
Rend. Istit. Mat. Univ. Trieste
Vol. XL, 93–116 (2009)
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Abstract. Let d be a square-free positive integer, K =
Q(

√
d,
√
−1) and C2 the 2-part of class group of K. Our

goal is to determine all d such that C2 ≃ Z/2Z × Z/4Z or
C2 ≃ Z/2Z × Z/2Z × Z/2Z.
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1. Introduction

Plusieurs travaux réalisés au cours des dernières années (voir par
exemple [1], [4], [18], [19]) ont été consacrés à l’étude de la structure
du 2-groupe de classes d’un corps biquadratique imaginaire. Dans
[1], A. Azizi avait déterminé tous les corps Q(

√
d,
√
−1) où d est un

entier naturel sans facteurs carrés, ayant le 2-groupe de classes de
type (2, 2). De même dans [4], I. Benhamza avait étudié le même
problème pour les corps biquadratiques de la forme Q(

√
d,
√
−2) où

d est un entier naturel sans facteurs carrés. Dans [18], T. M. Mc-
Call, C. J. Parry et R. R. Ranalliat ont déterminé tous les corps
biquadratiques imaginaires dont le 2-groupe de classes est cyclique,
et dans [19], ils avaient donné une méthode pour déterminer le rang
du 2-groupe de classes d’un corps biquadratique imaginaire ; avec
cette méthode et d’autres techniques ils avaient déterminé tous les
corps biquadratiques imaginaires dont le 2-groupe de classes est de
type (2, 2).
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De notre part, on va structurer le 2-groupe de classes de tous les
corps biquadratiques imaginaires de la forme Q(

√
d,
√
−1) où d est

un entier naturel sans facteurs carrés, ayant une 2-partie de nombre
de classes égal à 8.

Soit K le corps biquadratique Q(
√

d,
√
−1), où d est un entier

positif sans facteurs carrés et C2 le 2-groupe de classes de K au sens
large.

Dans ce travail, on va déterminer les entiers d pour lesquels C2

est de type (2, 4) ou (2, 2, 2).

L’étude est faite en deux étapes :

1) Détermination des entiers d tels que C2 est d’ordre 8, en utilisant
les résultats de Kaplan [12] et [13].

2) Etude de la structure de C2 dans les cas où il est d’ordre 8, afin
de préciser les entiers d pour les quels C2 est de type (2, 4) ou
(2, 2, 2).

2. Notations et rappels

Rappelons la définition du symbole biquadratique rationnel : Soit

p ≡ 1 (mod 4) et a tel que

(

a

p

)

= 1. Le symbole

(

a

p

)

4

est égal à

1 ou -1, suivant que a
p−1

4 ≡ ±1 (mod p). Si a ≡ 1 (mod 8), le sym-

bole
(a

2

)

4
est égal à (−1)

a−1

8 . Le symbole dont le dénominateur est

composé est définit multiplicativement. Au cours du présent travail,
nous adoptons les notations suivantes :

d : Un entier naturel sans facteurs carrés.

K : Le corps biquadratique Q(
√

d,
√
−1).

h, h2 : Le nombre (resp. le 2-nombre) de classes de K =Q(
√

d,
√
−1).

h(m), h2(m) : Le nombre (resp. le 2-nombre) de classes de Q(
√

m)
pour un entier m de Z sans facteurs carrés.

εm : L’unité fondamentale de Q(
√

m) pour un entier m de Z sans
facteurs carrés.

p, pi : Des entiers premiers positifs congrus à 1 modulo 4.

q, qi : Des entiers premiers positifs congrus à -1 modulo 4.
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C(≥ n), C(n) : Un 2-groupe d’ordre Supérieur à n (resp. égal à n).

C2 : Le 2-groupe de classes de K.

C2(m) : Le 2-groupe de classes au sens strict de Q(
√

m) où un m
est un entier de Z sans facteurs carrés.

Q : L’indice d’unités de K =Q(
√

d,
√
−1).

(−) : Symbole quadratique.

(−)4 : Symbole biquadratique.

Proposition 2.1 (Résultat de Gauss [13]). C2(m) est le produit de
rm − 1 groupes cycliques où rm est le nombre des premiers ramifiés
dans Q(

√
m)/Q. En particulier 2rd−2/h(d) et 2r−d−1/h(−d).

Proposition 2.2 ([20]). Soit k = Q(
√

d) un corps quadratique réel,
on suppose que d = d1d2 est le produit de d1 et d2 deux nombres
premiers non congrus à 3 modulo 4. Soient h(k) le nombre de classes
de k, h+(k) le nombre de classes au sens strict de k et ε l’unité
fondamentale de k. Alors

(1) On suppose que (d1

d2
) = −1 ; alors h(k) ≡ h+(k) ≡ 2 (mod 4) et

N(ε) = −1.

(2) On suppose que (d1

d2
) = +1 ; alors on a :

(i) Si (d1

d2
)4 = −((d2

d1
)4, alors h+(k) = 2h(k) ≡ 4 (mod 8) et

N(ε) = 1 ;

(ii) Si (d1

d2
)4 = (d2

d1
)4 = −1, alors h+(k) = h(k) ≡ 4 (mod 8) et

N(ε) = −1 ;

(iii) Si (d1

d2
)4 = (d2

d1
)4 = +1, alors h+(k) ≡ 0 (mod 8).

3. L’indice d’unités Q

D’après [22] le nombre de classes h de K est donné par :

h =
1

2
Qh(d)h(−d),

où Q désigne l’indice du groupe engendré par les groupes des unités
de Q(

√
d), Q(

√
−d) et Q(i) avec i =

√
−1, dans le groupe des unités

de K. Si d 6= 2, 3, alors Q est l’indice de Hasse de K et il est connu
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que Q = 1 ou 2 (Voir [11] §21, Satz 15 ). A. Azizi a montré dans [2]
que Q = 2 si, et seulement si, 2εd = 2(s + t

√
d) est un carré dans

Q(
√

d), ce qui est équivalent aussi à s+1 ou s−1 est un carré dans N.
Dans cette section, on va donner la valeur de Q dans des cas

particuliers, pour cela on va transformer la caractérisation précédente
à une autre (qu’on trouve déjà dans le travail de [15, satz 13]).

Proposition 3.1. L’indice Q est égal à 2 si, et seulement s’il existe
deux entiers rationnels x et y tels que ±2 = x2 − dy2.

Preuve. Soit εd = s + t
√

d l’unité fondamentale de Q(
√

d), d’après
[2] Q=2 si, et seulement si, s±1 est un carré dans N. C’est équivalent
à x2(x2 ∓ 2) = t2d avec s± 1 = x2, puisque d est sans facteurs carrés
alors x divise t, ce qui implique ±2 = x2 − dy2 où t = xy.

