
Rend. Istit. Mat. Univ. Trieste
Vol. XXXIX, 375–386 (2007)

On Hyperbolic π-Orbifolds with

Arbitrary many Singular Components

Andrei Vesnin (∗)

Summary. - We construct a family of (n + 1)-component links Ln

which are closures of rational 3-string braids (σ
−1/2
1 σ2

2)
n, and

show that for n ≥ 3 they arise as singular sets of hyperbolic π-
orbifolds. Moreover, their 2-fold branched coverings are described

by Dehn surgeries.

1. Introduction

The concept of a hyperelliptic involution came originally from the
theory of Riemann surfaces. Let Sg be a Riemann surface of genus
g, g > 1. An involution τ ∈ Iso+(Sg) is said to be hyperelliptic

if the quotient space Sg/〈τ〉 is homeomorphic to the 2-dimensional
sphere S2. A Riemann surface is said to be hyperelliptic if it admits a
hyperelliptic involution, i.e. if it can be obtained as a 2-fold branched
covering of S2. For properties of hyperelliptic Riemann surfaces see
[4].

This concept can be generalized to higher dimensions in the na-
tural way. Let M be an n-dimensional manifold. Suppose that there
exists an involution τ : M →M such that the quotient space M/〈τ〉
is homeomorphic to the n-dimensional sphere Sn. Then, τ is said
to be a hyperelliptic involution and M is said to be a hyperelliptic
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manifold. If M admits a geometric structure then we assume in the
definition that τ is an isometry.

Three-dimensional hyperelliptic manifolds are objects of a spe-
cial interest because of the relation with knot theory. If M is a
3-dimensional hyperelliptic manifold, with a hyperelliptic involution
τ , then M is the 2-fold branched covering of S3 branched over some
link (in particular, a knot) L. The covering is given by the action of
τ and each point of L has branching index 2. According to the ter-
minology of orbifold theory (see [16, 19]), this situation means that
M is the 2-fold covering of a π-orbifold O = S3(L) with underling
set S3 and singular set L with singular angle π at each point of L.

It is known that in the 3-dimensional case there are eight model
geometries: E3, H3, S3, H2 × E1, S2 × E1, Sol, Nil, and P̃SL(2,R)
[16, 19]. It was shown in [8] that for each of these geometries there
exist hyperelliptic manifolds (with τ be an isometry).

Examples of hyperbolic 3-manifolds of small volume admitting
one, two, or three hyperelliptic involutions can be found in [11];
we note that the maximal number of non-conjugate hyperelliptic
involutions of a hyperbolic manifold is nine, see [12], [6].

Let M be a hyperbolic hyperelliptic 3-manifold with hyperelliptic
involution τ . Then, the quotient π-orbifold M/〈τ〉 = S3(L) is also
hyperbolic.

A link L in S3 is said to be hyperbolic if the complement S3 \ L
is a hyperbolic manifold. We will say that L is π-hyperbolic if the
π-orbifold O = S3(L) is hyperbolic. Obviously, hyperbolicity of a
link does not imply π-hyperbolicity of it (for example, hyperbolic
2-bridge links are not π-hyperbolic).

Most of known examples of π–hyperbolic links have few com-
ponents. Among them are knots 818 and 949, 2-component link
102

138, knots and 3-component links arising as closed 3-string braids
(σ1σ

−1
2 )n, n ≥ 4 (here we use standard notations for knots and links

according to [15] and for braids according to [1]). Discussions of the
2-fold branched coverings of these knots and links can be found in
[9, 10, 11].

In the present paper, we construct explicit examples of π-hyper-
bolic links with an arbitrary number n of components, for any posi-
tive integer n. We will present quite simple examples of such a type.
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Figure 1: The rational braid σ
−1/2
1 σ2

2.

Moreover we describe the 3-manifolds that are the 2-fold branched
coverings of the links under consideration.

2. π-hyperbolic links

To define a family of links we start with the notion of a rational
3-string braid.

