), alors @ = 1 (Corollaire 3.2). On conclut facilement que
ho = 8 si, et seulement si, p, g1 et go vérifient I'une des conditions de

la Proposition 4.3.

(6) d = q1g293 ol g1 = q2 = g3 = —1 (mod 4). On sait,
d’apres le résultat de Gauss que 4/h(d) et 4/h(—d), alors hy = 8 si, et
seulement si, ha(d) = ha(—d) = 4 et @ = 1. La proposition suivante
donne les conditions nécessaires et suffisantes pour que ho(—d) = 4.

PROPOSITION 4.4 ([8, Théoreme 1, p. 5 et 6]). Soient q1, g2 et g3
trois nombres premiers congrus a 3 modulo 4, alors Ca(—q1q2q3) =
C(> 4)-C(2) si, et seulement si, 'une des conditions suivantes
est vérifiée :
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)= (@)=
() =)
()= )

De plus Ca(—q1q2q3) est de type (2,2) si, et seulement si <> =

() () %

Soit 74(m) le 4-rang du 2-groupe de classes de Q(y/m) ou m est
un entier naturel sans facteurs carrés. P. Damey and J. Payan ont
montré dans [9] que

ra(m) < rg(—m) < ry(m) + 1. (5)

Si, Ca(—q1q2q3) est de type (2,2), alors r4(—q1¢2q3) = 0, par suite
74(q1g2q3) = 0; et comme le 2-groupe de classes de Q(,/q1G2¢3) est
le produit de deux groupes cycliques, on peut voir qu’il est aussi de
type (2,2).

Finalement, si d = q1g2q3 ot ¢1 = ¢2 = g3 = —1 (mod 4), alors
ha = 8 si, et seulement si, (Z) = (2) = (£) et @ = 1. La deuxieme
condition est nécessaire, car il existe des nombres premiers g; vérifiant
la premiere condition et ho > 16. Par exemple d = 627 = 3 - 11 - 19,

ona (1) = (§) = (f) = Let ha = 16,

(7) d = pip2q o p1 = p2 = —q = 1 (mod 4). On sait,
d’apres le résultat de Gauss que le 2-groupe de classes de Q(v/d) et
de Q(v/—d) est le produit de deux groupes cycliques, ainsi 4/h(d)
et 4/h(—d), alors hy = 8 si, et seulement si, ha(d) = ho(—d) = 4 et
Q@ = 1. Or d’apres [13, Cas 3, p. 351] nous avons que C(—d) ~ (2,2)
si, et seulement si, deux ou trois des valeurs {(L}), (&), (%)} valent
—1. Dans cette situation on peut montrer que

Q=1<p oupy,=5 (mod ).

En effet, Soit ¢4 = x + y,/p1p2q 'unité fondamentale de Q(,/p1p2q).
Rappelons que si d est un entier sans facteurs carrés et € = a + bv/d
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'unité fondamentale de Q(v/d) ot a et b sont des entiers ou bien
demi-entiers, alors si € est de norme 1, 2(a=£1) et 2d(a+1) ne sont pas
des carrés dans Q. (pour la preuve de cette remarque voir [3, lemme
5, p. 386]). Alors dans notre situation, nous prenons d = pipaq et
e =¢g4. Comme ¢ = —1 (mod 4), alors (z,y) € Z? et 2% — p1paqy? =
1. D'ott (z + 1)(z — 1) = p1p2gy?. Du fait que (z +1) — (x — 1) = 2,
le plus grand commun diviseur de z + 1 et £ — 1 est un diviseur de
2. Par suite il existe (y1,y2) € Z? tel que

19, 14

{w+1zph€f0f%
x—1=pPpsq? 2%y,

ou

i€{0,1} i1 +ig =iz +ia=j1+j2 =1;
21y =y, (i1 + i3 + j1, 42 +ia + jo) € {1,2}2, sii=1.

Supposons que (Q = 1, alors 4+ 1 et  — 1 ne sont pas des carrés
dans N (voir [2]), ceci est équivalent a

i1+i3+j1+i#0etig+ig+ jo+1#0.

Dans notre situation, on a ¢ = 0, car si nous prenons, par exemple le
cas ou
{ T+ 1= 2171?4%7
x —1 = 2pagqyy,

nous trouvons facilement que

1Y _(@=-12-(+1)/2\ _(p)\(a _1
R
D2 P2 D2

Ceci est évidemment contradictoire avec le fait que deux ou trois
des valeurs {(£2), (&), (%2)} valent —1. Les autres cas nous donnent
la méme contradiction, c’est-a-dire que nous avons toujours ¢ = 0.