Inversement, supposons que ±2 = x2−dy2. Posons ε = s0 +t0
√

d
où s0 = x2 ∓ 1 et t0 = xy, alors la norme de ε est 1 et ε > 1, ainsi
ε = εm

d avec m ∈ N et m ≥ 1, puisque 2ε = 2εm
d = (x +

√
dy)2, alors

m est impair, car sinon
√

2 ∈ Q(
√

d) ; et ceci n’est pas possible. Alors
2εd = (x+

√
dy)2(ε−1

d )m−1, ce qui implique que 2εd est un carré dans

Q(
√

d), par suite Q=2.

Corollaire 3.2. Si l’une des conditions suivantes est vérifiée, alors
Q = 1.

(1) d est congru à 1 modulo 4.

(2) Il existe un entier impair d′ qui divise d tel que d′ ≡ 5 (mod 8).

Preuve. (1) Supposons que Q = 2, alors il existe deux entiers ra-
tionnels x et y tels que ±2 = x2 − dy2, ainsi 2 ≡ x2 − y2

(mod 4), mais puisque un carré est congru à 0 ou 1 modulo 4,
alors l’equation précédente n’a pas de solutions dans Z, donc
Q = 1.

(2) Supposons que Q=2, alors il existe deux entiers rationnels
x et y tels que ±2 = x2 − dy2, ce qui implique (±2

d′ ) =

( 2
d′ ) = (x2−y2d

d′ ) = (x2

d′ ) = 1, donc d′ ≡ 1 (mod 8) ; et ceci
est impossible.

Lemme 3.3 ([3]). Soit p un nombre premier impair. On suppose que
ε2p est de norme 1. Alors l’indice d’unités de Q(

√
2p) est égal à 2.
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Lemme 3.4. Soient d un entier naturel sans facteurs carrés et Q
l’indice d’unités de Q(

√
2d,

√
−1). On suppose que Q est égal à 1

et la norme de l’unité fondamentale de Q(
√

2d) est égale à 1. Alors
il existe des entiers naturels sans facteurs carrés d1 et d2 tels que
d = d1d2, i, j ∈ {0, 1}, i + j = 1 et















(

2

d2

)i (d1

d2

)

= 1,
(−1

d1

)(

2

d1

)j (

d2

d1

)

= 1.

Preuve. Soit ε = x +
√

2dy l’unité fondamentale de Q(
√

2d) où x et
y sont deux entiers naturels. Puisque la norme de ε est égale à 1,
alors (x + 1)(x − 1) = 2dy2 avec y est paire, d’après l’unicité de la
décomposition de (x + 1)(x− 1) en nombres premiers on trouve que

{

x + 1 = 2i′d1y
2
1,

x − 1 = 2j′d2y
2
2,

où i′, j′ ∈ {1, 2}, d1, d2 ∈ N, d1d2 = d, i′ + j′ = 3 et 2y1y2 = y.

Puisque Q = 1 et la norme de ε est égale à 1, alors d ne peut pas
être un nombre premier (voir Lemme 3.3), ainsi x± 1 et 2(x± 1) ne
sont pas des carrés dans N (voir [3] et [2]), donc d1 et d2 sont des
entiers sans facteurs carrés et 1 = 2id1y

2
1 − 2jd2y

2
2 où i′ − 1 = i et

j′ − 1 = j. On conclut que















(

2

d2

)i (d1

d2

)

=

(

2id1y
2
1 − 2jd2y

2
2

d2

)

=

(

1

d2

)

= 1,
(−1

d1

)(

2

d1

)j (

d2

d1

)

=

(

2id1y
2
1 − 2jd2y

2
2

d1

)

=

(

1

d1

)

= 1,

et on trouve le résultat du lemme.

Corollaire 3.5. Si l’une des conditions suivantes est vérifiée, alors
Q = 2.

(1) d = 2pq où p ≡ −q ≡ 1 (mod 4) et (2
p) = −(p

q ) = 1.

(2) d = 2q1q2 où q1 ≡ q2 ≡ 3 (mod 8).
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Preuve. (1) Supposons que Q = 1, alors le Lemme précédent en-
trâıne que















(

2

d2

)

= −1,
(−1

d1

)

= −1,

où pq = d1d2, ceci n’est pas vrai, car (2
p) = −(p

q ) = 1.

(2) De la même façon on démontre que si Q = 1, alors















(

2

d2

)i (d1

d2

)

= 1,
(

2

d1

)j (

d2

d1

)

= −1,

où q1q2 = d1d2, par conséquent (d1

d2
) = −(d1

d2
) et ( 2

d2
)i( 2

d1
)j = 1,

ainsi ( 2
d2

)i = ( 2
d1

)j = 1 (car i, j ∈ {0, 1} et i + j = 1). Ceci

implique ( 2
q1

) = 1 ou ( 2
q2

) = 1. Ce qui donne une contradiction,
car q1 ≡ q2 ≡ 3 (mod 8). Cela achève la preuve du Lemme.

Corollaire 3.6. Si d = 2p1p2 où p1 ≡ p2 ≡ 1 (mod 4) et au
moins deux éléments de {( 2

p1
), ( 2

p2
), (p1

p2
)} valent −1, alors la norme

de l’unité fondamentale de Q(
√

2p1p2) est égale à −1.

Preuve. On suppose que la norme de εd est égale à 1, on a Q = 1
car ( 2

p1
) = −1 ou ( 2

p2
) = −1 (Corollaire 3.2). De la même façon que

précédemment, on trouve que au moins deux éléments de {( 2
p1

), ( 2
p2

),

(p1

p2
)} valent 1 et ceci n’est pas le cas. Alors la norme de l’unité

fondamentale de Q(
√

2p1p2) est égale à −1.

4. Déterminations des corps K dont le 2-groupe de
classes est d’ordre 8

On note K∗ le corps de genres (au sens large) et K
(1)
2 le 2-corps

de Hilbert de K. On suppose que le 2-nombre de classes de K est
égal à 8. On va donner pour chaque forme de l’entier d rencontrée
dans l’étude des corps K, des conditions nécessaires et suffisantes sur
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d. Soit p un diviseur premier du discriminant DK de K, on désigne
par e(p) l’indice de ramification de p dans K/Q. On sait, d’après
[14] que

∏

p/DK

e(p) = [K∗ : Q] = [K∗ : K] · [K : Q] = 4 · [K∗ : K].

Or on a Gal(K
(1)
2 /K) est isomorphe à C2, alors [K

(1)
2 : K] = 8.

Comme K ⊆ K∗ ⊆ K
(1)
2 , donc nous serons amenés à distinguer les

quatre cas suivants :

(i) K∗ = K
(1)
2 .

(ii) [K∗ : K] = 2.

(iii) [K∗ : K] = 4.

(iv) K∗ = K.

4.1. Cas K∗ = K
(1)
2

Dans ce cas
∏

p/DK

e(p) = 25, alors si 2 est totalement ramifié dans

K, 2 figure dans la décomposition de d, par suite d est le produit
de 3 nombres premiers impairs et 2. Si 2 est n’est pas totalement
ramifié, alors 2 ne divise pas d et il est produit de quatre nombres
premiers impairs, en tout cas d = π1π2π3π4 avec les πi sont des
nombres premiers, d’après le résultat de Gauss 22/h(d) et 23/h(−d)
et on sait que h = 1

2Qh(d)h(−d), alors 16/h ce qui est impossible

Conclusion 1. Si la 2-partie du nombre de classes de K est égale

à 8, alors K∗ 6= K
(1)
2 .