Let σ1 and σ2 be standard generators of the braid group B3 on
3 strings. Elements of B3 are of the form ω = σp1

i1
· · · σpk

ik
, where

i1, . . . , ik are equal to 1 or 2, and p1, . . . , pk are integers. To construct
a geometric braid corresponding to ω, with each multiplier σ

pj

ij
we

associate |pj| half-twists on strings ij and ij + 1 in the direction
depending of sign of pj. In other words, we are putting pj–tangle
with strings ij and ij + 1 as incoming arcs.

We generalize this construction in the following way (see also [7]).

Let pj and qj be coprime integers. By σ
pj/qj

ij
we denote the geomet-

rical object called a rational braid, which is obtained by putting
the rational pj/qj–tangle with strings ij and ij + 1 as incoming
arcs. The product of two rational braids is defined similarly to the

product of usual braids. Thus, an expression ω = σ
p1/q1

i1
· · · σ

pk/qk

ik
,

with i1, . . . , ik equal to 1 or 2, and pj and qj be coprime for each
j = 1, . . . , k, defines a rational braid obtained by putting rational
tangles in respect to each multiplier.

Consider a rational 3-string braid σ
−1/2
1 σ2

2 pictured in Figure 1.
Denote by Ln, n ≥ 1, the closure of the rational 3-string braid

(σ
−1/2
1 σ2

2)
n (see Figure 2, where the 4-component link L3 is pictured).

Obviously, Ln has (n + 1) components.

Theorem 2.1. For any integer n ≥ 3 the (n+ 1)-component link Ln

is π-hyperbolic.
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Figure 2: Link L3.
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Figure 3: Link R.

Proof. Let On = S3(Ln) be the π-orbifold with singular set Ln. By
the definition Ln has a cyclic symmetry ρ of order n which permutes

blocks σ
−1/2
1 σ2

2 . The symmetry ρ induces a cyclic symmetry of order
n of the orbifold On; we denote this symmetry also by ρ. The singular
set of the quotient orbifold O ′

n = On/〈ρ〉 is the 3-component link R
presented in the left part of Figure 3, i.e. O ′

n = S3(R). One of its
components is the image of the axis of ρ and has singularity index
n. Two other components are images of Ln and have singularity
index 2.

Using Reidemeister moves one can redraw R as in the right part
of Figure 3, and then as in the left part of Figure 4.

Let O ′′

n be the 2-fold covering of O ′

n, branched over one com-
ponent of R having singularity index 2. The singular set of O ′′

n is
the 2-component link Q presented in the right part of Figure 4, i.e.
O ′′

n = S3(Q). One its component, say Q1, has singularity index n,
and other, say Q2, has singularity index 2.

Now we construct a 2-fold covering of O ′′

n branched over Q2 as
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Figure 4: Links R and Q.
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Figure 5: Link Q.

follows. Using Reidemeister moves one can redraw Q as in the left
part of Figure 5, and then as in the right part of Figure 5.

Let us denote by O ′′′

n the 2-fold covering of O ′′

n branched over
Q2. The singular set of O ′′′

n is the 2-component link P presented
in Figure 6, i.e. O ′′′

n = S3(P). Both its component have singularity
index n.

Using Reidemeister moves P can be redrawn as in the left part
of Figure 7, and then as in the right part of Figure 7. Compar-
ing Figure 7 with the standard picture for a 2-bridge link (see, for
example [3, p. 195], one can conclude that P is the 2-bridge link

corresponding to the rational parameter 40/9 = 4 +
1

2 + 1
4

.

Thus O ′′′

n is the orbifold with the singular set the 2-bridge 40/9-
link and the singularity index n on both components. The hyper-
bolicity of orbifolds α/β(n) with singular set a 2-bridge knot or link
α/β and singularity index n is described in [2, Example A.0.2, p. 174]
and in [5]. In particular, α/β(n) is hyperbolic if α > 5, |β| > 1, and
n ≥ 3. Therefore, the orbifold O ′′′

n is hyperbolic if n ≥ 3. Since by
the construction O ′′′

n is commensurable with On, the π-orbifold On
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n

n

Figure 6: Link P.