Prenons, par exemple, le cas ou

{ T+ 1= pipoys,
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Nous trouvons de la méme facon que précédemment que

()- (=55 (3),
(- (=22 ()

Comme deux ou trois des valeurs {(2}), (%), (%)} valent —1, alors
p1 ou po =5 (mod 8). Les autres cas nous donnent le méme résultat.

Inversement, si p; ou p2 =5 (mod 8), alors le Corollaire 3.2 en-
traine que @ = 1.

Si, Co(—p1p2q) est de type (2,2), alors r4(—p1p2q) = 0, par suite
I'inégalité (5) prouve que r4(pi1p2q) = 0; et comme le 2-groupe de
classes de Q(,/p1p2q) est le produit de deux groupes cycliques, on
peut voir qu’il est aussi de type (2,2).

Finalement, si d = p1p2q ot p1 = p2 = —q3 = 1 (mod 4), alors
he = 8 si, et seulement si, p; ou po =5 (mod 8) et si deux ou trois

des valeurs {(£}), (%), (£2)} valent —1.

THEOREME 4.5. Soient d un entier naturel sans facteurs carrés, K =
Q(\/&, V—1), h le nombre de classes de K et K* le corps de genres
de K. Alors la 2-partie de h est égale a 8 et [K* : K| = 4 si, et
seulement si, d vérifie l'une des conditions suivantes :
a) d=2pip2 ot p1 =p2 =1 (mod 4) et au moins deux éléments de
2\ (2y (P _
{(5): (5;): (B1)} valent —1.
b) d =2pq ot p=—q =1 (mod 4) et l'une des conditions suivante
est vérifie :
-p=1 (mod 8), ¢=3 (mod 8) et (L) =—1.
-p=5 (mod8), ¢=—1 (mod8) et (£) = —(31)a=1.
¢) d=2qiq2 ot g1 =3 (mod 8), g2 = —1 (mod 8),(L) = —(L) =
1, (BT = 1, 29y = K2X242XY +2mY 2 et qr = >~2km.
d) d=pag ot (L)=—(2)=1p=-a=—-¢=1 (mod4), et
D, q1 et qgo vérifient l'une des conditions de la Proposition 3.1.

e) d = qq2q3 00 1 = g2 = g3 = —1 (mod 4), <q2> = <q3> =

q3 q1
((]1> et Q=1.
q2

Y

EESS
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f) d = pipag ot p1 oups =5 (mod 8), ¢ = 3 (mod 4) et deuz ou
trois des valeurs {(L}), (&), (%)} valent —1.

4.4. Cas K* =K

Dans ce cas hy = 8 si, et seulement si, d = p oll p un nombre
premier congru & 1 modulo 8 de la forme p = 2% + 32y? et ho(—p) =
16. Pour plus de détails on peut voir [1, p. 84].

5. Structure du 2-groupe de classes de K dont le
nombres de classes est 8

LEMME 5.1 ([18]). Le rang du 2-groupe de classes de K est :

s+ 80 Sid estpairetp=1 (mod 8) pour toutp € Sy.

s+so—1 Sid est pair et il existe p € Sy tel que p = 5
(mod 8)
ou d est impair et p = 1 (mod 8) pour tout
pESy.

s+so—2 Sid est impair et il existe p € Sy tel que p =5
mod 8.

1. s =S| et S est l'ensemble des premiers impairs ramifiés dans
Q(Vd);

2. so = |So| ou Sy est le sous-ensemble de S contenant tous les
premiers congrues a 1 modulo 4.

THEOREME 5.2. Soit d un entier naturel sans facteurs carrés, K =

Q(Vd,/—1). Alors Cy est de type (2,4) si, et seulement si, d vérifie

l'une des conditions suivantes :

(a) d = p1p2 ot p1 = p2 = 1 (mod 4) et l'une des conditions sui-
vantes est vérifiée :

(i) m=1,p2=5 (mod 8), (B)=1et (2)a=—-()s=1

(i) pr =ps =5 (mod 8), (&) = —1 et (BP2)4(%2)4(%2), =
—1.

(b) d =2p oup =1 (mod 8) et p vérifie l'une des conditions sui-
vantes :
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4
(mod 8), (5)=—(1)a=1et Q=1

Ip=5 (mod 8)7 q=-—1 (mod 8) et (%) = _(;q)4 =

(€) d=pqg2 ou (B)=—-(B)=1,p=-q1=—-q =1 (mod 4) et

d est de type 2.