4.2. Cas [K∗ : K] = 2

Dans ce cas
∏

p/DK

e(p) = 23, alors les formes possibles pour d

sont :

1) d = p1p2 où p1 ≡ p2 ≡ 1 (mod 4) ;

2) d = 2p où p ≡ 1 (mod 4) ;

3) d = pq où p ≡ −q ≡ 1 (mod 4) ;
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4) d = 2q où q ≡ −1 (mod 4) ;

5) d = q1q2 où q1 ≡ q2 ≡ −1 (mod 4).

On va essayer de donner d’autres conditions sur d pour que la
2-partie du nombre de classes de h soit égale à 8 et éliminer certaines
formes de d.

(1) d = p1p2 où p1 ≡ p2 ≡ 1 (mod 4).

a) On suppose que (p1

p2
) = 1.

D’après [13, paragraphe 11, cas 1] C2(−d) = C(≥ 2) · C(≥ 4),
alors 8/h(−d). De plus C2(−d) = C(2) · C(4) si, et seulement
si, p1 ≡ 1, p2 ≡ 5 (mod 8) et (p2

p1
)4 = −1 ou bien p1 ≡ p2 ≡

5 (mod 8) et (p2

p1
)4 = (p1

p2
)4. D’autre part, on sait que le 2-

groupe de classes de Q(
√

d) est cyclique, alors la Proposition
2.2 indique que C2(d) = C2(≥ 2) et que C2(d) = C2(≥ 4) si,
et seulement si, (p1

p2
)4 = (p2

p1
)4 ; et C2(d) = C(2) dans le cas

contraire. Comme d ≡ 1 (mod 4), alors Q = 1, ce qui nous
permet de voir que h2 = 8 si, et seulement si, h2(d) = 2 et
h2(−d) = 8, ceci est équivalent à p1 ≡ 1, p2 ≡ 5 (mod 8) et
(p1

p2
)4 = −(p2

p1
)4 = 1.

b) On suppose (p1

p2
) = −1.

La proposition 2.2 implique que h(d) ≡ 2 (mod 4) et la norme
de l’unité fondamentale de Q(

√
p1p2) est égal à -1 ; alors Q = 1

et h =
h(d)

2
h(−d). Il vient que la 2-partie de h est égale à 8 si,

et seulement si, la 2-partie de h(−d) est égale à 8 ; et d’après
[13, paragraphe 11, cas 1] c’est possible si, et seulement si,
l’une des conditions suivantes est vérifiée p1 ≡ p2 ≡ 5 (mod 8)
et (p1p2

2 )4(
2p1

p2
)4(

2p2

p1
)4 = −1 ou p1 ≡ p2 ≡ 1 (mod 8) et ( 2

a+b) =

−1 où p1p2 = a2 + b2.

Conclusion 2. La 2-partie de h est égale à 8 si, et seulement si,
l’une des conditions suivantes est vérifiée :

i) p1 ≡ 1, p2 ≡ 5 (mod 8), (p1

p2
) = 1 et (p1

p2
)4 = −(p2

p1
)4 = 1.

ii) p1 ≡ p2 ≡ 5 (mod 8), (p1

p2
) = −1 et (p1p2

2 )4(
2p1

p2
)4(

2p2

p1
)4 = −1.
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iii) p1 ≡ p2 ≡ 1 (mod 8), (p1

p2
) = −1 et ( 2

a+b) = −1 où p1p2 =

a2 + b2.

(2) d = 2p où p ≡ 1 (mod 4).

a) p ≡ 5 (mod 8).

Dans ce cas h(d) ≡ h(−d) ≡ 2 (mod 4) ([12]) et la norme
de l’unité fondamentale de Q(

√
2p) est égale à -1 (Proposition

2.2), alors la 2-partie de h est égale à 2, par conséquent ce cas
est à rejeter.

b) p ≡ 1 (mod 8).

D’après [5], p = a2 + 16b2 et selon [12], 4/h(d) et 4/h(−d) ou
2/h(d) et 4/h(−d), alors h2 = 8 si, et seulement si, h2(d) =
h2(−d) = 4 et Q = 1 ou h2(−d) = 2h2(d) = 4 et Q = 2 , dans
ce cas on a besoin du lemme suivant :

Lemme 4.1. On suppose que p ≡ 1 (mod 8), alors

i) h2(2p) = 4 si, et seulement si, (2
p)4 = (p

2)4 = −1 et la norme

de l’unité fondamentale de Q(
√

2p) est égale à −1.

ii) h2(2p) = 2 si, et seulement si, (2
p)4 = −(p

2)4 et la norme de

l’unité fondamentale de Q(
√

2p) est égale à 1.

iii) h2(−2p) = 4 si, et seulement si, (2
p)4 = −1.

Preuve. i) et ii) Conséquent de la Proposition 2.2.
iii) D’après [12] h2(−2p) = 4 si, et seulement si, 2 ne divise pas
b, la loi de réciprocité biquadratique ([13, Théorème 1]) implique
que (2

p)4 = (−1)b, il vient que h2(−2p) = 4 si, et seulement si,

(2
p)4 = −1.

Conclusion 3. La 2-partie de h est égale à 8 si, et seulement si,
d = 2p vérifie l’une des conditions suivantes :

– (2
p)4 = (p

2)4 = −1 et p ≡ 1 (mod 8).

– (2
p)4 = −(p

2)4 = −1 et p ≡ 1 (mod 8).

(3) d = pq où p ≡ −q ≡ 1 (mod 4). D’après [13] et [12]
C2(d) = C(2) ·C(2) si, et seulement si, (p

q ) = −1 où p ≡ 5 (mod 8) ;

et 4/h(−d) si, et seulement si, (p
q ) = 1, alors si (p

q ) = −1, h2(d) =
h2(−d) = 2, on a 8 ne divise pas h.
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a) p ≡ 5 (mod 8) et (p
q ) = 1.

Dans ce cas C2(d) = C(2) ·C(2) et Q=1 (Corollaire 3.2), alors
h2(d) = 2. Par suite h2 = 8 si, et seulement si, h2(−d) =
8. D’autre part, on sait d’après [12] que h2(−d) = 8 si, et
seulement si, (−q

p )4 = 1 et 16 ne divise pas h(−d). P. A. Leonard
et K. S. Williams ont donné dans [17, Théorème 2, p. 222] une
condition nécessaire et suffisante pour que h(−pq) soit divisible
par 16. Ils ont montré que si p ≡ 1 (mod 4), q ≡ 3 (mod 4),
(p

q ) = 1 et (−q
p )4 = 1, alors il existe X, Y et Z des entiers

naturels tels que :

pX2 − qY 2 − Z2 = 1, (1)

(X, Y ) = (Y, Z) = (Z, X) = 1, p ∤ Y Z, q ∤ XZ, (2)

X impair, Y pair, Z ≡ 1 (mod 4). (3)

De plus 16 divise h(−pq) si, et seulement si, (Z
p )4 = (2X

Z ).

