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Abstract. We tackle the following problem: can one replace

a real matrix by a stochastic matrix without altering the order

relations between entries? We state a general criterion and a

convenient necessary condition. The motivation for this work

resides in applications to DNA word design.
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1. The problem

Studying certain information-theoretic problems [2] which arise in
DNA word design,1 we came upon the following “abstract” problem:

Problem 1.1: Assuming a real (k × h)-matrix S = {si,j} is given,
one needs to replace it by a stochastic matrix W = {wi,j} in such a
way that the order relations between entries are all preserved: one
has to have si,j < sr,s, si,j = sr,s or si,j > sr,s in S iff one has
wi,j < wr,s, wi,j = wr,s or wi,j > wr,s in W , respectively; 1 ≤ i, r ≤ k,
1 ≤ j, s ≤ h.

In other words, the start-matrix S serves only to specify order rela-

1DNA word design is a form of error-correction coding which uses DNA strings
as codewords, and which is relevant in DNA computing; cf. e.g. [3]. Basically,
in [2] one wants to replace “easy-going” possibilistic models of channel noise
based on “pattern similarities” by means of more committal probabilistic models,
which are equivalent in the sense that they give rise to the same familty of error-
correcting codes; cf. also [7]; cf. e.g. [4] for possibility theory.
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tions,2 but what we actually need is a stochastic matrix, in which
the h non-negative components of each row sum exactly to 1. Such
a matrix W will be henceforth called equivalent to S.
An obvious necessary condition for stochasticity is the following: S
should not have strict domination between its rows: there cannot be
two rows i and s such that si,j ≥ ss,j for all j’s unless the two rows
coincide entry by entry. In the next Section 2, by slightly deepening
this argument, we shall provide a necessary condition for S to have
equivalent stochastic matrices. The condition is very simple to check,
but counter-example (1) in Section 2 will show that, unfortunately,
it is not sufficient.
As the discussion below will soon make clear, ours is basically a
problem of linear programming. In this paper we shall provide a
criterion for stochasticity at the same level of abstraction as the
celebrated Farkas lemma [6], cf. below Criterion 1, Section 4. Before,
however, we shall have to re-formulate conveniently our problem, cf.
Problem 3.3, Section 3, stating it in terms of ∆-matrices as defined
in Definition 3.1, Section 3.

2. A Simple Necessary Condition

Our problem of determining whether there exists a stochastic matrix
W equivalent to a given start-matrix S may be soon stated in terms
of a linear programming problem: we associate a variable to each
distinct entry of S, say w = (w1, . . . , wm)T ,3 and we impose the sum
of each row of P to be equal to one. Moreover, we impose order
constraints of the form wi < wi+1, for each i = 1, . . . , m− 1, and the
non-negativity constraint w ≥ 0 (actually, it is enough to require
w1 ≥ 0).

2To no real restriction the entries of S may be assumed to be non-negative
real numbers; to avoid trivial specifications, we shall also assume max si,j > 0
and k ≥ 2. One may even assume that the maximum entry is 1, and in this case
S is called a matrix of transition possibilities, cf. [2] and [7]. By the way, ours is
not a problem of qualitative probabilities as in [5], since compound events do not
play any role whatsoever.

3We denote column-vectors in boldface, and interpret equalities and inequal-
ities of vectors componentwise; the superscript T denotes matrix transposition;
a real number written in boldface stands for the corresponding constant column-
vector.
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For example, consider the start-matrix S =

(

1 1 2 3
3 3 2 1

)

and

consider three variables w1, w2, w3 associated respectively to 1,2, and
3. Then, the associated linear programming problem is given by
the equations

{

2w1 + w2 + w3 = 1
w1 + w2 + 2w3 = 1

subject to 0 ≤ w1 < w2 < w3. In this case, as soon checked, the
solution set is empty. By the way, one may forget about the non-
negativity requirement w1 ≥ 0: if one gets a matrix Σ with the same
order relations as in S and with each row sum equal to 1, but with
negative entries, one just increments all the entries of Σ by the same
constant quantity so as to have non-negativity, and then normalises
to obtain the desired stochastic matrix W . In the next Section we
shall find it convenient to re-cast the linear programming problem
in a different way.

The matrix S one starts with might be far from stochasticity,
indeed. For example the minimum in row a might be strictly greater
than the maximum in row b. Even without going that far, general
matrices S may freely have domination between their rows, while
stochastic matrices have it only in the limit case when two rows
coincide. Actually, in a stochastic matrix row-domination never oc-
curs however the two rows are permuted, unless the two rows are a
permutation of each other. In practice, one has only to check that
there is no domination after ordering rows to be ensured that there
never will be however one permutes the row entries, as the following
lemma shows:

Lemma 2.1. Let row a dominate row b, and permute a and b to obtain

a∗ and b∗, respectively, in such a way as to have non-decreasing order

in both a∗ and b∗. Then a∗ dominates b∗.