(f) d=qiq2q3 0t g1 = q2 =q3 = —1 (mod 4), ()= () = (%) et
0=1.

(g) d=2q192 0t 1 = 3(mod 8), g2 = —1(mod 8), (3—;): —(g—f) =1,

(WX = 1, 29y = K2X242UXY +2mY? et g1 = 12— 2K>m.

Preuve. Puisque Cy est de type (2,4), alors hg = 8, donc d peut
prendre les formes du Théoreme 4.2 ou 4.5 avec des conditions sur
chaque forme. Si on a les formes 2q, q1q2 alors Cy est cyclique, par
exemple pour d = 2¢q et d’apres le lemme précédent le rang de C est
égal & s+ sp ou s =1 et sg = 0, il reste les autres formes :

a) d =pips ol py =p2 =5 (mod 8) ou p; =p2 =5 (mod 8),
alors s = sg = 2 et le rang de C est égal a s + s — 2 = 2,
donc Csy est de type (2,4).

b) d=2poup=1 (mod 8), alors s = so = 1 et le rang de C»
est égal & s+ sp = 2, donc Cy est de type (2,4).
c)d=pgoup=—q=1 (mod4), alors s = 2, 59 = 1 et
s+ sop = 3, donc Cy est de type (2,4) si, et seulement si,
p=1 (mod 8).
d) Puisque p = 5 (mod 8), alors s = 2, sg = 1 et le rang de
Cy est s+ 59 — 1 =2, donc Cy est de type (2,4).
) d=paugou (f) =—(F)=1lectp=-q=-¢=1
(mod 4), et d est de type 2, alors s = 3, sg = 1 et le rang
de Cy est égal & s+ sg — 2 = 2, donc Cy est de type (2,4).
f) et g) Puisque ¢1 = g2 = ¢3 = —1 (mod 4), alors s =3, so =0 et
le rang de C est égal a s+ sg — 1 = 2, donc Cs est de type
(2,4).
O
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De la méme fagon on a le théoreme suivant.

THEOREME 5.3. Soit d un entier naturel sans facteurs carrés, K =
Q(Vd,v/—=1). Alors Cy est de type (2,2,2) si, et seulement si, d
vérifie l'une des conditions suivantes :

a) d :p1p22011 <2%) =—1,p1 =p2=1 (mod 8) et (a%_b) — 1 avec
p1ip2 = a” + b,

b) d=2pips ot p1 =py =1 (mod 4) et au moins deuz éléments de
{(2),(2), ()} valent —1.

c) d=2pq oup=1 (mod 8), ¢ =

d) d=paigz ou (L) =—(L)
est de type 1.
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e) d = pip2q ot p1 oupa =5 (mod 8), ¢ = 3 (mod 4) et deux ou
trois des valeurs {(L}), (&), (%)} valent —1.

6. Exemples numériques

A Taide du programme GP/PARI ([6]), on va donner des en-
tiers sans facteurs carrés tels que le 2-groupe de classes de K =

Q(Vd, v/=1) est de type (2,4) ou (2,2,2).

d Forme | Conditions [K*: K] Cs
3005 =5 - 601 pip2 | théoreme 5.2 ai 2 (2,4)
2977 = 13- 229 p1p2 | théoréeme 5.2 aii 2 (2,4)
2258 =2-1129 2p théoreme 5.2 bi 2 (2,4)
2594 = 2 - 1297 2p théoreme 5.2 bii 2 (2,4)
2359 =337-7 pq théoreme 5.2 ¢ 2 (2,4)
2758 =2-197-7 | 2pq | théoreme 5.2 d 4 (2,4)
2905 =5-7-783 | pqiqz | théoreme 5.2 e 4 (2,4)
9051 = 3-7-431 | qigags | théoréme 5.2 f 4 (2,4)
9874 =2-3-479 | 2qig2 | théordme 5.2 g 4 (2,4)
1921 =17-113 p1p2 | théoreme 5.3 a 2 (2,2,2)
1570 =2-5-157 | 2pips | théoreme 5.3 b 4 (2,2,2)
13908 =2-233-3 | 2pg | théoreme 5.3 ¢ 4 (2,2,2)
2937 =289-3-11 pq1ge | théoréeme 5.3 d 4 (2,2,2)
13215 =5-881-3 | pip2q | théoreme 5.3 e 4 (2,2,2)
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