Dans les cas suivants b) et c), h2 = 8 si, et seulement si, h2(d) =
h2(−d) = 4 et Q = 1.

b) p ≡ 1 (mod 8), q ≡ 3 (mod 8) et (p
q ) = 1.

D’après [13, paragraphe 5] p = u2 + 2v2 et q = w2 + 2z2 et
h2(d) = 4 si, et seulement si, l’un au moins des {(uz+vw

p ), ( q
p)4}

est égal à -1.

c) p ≡ 1 (mod 8), q ≡ 7 (mod 8) et (p
q ) = 1.

D’après [13, paragraphe 5] on a p = 2e2 − d2, q = 2r2 − s2 et
h2(d) = 4 si, et seulement si, l’un au moins des {( es+dr

p ), ( q
p)4}

est égal à -1.

Dans les deux cas b) et c) on a h2(−d) = 4 si, et seulement si,
(−q

p )4 = −1. Puisque p ≡ 1 (mod 8), donc (−q
p )4 = ( q

p)4, alors on a
la conclusion suivante :

Conclusion 4. h2 = 8 si, et seulement si, d vérifie l’une des condi-
tions suivantes :

– p ≡ 5 (mod 8), (p
q ) = −( q

p)4 = 1 et (Z
p )4 = −(2X

Z ), où X, Y
et Z sont des entiers naturels vérifient (1), (2) et (3).

– p ≡ 1 (mod 8), (p
q ) = −( q

p)4 = 1 et Q = 1.
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(4) d = 2q où q ≡ −1 (mod 4). D’après [12], h(d) est impair ;
et 8/h2(−d) si et seulement si q ≡ −1 (mod 16). Le Lemme 3.3
entrâıne que Q = 2, alors h2 = 8 si, et seulement si, q ≡ −1 (mod 16)
et 16 ne divise pas h(−d). Or P. A. Leonard et K. S. Williams ont
donné dans [16, Théorème 3, p. 205] une condition nécessaire et
suffisante pour que h(−q) soit divisible par 16. Ils ont montré que
si d = 2q où q = u2 − 2v2 ≡ −1 (mod 16), (u, v) ∈ N2 et u ≡ 1
(mod 16), alors

h(−2q) ≡ 0 (mod 16) ⇔
(

u

v

)

= 1.

Conclusion 5. La 2-partie de h est égale à 8 si, et seulement si q =
u2 − 2v2 ≡ −1 (mod 16), (u, v) ∈ N2, u ≡ 1 (mod 16) et (u

v ) = −1.

(5) d = q1q2 où q1 ≡ q2 ≡ −1 (mod 4) et (q1

q2

) = −(q2

q1

) = 1.

Dans ce cas, on a h(d) est impair ([21, lemme 5] et Q = 1 (Corollaire
3.2), alors h2 = 8 si, et seulement si, h2(−d) = 16. Nous trouvons
dans [13, p. 354] que 8/h(−d) si, et seulement si, q2 ≡ −1 (mod 8).
En conséquence, nous pouvons distinguer deux sous-cas :

a) d = q1q2 où q1 ≡ q2 ≡ −1 (mod 8) et ( q1

q2
) = −( q2

q1
) = 1.

Dans ce sous-cas, P. Kaplan a montré dans [13, Proposition
B′

12, p. 354] que 16/h(−d) si, et seulement si, ( e
q2

) = 1 où

q1q2 = 2e2 − d2. Par consequent h2 = 8 si, et seulement si,
( e

q2
) = 1 et 32 ∤ h(−d).

b) d = q1q2 où q1 ≡ 3 (mod 8), q2 ≡ −1 (mod 8) et ( q1

q2
) =

−( q2

q1
) = 1.

Dans ce sous-cas, P. Kaplan n’a pas caractérisé la divisibilité
de h(−d) par 16, mais K. Hardy et K. S. Williams ont prouvé
dans [10, Théorème 8, p. 194] que

h(−pq) ≡
{

0 (mod 16), si (k2X+lY
q2

) = 1 ;

8 (mod 16), si (k2X+lY
q2

) = −1.

Où

2q2 = k2X2 + 2lXY + 2mY 2 et q1 = l2 − 2k2m. (4)

En résumé nous avons.
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Théorème 4.2. Soient d un entier naturel sans facteurs carrés, K =
Q(

√
d,
√
−1), h le nombre de classes de K et K∗ le corps de genres

de K. Alors la 2-partie de h est égale à 8 et [K∗ : K] = 2 si et
seulement si d vérifie l’une des conditions suivantes :

a) d = p1p2 où p1 ≡ p2 ≡ 1 (mod 4) et l’une des conditions sui-
vantes est vérifiée :

i) p1 ≡ 1, p2 ≡ 5 (mod 8), (p1

p2
) = 1 et (p1

p2
)4 = −(p2

p1
)4 = 1.

ii) p1 ≡ p2 ≡ 5 (mod 8), (p1

p2
) = −1 et (p1p2

2 )4(
2p1

p2
)4(

2p2

p1
)4 =

−1.

iii) p1 ≡ p2 ≡ 1 (mod 8), (p1

p2
) = −1 et ( 2

a+b) = −1 où p1p2 =

a2 + b2.

b) d = 2p où p ≡ 1 (mod 8) et p vérifie l’une des conditions sui-
vantes :

i) (2
p)4 = (p

2)4 = −1.

ii) (2
p)4 = −(p

2)4 = −1.

c) d = pq où p ≡ −q ≡ 1 (mod 4) et l’une des conditions suivantes
est vérifiée :

i) p ≡ 5 (mod 8), (p
q ) = −( q

p)4 = 1 et (Z
p )4 = −(2X

Z ), où X, Y
et Z sont des entiers naturels vérifient (1), (2) et (3).

ii) p ≡ 1 (mod 8), (p
q ) = −( q

p)4 = 1 et Q = 1.

d) d = 2q où q = u2 − 2v2 ≡ −1 (mod 16), (u, v) ∈ N2, u ≡ 1
(mod 16) et (u

v ) = −1.

e) d = q1q2 où q1 ≡ −1 (mod 4), q2 ≡ −1 (mod 8), ( q1

q2
) = −( q2

q1
) =

1 et l’une des conditions suivantes est vérifiée :

i) q1 ≡ −1 (mod 8), ( e
q2

) = 1 où q1q2 = 2e2 − d2 et 32 ∤ h(−d).

ii) q1 ≡ 3 (mod 8), (k2X+lY
q2

) = 1 où 2q2 = k2X2 + 2lXY +

2mY 2, q1 = l2 − 2k2m et 32 ∤ h(−d).