Figure 7: Link P as the 2-bridge link 40/9.

is also hyperbolic, and the link Ln is π-hyperbolic for n ≥ 3.

Geometrical invariants of manifolds and orbifolds from the proof
can be found by using a computer program SnapPea [17]. Thus, one
can see that vol(S3 \R) = 7.70691 . . . and vol(S3 \P) = 8.51908 . . ..
Moreover, for initial values of n the following table of volumes holds:

n vol (S3 \ Ln) volOn volO ′

n volO ′′′

n

3 16.59112 . . . 2.56897 . . . 0.85632 . . . 3.42529 . . .

4 25.76187 . . . 5.60143 . . . 1.40036 . . . 5.60143 . . .

5 34.42142 . . . 8.32706 . . . 1.66541 . . . 6.66165 . . .

3. 2-fold branched coverings of links

In this section we will describe 3-manifolds Mn that are 2-fold cov-
erings of S3 branched over links Ln.
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Figure 8: Surgeries along the link Tn.

In [18] there was introduced a family of closed orientable 3-
manifolds Takahashi manifolds obtained by Dehn surgery with ra-
tional coefficients pk/qk and rk/sk, k = 1, . . . , n, on S3, along the
2n-component link Tn (see Figure 8) which is a closed chain of 2n
unknotted components. These manifolds have been studied and gen-
eralized in [7, 13].

A Takahashi manifold is said to be periodic when the surgery
coefficients have the same cyclic symmetry of order n as the 2n-
component link Tn, i.e. the coefficients are pk/qk = p/q and rk/sk =
r/s alternately, for k = 1, . . . , n. Let us denote such Takahashi mani-
fold by Mn(p/q; r/s). By [7, 18] the manifold Mn(p/q; r/s) is a 2-fold
branched covering of S3 branched over the link that is the closure of a

rational 3-string braid (σ
p/q
1 σ

r/s
2 )n. By the definition, if p/q = −1/2

and r/s = 2/1 then we get the link Ln from the previous section.
Therefore, the following description of 2-fold branched coverings of
Ln holds.

Proposition 3.1. For any n ≥ 1 the two-fold covering of S3

branched over Ln is the periodic Takahashi manifold Mn =
Mn(−1/2; 2/1).

In virtue [13, 18] the fundamental group of Mn(p/q; r/s) has the
following presentation:

〈x1, . . . , xn, y1, . . . , yn | y−p
i = xs

i−1x
−s
i ,

x−r
i = yq

i+1y
−q
i , i = 1, . . . , n〉,

where all indices are taken by mod n. Hence the following cyclic
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presentation holds:

π1(Mn(−1/2; 2/1)) = 〈x1, . . . , xn | w(xi, xi+1, xi+2) = 1,

i = 1, . . . , n〉.

with the defining word w(xi, xi+1, xi+2) = x2
i (xix

−1
i+1)

2(xix
−1
i−1)

2.

4. Covering diagram

To complete the discussion of links Ln and manifolds Mn let us
describe a covering diagram in which they are involved.

Before formulating the main result of this section we have to talk
about the types of n-fold cyclic branched coverings of links we want
to consider. Obviously, a knot has an unique n-fold cyclic branched
covering. Let L = K1 ∪ K2 be a link in the 3-sphere with two
components. Denote by π1(S

3 \ L) the fundamental group of the
link complement and by m1 and m2 meridians of the components
K1 ∪ K2 of the link, oriented in an arbitrary way. The homology
group H1(S

3 \ L) of the link complement is isomorphic to Z2 and
generated by the homology classes of the meridians. Each surjection
ψ : π1(S

3 \ L) → H1(S
3 \ L) → Zn onto the cyclic groups Zn of

order n defines a cyclic n-fold branched covering M = M(ψ) of S3

branched over L. According to [14] we call M a strictly–cyclic n-fold
covering of L if the corresponding surjection ψ maps (the homotopy
class of) meridians m1 and m2 of L to the same generator of the
cyclic group Zn. Note that strictly–cyclic coverings are also called
uniform coverings in [20].