Proof. To no restriction, assume the order of a is already ascending.
Take the first column index i such that bi > bi+1 (else b = b∗). One
has ai ≥ bi > bi+1 and ai+1 ≥ ai ≥ bi; so, after exchanging bi > bi+1,
a is still a dominating row. Now, one may re-arrange b to b∗ by
successive twiddles (exchanges between adjacent positions; think of
the bubble algorithm for sorting).
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Definition 2.2. In two rows of a matrix S there is an inversion

when, after re-arranging the rows with respect to the non-decreasing

order, there are two positions i and j with ai < bi, while aj > bj.

Theorem 2.3. For a matrix S to be equivalent to some stochastic

matrix, there must be at least one inversion in each couple of rows,

apart from couples of rows which are equal up to a permutation of

their entries. However, this condition is not a sufficient one.

Proof. The necessity has already been argued (the property of having
inversions is stable with respect to equivalence). As for a counterex-
ample, take the three-row matrix





a a d d
b c c c
a c c d



 (1)

with 0 ≤ a < b < c < d; the three rows are already properly arranged
in non-decreasing order. In rows 1 and 2 there is an inversion in
positions (columns) 1 and 3, in rows 1 and 3 there is an inversion
in positions 2 and 3, while in rows 2 and 3 there is an inversion in
positions 1 and 4. However, the linear programming problem which
one has to solve is

a < b < c < d , 2a + 2d = 1 , b + 3c = 1 , a + 2c + d = 1 ,

whose solution set is empty: actually, the last two equations (after
replacing a+d by 1/2, cf. the first equation) give b = c = 1/4, while
one should have b < c.

It is no coincidence that the counter-example4 put forward in
the proof is a three-row matrix: one can prove that the condition
specified in Theorem 2.3 is also sufficient for two-row matrices (the
proof is deferred to Section 4, when the result can be obtained in a
much quicker way than we might do now, cf. Corollary 4.3).

When the number of rows is 3 or more, we miss a criterion for
equivalence. In the next two sections we shall re-cast our problem,

4Applications to DNA word design deal mainly with matrices A such that
the row-maxima are all equal: our counterexample can be soon re-cycled to this
situation, just assume e > a, b, c, d and add an all-e column.



STOCHASTICITY OF MATRICES 59

and show that it is quite general, indeed. We shall provide a cri-
terion for its solution, Criterion 1. However, given the generality
of the problem, the criterion we provide is certainly not “simple”
in the sense of the necessary condition given in Theorem 2.3, which
requires checking rows two at a time. In a way, Criterion 1 still
uses “inversions”, but they are definitely more complex than those
of Definition 2.2. An interesting problem not tackled here would
be finding simple sufficient conditions, to be set aside the simple
necessary condition as in Definition 2.2.

3. A Re-Casting of the Problem in Terms of

∆-Matrices

As shown in the preceding Section, ours is a linear programming
problem: to any start-matrix S we have associated a system of linear
equalities and inequalities in the m variables w = w1, . . . , wm, which
correspond to the distinct entries in the start-matrix S. We move
to an alternative and more convenient formulation, which makes it
clear that we are dealing with a very general problem, indeed. Along
the way, we shall also show how one can get rid of strict inequality
constraints, so as to use standard linear-programming algorithms [1].

Consider the consecutive differences among elements of w: xi =
wi+1−wi, for i = 1, . . . , m−1; one has wk = w1 +

∑k−1

i=1
xk. Clearly,

the system of equalities can be re-written in the form [m, A](w1,x) =
1, with x = (x1, . . . , xm−1)

T . Since wi+1 > wi, one has xi > 0
( (w1,x) denotes a column vector whose top component is w1). Ac-
tually, it is enough to deal with the system Ax = 1, x > 0: once
the shorter system has solution, so has the original system, set e.g.
w1 = 0 (use the fact the left-most column m is constant). So, A is
a matrix whose entry ai,j counts the number of occurrences of the
unknown increment xj−1 in the ith row (equation); a straightforward
consequence of the definition is that, for each i, m ≥ ai,j ≥ ai,j+1.