4.3. Cas [K∗ : K] = 4

Dans ce cas
∏

p/DK

e(p) = 24, alors les formes possibles pour d sont :

1) d = p1p2p3 où p1 ≡ p2 ≡ p3 ≡ 1 (mod 4) ;
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2) d = 2p1p2 où p1 ≡ p2 ≡ 1 (mod 4) ;

3) d = 2pq où p ≡ −q ≡ 1 (mod 4) ;

4) d = 2q1q2 où q1 ≡ q2 ≡ −1 (mod 4) ;

5) d = pq1q2 où p ≡ −q1 ≡ −q2 ≡ 1 (mod 4) ;

6) d = q1q2q3 où q1 ≡ q2 ≡ q3 ≡ −1 (mod 4) ;

7) d = p1p2q où p1 ≡ p2 ≡ −q ≡ 1 (mod 4).

De la même façon que précédemment, on va étudier chaque cas.

(1) d = p1p2p3 où p1 ≡ p2 ≡ p3 ≡ 1 (mod 4). d = p1p2p3

implique que 4/h(d) et 8/h(−d), alors 16/h donc ce cas est à rejeter.

(2) d = 2p1p2 où p1 ≡ p2 ≡ 1 (mod 4). D’après [13], C2(d) et
C2(−d) sont de type (2, 2) si et seulement si au moins deux éléments
de {( 2

p1
), ( 2

p2
), (p1

p2
)} valent -1. Dans ce cas le Corollaire 3.6 montre

que Q = 1(la norme de l’unité fondamentale est égale à −1). On
conclut alors que la 2-partie de h est égale à 8 si, et seulement si, au
moins deux éléments de {( 2

p1
), ( 2

p2
), (p1

p2
)} valent -1.

(3) d = 2pq où p ≡ −q ≡ 1 (mod 4). Dans ce cas on a 2/h(d)
et 4/h(−d), alors h2 = 8 si, et seulement si







h2(−d) = 4h2(d) = 8 et Q = 1,
ou h2(−d) = h2(d) = 4 et Q = 1,
ou h2(−d) = 2h2(d) = 4 et Q = 2.

D’après [13, paragraphe 6 cas D = 2pq] et [13, paragraphe 11 cas
4] on a h2(d) = 2 si, et seulement si, p ≡ 5 (mod 8) ou (p

q ) = −1,

4/h2(d) si, et seulement si, p ≡ 1 (mod 8) et (p
q ) = 1 et h2(−d) = 4

si, et seulement si, deux ou trois des {(2
p), (2

q ), (p
q )} valent -1, alors

le cas h2(−d) = h2(d) = 4 ne peut pas se produire ; et h2(−d) =
2h2(d) = 4 si, et seulement si, deux ou trois des {(2

p), (2
q ), (p

q )} valent
-1. Les résultats de [13, paragraphe 11 cas 4 ] montrent que h2(−d) =
8 si, et seulement si, p ≡ −q ≡ 1 (mod 8), (p

q ) = −1 et 16 ne divise

pas p + q ou p ≡ 5 (mod 8), q ≡ −1 (mod 8) et (p
q ) = −(−q

2p )4 = 1.

Mais d’après Corollaire 3.5 si p ≡ −q ≡ 1 (mod 8) et (p
q ) = −1, alors

Q = 2. Enfin, on remarque que si Q = 2, alors il existe x et y tel que

±2 = x2 − 2pqy2, donc (2
p) = (±2

p ) = (x2−2pqy2

p ) = (x2

p ) = 1.
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Conclusion 6. La 2-partie de h est égale à 8 si, et seulement si, on
se trouve dans l’une des situations suivantes :

– p ≡ 1 (mod 8), q ≡ 3 (mod 8) et (p
q ) = −1.

– p ≡ 5 (mod 8), q ≡ −1 (mod 8) et (p
q ) = −(−q

2p )4 = 1.

(4) d = 2q1q2 où q1 ≡ q2 ≡ −1 (mod 4) et (q1

q2

) = −(q2

q1

) =

1. Dans ce cas on a 2/h(d) et 4/h(−d), alors h2 = 8 si, et seule-
ment si,







h2(−d) = 4h2(d) = 8 et Q = 1,
ou h2(−d) = h2(d) = 4 et Q = 1,
ou h2(−d) = 2h2(d) = 4 et Q = 2.

D’après [13, paragraphe 10, cas D = 2qq′] et [13, paragraphe 11,
cas 7] on a h2(d) = 2 si, et seulement si, ( 2

q1
) = −1 ou ( 2

q2
) = −1 ;

4/h2(d) si, et seulement si, q1 ≡ q2 ≡ −1 (mod 8) et h2(−d) = 4
si, et seulement si, q1 ≡ −1 (mod 8) et q2 ≡ 3 (mod 8), alors le cas
h2(−d) = h2(d) = 4 ne peut pas se produire ; et h2(−d) = 2h2(d) = 4
si, et seulement si, q1 ≡ −1 (mod 8) et q2 ≡ 3 (mod 8). Mais cette
dernière condition ne peut pas se produire avec Q = 2, en effet
supposons que Q = 2, alors il existe deux entiers rationnels x et
y tels que ±2 = x2 − dy2, ce qui entrâıne (±2

q1
) = (±2

q2
) = 1, donc

( 2
q1

) = ( 2
q2

) = ±1 ; et ce qui n’est pas le cas. Les résultats de [13,
paragraphe 11 cas 7] montrent que h2(−d) = 8 si, et seulement si,
l’une des conditions suivantes est vérifiée :

– q1 ≡ q2 ≡ 3 (mod 8) et ( 2
|X+lY |) = −1.

– q1 ≡ 3 (mod 8), q2 ≡ −1 (mod 8) et ( |k
2X+Y 2|

q2
) = −1.

Où X, Y , k et l des entiers vérifient l’equation (4). Mais la première
condition ne peut pas se produire avec Q = 1 (Corollaire 3.5) ; or,
puisque q1q2 ≡ 5 (mod 8), alors dans la deuxième condition on a
Q = 1 (Corollaire 3.2).

Conclusion 7. La 2-partie de h est égale à 8 si, et seulement si,

q1 ≡ 3 (mod 8), q2 ≡ −1 (mod 8) et ( |k
2X+Y 2|

q2
) = −1 où 2q2 =

k2X2 + 2lXY + 2mY 2 et q1 = l2 − 2k2m.

(5) d = pq1q2 où p ≡ −q1 ≡ −q2 ≡ 1 (mod 4) et (q1

q2

) =

−(q2

q1

) = 1. On sait, d’après le résultat de Gauss que 2/h(d) et



DÉTERMINATIONS DES CORPS 107

8/h(−d), alors h2 = 8 si, et seulement si, h2(d) = 2, h2(−d) = 8 et
Q = 2. En utilisant les mêmes techniques qui se trouve dans [13], on
trouve la proposition suivante :

Proposition 4.3. Soient p, q1 et q2 trois nombres premiers tels que
p ≡ −q1 ≡ −q2 ≡ 1 (mod 4) et ( q1

q2
) = −( q2

q1
) = 1, alors C2(−pq1q2)

est de type (2, 2, 2) si, et seulement si, l’une des conditions suivantes
est vérifiée :

∗
(

p

q1

)

.