Let us denote by M ′

n the strictly–cyclic n-fold covering of S3

branched over the 2-component 2-bridge link 40/9. Remark that
M ′

n is a generalized periodic Takahashi manifold in the sense of [13].

Theorem 4.1. For the above described manifolds and orbifolds the

following diagram of coverings holds:
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where singular sets Ln, R, Q, and P of orbifolds On, O ′

n, O ′′

n , and

O ′′′

n are presented in Figures 2, 3, 4, and 7, respectively.

Proof. By the proof of Theorem 2.1 and by Proposition 3.1 we al-
ready have the following sequences of coverings:

Mn
2

−→ On
n

−→ O ′

n

and

M ′

n
n

−→ O ′′′

n
2

−→ O ′′

n
2

−→ O ′

n.

Let us denote by Γ′

n the group of the orbifold O ′

n, i.e. O ′

n = H3/Γ ′

n.
Let α, β, and γ be generators of Γ′

n corresponding to generators of
π1(S

3 \ R) pictured in Figure 9.

Using the Wirtinger algorithm [3] one can see that Γ′

n has the
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following presentation:

〈α, β, γ | αn = 1, β2 = 1, γ2 = 1, βαγ = αγβ

α−1γβ−1α−1βγ−1β−1αγ−1α−1βγ ·

·β−1αβγ−1β−1αγα−1βγβ−1αβγ−1 = 1〉.

Consider a group

Hn = Zn ⊕ Z2 ⊕ Z2 = 〈a | an = 1〉 ⊕ 〈b | b2 = 1〉 ⊕ 〈c | c2 = 1〉

and define an epimorphism ϕn : Γ′

n → Hn by setting ϕn(α) = a,
ϕn(β) = b, ϕn(γ) = c. Let Γn, Γ′′

n, Γ′′′

n , Gn, and G′

n be such groups
that On = H3/Γn, O ′′

n = H3/Γ′′

n, O ′′′

n = H3/Γ′′′

n , Mn = H3/Gn, and
M ′

n = H3/G′

n.

For the covering O ′′

n → O ′

n a lift of the loop β is a trivial loop,
lifts α̃ and γ̃ of α and γ are loops about components of the singular
set Q of O ′′

n generating subgroups Zn and Z2, respectively. Thus,
Γ′′

n = ϕ−1
n (〈a|an = 1〉 ⊕ 〈c|c2 = 1〉). For the covering O ′′′

n → O ′′

n a
lift of the loop γ̃ is a trivial loop, a lift ˜̃α of the loop α̃ is a loop
about the singular set P of O ′′′

n generating subgroup Zn. Thus,
Γ′′′

n = ϕ−1
n (〈a|an = 1〉). For the covering M ′

n → O ′′′

n the preimage of
the loop ˜̃α is a trivial loop. Thus, G′

n = Ker(ϕn).

For the covering On → O ′

n a lift of the loop α is a trivial loop,
lifts β̂ and γ̂ of loops β and γ are loops about components of the
singular set Ln of On generating subgroups Z2 and Z2. Thus, Γn =
ϕ−1

n (〈b|b2 = 1〉 ⊕ 〈c|c2 = 1〉). For the group Z2 ⊕ Z2 = 〈b|b2 = 1〉 ⊕
〈c|c2 = 1〉 we denote d = b+ c and consider a group Z2 = 〈d|d2 = 1〉.
For the covering Mn → On loops β̂ and γ̂ lift to trivial loops. Thus,
Gn = ϕ−1

n (〈d|d2 = 1〉).

Therefore we get the following diagram of subgroups (where
A

m
−→ B denotes that A is a subgroup of B of index m)
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Γ′

n

Γn = ϕ−1
n (〈b〉 ⊕ 〈c〉) Γ′′

n = ϕ−1
n (〈a〉 ⊕ 〈c〉)

Gn = ϕ−1
n (〈d〉) Γ′′′

n = ϕ−1
n (〈a〉)

G′

n = Ker(ϕn)

XXXXXXXz

�������9

? ?

�������9

XXXXXXXz

n 2

2 2

2 n

that implies the diagram of coverings.
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