For example, consider again the matrix S =

(

1 1 2 3
3 3 2 1

)

and

rewrite its associated equations as 2w1+w2+w3 → 4w1+2x1+x2 = 1
and w1 + w2 + 2w3 → 4w1 + 3x1 + 2x2 = 1. The corresponding ∆-

matrix is A =

(

2 1
3 2

)

.
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Definition 3.1. A ∆-matrix A is a matrix of non-negative integers,5

whose entries are arranged in non-increasing order in each row.

Definition 3.2. The ∆-matrix A associated to a matrix S is ob-

tained from its associated linear programming problem in the un-

knowns w1, w2, . . . , wm by setting xi = wi+1 − wi, 1 ≤ i ≤ m − 1.

Clearly, from any ∆-matrix one can go back to a matrix S by
just appending on the left a constant column whose repeated integer
entry is at least as large as the largest integer in the ∆-matrix. For

example, if one starts from the ∆-matrix A =





2 2 2
4 3 0
3 3 1



 and

appends the constant column 4, one re-obtains the counter-example
used in the proof of Theorem 2.3.

Thus, Problem 1.1 can be reformulated as follows, after passing
from the start-matrix S to its associated ∆-matrix, as in Defini-
tion 3.2:

Problem 3.3: Search for a solution6 of

Ax = 1, x > 0

where A is a ∆-matrix.

We pause for a detour. To get rid of strict inequality constraints,
as required by many standard software tools [1], one may use a trick
based on the fact that one has at the right of the equality sign a
constant column: just add another variable xm to x and another
column am = −1 to A to get Ax = 0, with A = [A;−1]. With
a homogeneous system one soon amends the flaw of having strict
inequalities: if the system Ax = 0 has a positive solution, it has

5In the sequel we shall tacitly rule out the case when there are all-zero rows.
By so doing, we are ruling out start-matrices S which have a constant row whose
entries are equal to the smallest entry. However, such a matrix would be trivial:
either it is constant, and then one can provide an equivalent stochastic matrix by
just normalising, or it has strict domination between rows, and then there cannot
be any equivalent stochastic matrix, as already argued.

6Clearly, what matters is only that the column at the right of the equality
sign is constant, and so one might replace 1 by any constant column-vector c,
with c > 0.
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a positive solution arbitrarily large, and so one can replace x > 0
by x ≥ 1.

Now, we proceed to show how general Problem 3.3 is. Think of a
problem like Cx = D, x > 0, where the coefficients of C and D are
strictly positive rationals; the column-vector D need not be constant.
Assume that we are able to solve Problem 3.3: then, a fortiori, we
are able also to solve the new problem, as we now argue. Clearly, one
can soon move to a system equivalent to Cx = D, x > 0 where all
the coefficient are integers. Moreover, if D is not constant, just take
a common multiple M of its integer entries di to obtain a constant
column-vector, and multiply the C-entries in row i by M/di to go
back to the situation above. If the rows are not properly ordered as
in Problem 3.3, one can use a trick. Say there are m unknowns, and
so the columns of C are numbered 1 to m. If column m − 1 (whose
entries are strictly positive) does not dominate column m, multiply
it by a positive rational coefficient km−1 which is large enough; if
column m − 2 does not dominate the new column m − 1, multiply
it by a positive rational coefficient km−2, and so on. Clearly, the
new system fits into the desired mould. In practice, dealing with
Problem 3.3 (or with Problem 1.1), is tantamount to dealing with
the very general7 problem of solving linear equations CX = D in a
“strictly positive universe”.

4. The Criterion for Stochasticity

In this Section we put forward a “geometric-flavoured” criterion
for stochasticity, which uses ∆-matrices. First, however, we
need to recall briefly some basic definitions and results in linear
programming [6].

A convex cone C is a subset of R
n closed for addition and multi-

plication by any non-negative scalar, i.e. such that x1,x2 ∈ C, α1, α2

≥ 0 ⇒ α1x1 + α2x2 ∈ C. An important class of convex cones are
the polyhedral cones, which are defined as the intersection of a finite
number of half-spaces: C = {y|ATy ≤ 0}. Equivalently, due to
the Minkowsky-Farkas-Weyl theorem [6], they are definable as the
set of non-negative linear combinations of a finite number of vectors

7As for the rationality constraints, one may get rid of them by using obvious
continuity arguments.
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a1, . . . ,am: C(A) = {z|z = Ax,x ≥ 0}, where the matrix A has
those m vectors as its columns. A convex set K is a subset of R

n

closed for convex combinations, i.e. xi ∈ K, λi ∈ R
+,

∑

λi = 1
implies

∑

λixi ∈ K. Clearly, every convex cone is a convex set. A
fundamental result is the following:

Theorem 4.1. Separating Hyperplane [6]. Let X, Y ⊆ R
n be two

convex sets with disjoint interiors. Then there exists a hyperplane

W , defined by its normal vector w, separating X from Y , i.e. such

that w · x ≥ 0 for all x ∈ X and w · y ≤ 0 for all y ∈ Y .