(

p

q2

)

= −1,

(

2

p

)

= 1,

(

2

q1

)

=

(

2

q2

)

= −1.

∗
(

p

q1

)

=

(

p

q2

)

= −1,

(

2

p

)

= 1,

(

2

q1

)

.

(

2

q2

)

= −1.

∗
(

p

q1

)

.

(

p

q2

)

= −1,

(

2

p

)

= 1,

(

2

q1

)

= 1,

(

2

q2

)

= −1.

∗
(

p

q1

)

= 1,

(

p

q2

)

= −1,

(

2

p

)

= −1,

(

2

q1

)

=

(

2

q2

)

= 1.

∗
(

p

q1

)

= −1,

(

p

q2

)

= 1,

(

2

p

)

= −1,

(

2

q1

)

=

(

2

q2

)

= −1.

∗
(

p

q1

)

=

(

p

q2

)

=

(

2

p

)

= −1,

(

2

q1

)

.

(

2

q2

)

= −1.

∗
(

p

q1

)

= 1,

(

2

q2

)

= −1,

(

2

p

)

= −1,

(

2

q1

)

= −1,

(

2

q2

)

= 1.

∗
(

p

q1

)

= −1,

(

p

q2

)

= 1,

(

2

p

)

= −1,

(

2

q1

)

= 1,

(

2

q2

)

= −1.

Preuve. Les caractères génériques sont (m
p ), (m

q1
), (m

q2
) et (−1

m ).

Posons ε1 = ( p
q1

) = ( q1

p ), ε2 = ( p
q2

) = ( q2

p ), ε3 = (2
p), ε4 = ( 2

q1
),

ε5 = ( 2
q2

). Les formes ambiguës simples sont équivalentes à :

f = [1, 0, pq1q2], g1 = [p, 0, q1q2], g2 = [q1, 0, pq2], g3 = [q2, 0, pq1].

h =

[

2, 1,
1 + pq1q2

2

]

, k1 =

[

2p, p,
p + q1q2

2

]

,

k2 =

[

2q1, q1,
q1 + pq2

2

]

, k3 =

[

2q2, q2,
q2 + pq1

2

]

.
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Le tableau des caractères de ces formes est :

f g1 g2 g3 k1 k2 k3 h
(

m

p

)

1 ε1ε2 ε1 ε2 ε1ε2ε3 ε1ε3 ε3ε2 ε3
(

m

q1

)

1 ε1 −ε1 −1 ε4ε1 −ε4ε1 −ε4 ε4
(

m

q2

)

1 ε2 1 ε2 ε2ε5 ε5 ε2ε5 ε5
(−1

m

)

1 1 −1 −1 ε3ε4ε5 −ε3ε4ε5 −ε3ε4ε5 ε3ε4ε5

On sait, d’après le résultat de Gauss que C2(−d) est le produit de
3 groupes cycliques, alors C2(−d) est de type (2, 2, 2) si, et seulement
s’il n’y a pas de forme ambiguë simple autre que f dans le genre
principal, c’est équivalent de dire que les formes autre que f prennent
la valeur -1 au moins pour un caractère, alors C2(−pq1q2) est de type
(2, 2, 2) si, et seulement si, l’une des conditions de la proposition
est vérifiée.

Si d = pq1q2 où p ≡ −q1 ≡ −q2 ≡ 1 (mod 4) et ( q1

q2
) = −( q2

q1
) = 1,

on dit que d est de type 1, si p, q1 et q2 vérifient l’une des trois
premières conditions de la Proposition 4.3 et de type 2, dans le cas
où d vérifie l’une des cinq dernières conditions de la proposition 4.3.

D’après [13, paragraphe 9, cas D = pqq′] on a : h2(d) = 2 si, et
seulement si, ε1 = ( p

q1
) = −1 ou ε2 = ( p

q2
) = −1 et puisque d ≡ 1

(mod 4), alors Q = 1 (Corollaire 3.2). On conclut facilement que
h2 = 8 si, et seulement si, p, q1 et q2 vérifient l’une des conditions de
la Proposition 4.3.

(6) d = q1q2q3 où q1 ≡ q2 ≡ q3 ≡ −1 (mod 4). On sait,
d’après le résultat de Gauss que 4/h(d) et 4/h(−d), alors h2 = 8 si, et
seulement si, h2(d) = h2(−d) = 4 et Q = 1. La proposition suivante
donne les conditions nécessaires et suffisantes pour que h2(−d) = 4.

Proposition 4.4 ([8, Théorème 1, p. 5 et 6]). Soient q1, q2 et q3

trois nombres premiers congrus à 3 modulo 4, alors C2(−q1q2q3) =
C(≥ 4) · C(2) si, et seulement si, l’une des conditions suivantes
est vérifiée :
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∗
(

q3

q1

)

=

(

q2

q1

)

= −1.

∗
(

q2

q3

)

=

(

q2

q1

)

= 1.

∗
(

q3

q1

)

= −
(

q2

q3

)

= 1.

De plus C2(−q1q2q3) est de type (2, 2) si, et seulement si

(

q2

q3

)

=
(

q3

q1

)

=

(

q1

q2

)

.

Soit r4(m) le 4-rang du 2-groupe de classes de Q(
√

m) où m est
un entier naturel sans facteurs carrés. P. Damey and J. Payan ont
montré dans [9] que

r4(m) ≤ r4(−m) ≤ r4(m) + 1. (5)

Si, C2(−q1q2q3) est de type (2, 2), alors r4(−q1q2q3) = 0, par suite
r4(q1q2q3) = 0 ; et comme le 2-groupe de classes de Q(

√
q1q2q3) est

le produit de deux groupes cycliques, on peut voir qu’il est aussi de
type (2, 2).

Finalement, si d = q1q2q3 où q1 ≡ q2 ≡ q3 ≡ −1 (mod 4), alors
h2 = 8 si, et seulement si, ( q2

q3
) = ( q3

q1
) = ( q1

q2
) et Q = 1. La deuxième

condition est nécessaire, car il existe des nombres premiers qi vérifiant
la première condition et h2 ≥ 16. Par exemple d = 627 = 3 · 11 · 19,
on a (11

19) = (19
3 ) = ( 3

11) = 1 et h2 = 16.

(7) d = p1p2q où p1 ≡ p2 ≡ −q ≡ 1 (mod 4). On sait,
d’après le résultat de Gauss que le 2-groupe de classes de Q(

√
d) et

de Q(
√
−d) est le produit de deux groupes cycliques, ainsi 4/h(d)

et 4/h(−d), alors h2 = 8 si, et seulement si, h2(d) = h2(−d) = 4 et
Q = 1. Or d’après [13, Cas 3, p. 351] nous avons que C(−d) ≃ (2, 2)
si, et seulement si, deux ou trois des valeurs {(p1

p2
), (p1

q ), (p2

q )} valent
−1. Dans cette situation on peut montrer que

Q = 1 ⇔ p1 ou p2 ≡ 5 (mod 8).

En effet, Soit εd = x + y
√

p1p2q l’unité fondamentale de Q(
√

p1p2q).

Rappelons que si d est un entier sans facteurs carrés et ε = a + b
√

d
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l’unité fondamentale de Q(
√

d) où a et b sont des entiers ou bien
demi-entiers, alors si ε est de norme 1, 2(a±1) et 2d(a±1) ne sont pas
des carrés dans Q. (pour la preuve de cette remarque voir [3, lemme
5, p. 386]). Alors dans notre situation, nous prenons d = p1p2q et
ε = εd. Comme q ≡ −1 (mod 4), alors (x, y) ∈ Z2 et x2 − p1p2qy

2 =
1. D’où (x + 1)(x − 1) = p1p2qy

2. Du fait que (x + 1) − (x − 1) = 2,
le plus grand commun diviseur de x + 1 et x − 1 est un diviseur de
2. Par suite il existe (y1, y2) ∈ Z2 tel que

{

x + 1 = pi1
1 pi3

2 qj12iy2
1,

x − 1 = pi2
1 pi4

2 qj22iy2
1,

où
{

i ∈ {0, 1}, i1 + i2 = i3 + i4 = j1 + j2 = 1 ;
2iy1y2 = y, (i1 + i3 + j1, i2 + i4 + j2) ∈ {1, 2}2, si i = 1.

Supposons que Q = 1, alors x + 1 et x− 1 ne sont pas des carrés
dans N (voir [2]), ceci est équivalent à

i1 + i3 + j1 + i 6= 0 et i2 + i4 + j2 + i 6= 0.

Dans notre situation, on a i = 0, car si nous prenons, par exemple le
cas où

{

x + 1 = 2p1y
2
1,

x − 1 = 2p2qy
2
1,

nous trouvons facilement que

(

1

p1

)

=

(

(x − 1)/2 − (x + 1)/2

p1

)

=

(

p2

p1

) (

q

p1

)

= 1;

(

1

p2

)

=

(

(x − 1)/2 − (x + 1)/2

p2

)

=

(

p1

p2

)

= 1.

Ceci est évidemment contradictoire avec le fait que deux ou trois
des valeurs {(p1

p2
), (p1

q ), (p2

q )} valent −1. Les autres cas nous donnent
la même contradiction, c’est-à-dire que nous avons toujours i = 0.
Prenons, par exemple, le cas où

{

x + 1 = p1p2y
2
1,

x − 1 = qy2
1,
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Nous trouvons de la même façon que précédemment que
(

2

p1

)

=

(

(x − 1) − (x + 1)

p1

)

=

(

q

p1

)

;

(

2

p2

)

=

(

(x − 1) − (x + 1)

p2

)

=

(

q

p2

)

.

Comme deux ou trois des valeurs {(p1

p2
), (p1

q ), (p2

q )} valent −1, alors
p1 ou p2 ≡ 5 (mod 8). Les autres cas nous donnent le même résultat.

Inversement, si p1 ou p2 ≡ 5 (mod 8), alors le Corollaire 3.2 en-
trâıne que Q = 1.

Si, C2(−p1p2q) est de type (2, 2), alors r4(−p1p2q) = 0, par suite
l’inégalité (5) prouve que r4(p1p2q) = 0 ; et comme le 2-groupe de
classes de Q(

√
p1p2q) est le produit de deux groupes cycliques, on

peut voir qu’il est aussi de type (2, 2).
Finalement, si d = p1p2q où p1 ≡ p2 ≡ −q3 ≡ 1 (mod 4), alors

h2 = 8 si, et seulement si, p1 ou p2 ≡ 5 (mod 8) et si deux ou trois
des valeurs {(p1

p2
), (p1

q ), (p2

q )} valent −1.

Théorème 4.5. Soient d un entier naturel sans facteurs carrés, K =
Q(

√
d,

√
−1), h le nombre de classes de K et K∗ le corps de genres

de K. Alors la 2-partie de h est égale à 8 et [K∗ : K] = 4 si, et
seulement si, d vérifie l’une des conditions suivantes :

a) d = 2p1p2 où p1 ≡ p2 ≡ 1 (mod 4) et au moins deux éléments de
{( 2

p1
), ( 2

p2
), (p1

p2
)} valent −1.

b) d = 2pq où p ≡ −q ≡ 1 (mod 4) et l’une des conditions suivante
est vérifie :

- p ≡ 1 (mod 8), q ≡ 3 (mod 8) et (p
q ) = −1.

- p ≡ 5 (mod 8), q ≡ −1 (mod 8) et (p
q ) = −(−q

2p )4 = 1.

c) d = 2q1q2 où q1 ≡ 3 (mod 8), q2 ≡ −1 (mod 8),( q1

q2
) = −( q2

q1
) =

1, ( |k
2X+Y 2|

q2
) = −1, 2q2 = k2X2+2lXY +2mY 2 et q1 = l2−2k2m.

d) d = pq1q2 où ( q1

q2
) = −( q2

q1
) = 1, p ≡ −q1 ≡ −q2 ≡ 1 (mod 4), et

p, q1 et q2 vérifient l’une des conditions de la Proposition 3.1.

e) d = q1q2q3 où q1 ≡ q2 ≡ q3 ≡ −1 (mod 4),

(

q2

q3

)

=

(

q3

q1

)

=
(

q1

q2

)

et Q = 1.
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f) d = p1p2q où p1 ou p2 ≡ 5 (mod 8), q ≡ 3 (mod 4) et deux ou
trois des valeurs {(p1

p2
), (p1

q ), (p2

q )} valent −1.

4.4. Cas K∗ = K

Dans ce cas h2 = 8 si, et seulement si, d = p où p un nombre
premier congru à 1 modulo 8 de la forme p = x2 + 32y2 et h2(−p) =
16. Pour plus de détails on peut voir [1, p. 84].

5. Structure du 2-groupe de classes de K dont le
nombres de classes est 8

Lemme 5.1 ([18]). Le rang du 2-groupe de classes de K est :







































s + s0 Si d est pair et p ≡ 1 (mod 8) pour tout p ∈ S0.
s + s0 − 1 Si d est pair et il existe p ∈ S0 tel que p ≡ 5

(mod 8)
ou d est impair et p ≡ 1 (mod 8) pour tout
p ∈ S0.

s + s0 − 2 Si d est impair et il existe p ∈ S0 tel que p ≡ 5
mod 8.

1. s = |S| et S est l’ensemble des premiers impairs ramifiés dans
Q(

√
d) ;

2. s0 = |S0| où S0 est le sous-ensemble de S contenant tous les
premiers congrues à 1 modulo 4.