If one applies the previous theorem to the case in which X is a
convex set and Y is a point on the border ∂X of X, one soon obtains
the following:

Corollary 4.2. Supporting Hyperplane [6]. Let X be a convex set

and y ∈ ∂X. Then there exists a hyperplane W containing y , with

normal vector w, such that w · x ≥ 0 for all x ∈ X.

W is called a supporting hyperplane for X. Going back to our
problem, consider an n×m ∆-matrix A, m ≥ n, of rank n. Consider
now the cone C(A) spanned by the column vectors a1, . . . ,am of A,
i.e. C(A) = {z|z = Ax,x ≥ 0}. The existence of a positive solution
x > 0 to the equation Ax = 1 can be interpreted as the fact that 1
belongs to the interior of C(A).

Actually, the hypothesis of A having rank n is required for C(A)
to have a non-empty interior in R

n (otherwise it would be contained
in a proper subspace of dimension < n, which contains no open
subset of R

n). If A has rank less than n, we can always remove rows
that are linearly dependent.8

Applying the separating hyperplane theorem, we can obtain an
equivalent geometric condition for the existence of positive solutions
to Problem 3.3; we stress once more that the assumption on ranks
is not really restrictive:

Criterion 1. Let A be a ∆-matrix n × m, m ≥ n, of rank n.

8This operation does not alter the problem, because we can always suppose
that rank(A) = rank([A;1]), otherwise no solution to Ax = 1 exists. Hence,
solutions of a subsystem of maximal rank are also solutions to the original system.
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There exists a positive solution to Ax = 1 if and only if for every

hyperplane W defined by w · x = 0, with 1 ∈ W , there exist two

column vectors ai and aj of A such that w · ai < 0 and w · aj > 0.

Proof. Int(C(A)) 6= ∅ in R
n, as rank(A) = n, and 1 ∈ Int(C(A))

by the hypothesis. Hence, no hyperplane containing 1 can be a
support for C(A). This means that for each hyperplane W , 1 ∈ W ,
with normal w, there exist x1,x2 ∈ C(A) such that w · x1 < 0
and w · x2 > 0. Indeed, this must be true also for two generators
ai,aj of C(A). In order to prove the other implication, we first show

that 1 ∈ C(A), the closure of C(A). As C(A) is contained in the
positive orthant R

n
+, it is sufficient to prove that 〈1〉 ∩ C(A) ⊃ {0},

i.e. that the line 〈1〉 spanned by the vector 1 non-trivially intersects
the closure of C(A) (0 always belongs to the intersection). Suppose
not. Both C(A) and 〈1〉 are convex sets, hence for the hyperplane
separation theorem, there exists a hyperplane V , with normal v,
such that v · z ≥ 0 for each z ∈ C(A) and v · y ≤ 0 for each y ∈ 〈1〉.
But then 〈1〉 ⊆ V , as v · 1 and −v · 1 must have the same sign (one
has 1, −1 ∈ 〈1〉). This contradicts the condition specified in the
Criterion.

We finally prove that 1 ∈ Int(C(A)). The fact that rank(A) = n
implies that Int(C(A)) 6= ∅ in R

n. Now, suppose 1 ∈ ∂C(A). Then,
Corollary 4.2 implies that there exists a supporting hyperplane W
for C(A) containing 1, in contradiction with the condition of the
Criterion.

The “inversions” used in the criterion are certainly not as simple
as those in the necessary condition of Section 2. However, for a
two-row start-matrix S the criterion reduces to the existence of an
inversion as in Definition2.2:

Corollary 4.3. Let S be a start-matrix with two rows having an

inversion. Then there exists a stochastic matrix equivalent to it.

Proof. Let A be the ∆-matrix of S. If S has an inversion, then A
has two columns ai and aj such that ai1 > ai2 and aj1 < aj2. In fact,
if s1h > s2h and s1k < s2k, then |{j | s1j > s2h}| > |{j | s2j > s2h}|
and |{j | s1j > s1k}| < |{j | s2j > s1k}|.
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In R
2, the only hyperplane containing (1, 1) is the line (1,−1) ·

(x, y) = x − y = 0. From ai1 > ai2 and aj1 < aj2, we obtain
(1,−1) · ai > 0 and (1,−1) · aj < 0, hence Ax = 1 has a positive
solution due to the last Criterion.
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