Théorème 5.2. Soit d un entier naturel sans facteurs carrés, K =
Q(

√
d,
√
−1). Alors C2 est de type (2, 4) si, et seulement si, d vérifie

l’une des conditions suivantes :

(a) d = p1p2 où p1 ≡ p2 ≡ 1 (mod 4) et l’une des conditions sui-
vantes est vérifiée :

(i) p1 ≡ 1, p2 ≡ 5 (mod 8), (p1

p2
) = 1 et (p1

p2
)4 = −(p2

p1
)4 = 1.

(ii) p1 ≡ p2 ≡ 5 (mod 8), (p1

p2
) = −1 et (p1p2

2 )4(
2p1

p2
)4(

2p2

p1
)4 =

−1.

(b) d = 2p où p ≡ 1 (mod 8) et p vérifie l’une des conditions sui-
vantes :
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i) (2
p)4 = (p

2)4 = −1.

ii) (2
p)4 = −(p

2)4 = −1.

(c) d = pq où p ≡ 1 (mod 8), (p
q ) = −( q

p)4 = 1 et Q = 1.

(d) d = 2pq où p ≡ 5 (mod 8), q ≡ −1 (mod 8) et (p
q ) = −(−q

2p )4 =
1.

(e) d = pq1q2 où ( q1

q2
) = −( q2

q1
) = 1, p ≡ −q1 ≡ −q2 ≡ 1 (mod 4) et

d est de type 2.

(f) d = q1q2q3 où q1 ≡ q2 ≡ q3 ≡ −1 (mod 4), ( q2

q3
) = ( q3

q1
) = ( q1

q2
) et

Q = 1.

(g) d = 2q1q2 où q1 ≡ 3(mod 8), q2 ≡ −1(mod 8), ( q1

q2
)= −( q2

q1
) = 1,

( |k
2X+Y 2|

q2
) = −1, 2q2 = k2X2+2lXY +2mY 2 et q1 = l2−2k2m.

Preuve. Puisque C2 est de type (2, 4), alors h2 = 8, donc d peut
prendre les formes du Théorème 4.2 ou 4.5 avec des conditions sur
chaque forme. Si on a les formes 2q, q1q2 alors C2 est cyclique, par
exemple pour d = 2q et d’après le lemme précédent le rang de C2 est
égal à s + s0 où s = 1 et s0 = 0, il reste les autres formes :

a) d = p1p2 où p1 ≡ p2 ≡ 5 (mod 8) ou p1 ≡ p2 ≡ 5 (mod 8),
alors s = s0 = 2 et le rang de C2 est égal à s + s0 − 2 = 2,
donc C2 est de type (2, 4).

b) d = 2p où p ≡ 1 (mod 8), alors s = s0 = 1 et le rang de C2

est égal à s + s0 = 2, donc C2 est de type (2, 4).

c) d = pq où p ≡ −q ≡ 1 (mod 4), alors s = 2, s0 = 1 et
s + s0 = 3, donc C2 est de type (2, 4) si, et seulement si,
p ≡ 1 (mod 8).

d) Puisque p ≡ 5 (mod 8), alors s = 2, s0 = 1 et le rang de
C2 est s + s0 − 1 = 2, donc C2 est de type (2, 4).

e) d = pq1q2 où ( q1

q2
) = −( q2

q1
) = 1 et p ≡ −q1 ≡ −q2 ≡ 1

(mod 4), et d est de type 2, alors s = 3, s0 = 1 et le rang
de C2 est égal à s + s0 − 2 = 2, donc C2 est de type (2, 4).

f) et g) Puisque q1 ≡ q2 ≡ q3 ≡ −1 (mod 4), alors s = 3, s0 = 0 et
le rang de C2 est égal à s + s0 − 1 = 2, donc C2 est de type
(2, 4).
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De la même façon on a le théorème suivant.

Théorème 5.3. Soit d un entier naturel sans facteurs carrés, K =
Q(

√
d,
√
−1). Alors C2 est de type (2, 2, 2) si, et seulement si, d

vérifie l’une des conditions suivantes :

a) d = p1p2 où (p1

p2
) = −1, p1 ≡ p2 ≡ 1 (mod 8) et ( 2

a+b) = −1 avec

p1p2 = a2 + b2.

b) d = 2p1p2 où p1 ≡ p2 ≡ 1 (mod 4) et au moins deux éléments de
{( 2

p1
), ( 2

p2
), (p1

p2
)} valent −1.

c) d = 2pq où p ≡ 1 (mod 8), q ≡ 3 (mod 8) et (p
q ) = −1.

d) d = pq1q2 où ( q1

q2
) = −( q2

q1
) = 1, p ≡ −q1 ≡ −q2 ≡ 1 (mod 4) et d

est de type 1.

e) d = p1p2q où p1 ou p2 ≡ 5 (mod 8), q ≡ 3 (mod 4) et deux ou
trois des valeurs {(p1

p2
), (p1

q ), (p2

q )} valent −1.

6. Exemples numériques

À l’aide du programme GP/PARI ([6]), on va donner des en-
tiers sans facteurs carrés tels que le 2-groupe de classes de K =
Q(

√
d,

√
−1) est de type (2, 4) ou (2, 2, 2).

d Forme Conditions [K∗ : K] C2

3005 = 5 · 601 p1p2 théorème 5.2 ai 2 (2, 4)
2977 = 13 · 229 p1p2 théorème 5.2 aii 2 (2, 4)
2258 = 2 · 1129 2p théorème 5.2 bi 2 (2, 4)
2594 = 2 · 1297 2p théorème 5.2 bii 2 (2, 4)
2359 = 337 · 7 pq théorème 5.2 c 2 (2, 4)
2758 = 2 · 197 · 7 2pq théorème 5.2 d 4 (2, 4)
2905 = 5 · 7 · 783 pq1q2 théorème 5.2 e 4 (2, 4)
9051 = 3 · 7 · 431 q1q2q3 théorème 5.2 f 4 (2, 4)
2874 = 2 · 3 · 479 2q1q2 théorème 5.2 g 4 (2, 4)
1921 = 17 · 113 p1p2 théorème 5.3 a 2 (2, 2, 2)
1570 = 2 · 5 · 157 2p1p2 théorème 5.3 b 4 (2, 2, 2)
1398 = 2 · 233 · 3 2pq théorème 5.3 c 4 (2, 2, 2)
2937 = 89 · 3 · 11 pq1q2 théorème 5.3 d 4 (2, 2, 2)
13215 = 5 · 881 · 3 p1p2q théorème 5.3 e 4 (2, 2, 2)
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[20] A. Scholz, Über die Löbarkeit der Gleichung t2 − du2 = −4, Math.
Z. 39 (1934), 95–111.

[21] H. Taya and N. Terai, Determination of certain real quadratic fields
with class number two, Proc. Japan. Acad. 67 (1991), 139–144.

[22] H. Wada, On the class number and the unit group of certain algebraic
number fields, J. Fac. Univ. Tokyo. 13 (1966), 201–209.

Authors’ addresses:

Abdelmalek Azizi
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