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On Hyperbolic 7m-Orbifolds with
Arbitrary many Singular Components

ANDREI VESNIN *)

SUMMARY. - We construct a family of (n + 1)-component links Ly,

which are closures of rational 3-string braids (01_1/203)", and
show that for n > 3 they arise as singular sets of hyperbolic -
orbifolds. Moreover, their 2-fold branched coverings are described
by Dehn surgeries.

1. Introduction

The concept of a hyperelliptic involution came originally from the
theory of Riemann surfaces. Let S, be a Riemann surface of genus
g, g > 1. An involution 7 € Isot(S,) is said to be hyperelliptic
if the quotient space S;/(7) is homeomorphic to the 2-dimensional
sphere S2. A Riemann surface is said to be hyperelliptic if it admits a
hyperelliptic involution, i.e. if it can be obtained as a 2-fold branched
covering of S2. For properties of hyperelliptic Riemann surfaces see
[4].

This concept can be generalized to higher dimensions in the na-
tural way. Let M be an n-dimensional manifold. Suppose that there
exists an involution 7 : M — M such that the quotient space M /(1)
is homeomorphic to the n-dimensional sphere S™. Then, 7 is said
to be a hyperelliptic involution and M 1is said to be a hyperelliptic
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manifold. If M admits a geometric structure then we assume in the
definition that 7 is an isometry.

Three-dimensional hyperelliptic manifolds are objects of a spe-
cial interest because of the relation with knot theory. If M is a
3-dimensional hyperelliptic manifold, with a hyperelliptic involution
7, then M is the 2-fold branched covering of S branched over some
link (in particular, a knot) L. The covering is given by the action of
7 and each point of L has branching index 2. According to the ter-
minology of orbifold theory (see [16, 19]), this situation means that
M is the 2-fold covering of a m-orbifold O = S3(L) with underling
set S and singular set L with singular angle 7 at each point of L.

It is known that in the 3-dimensional case there are eight model
geometries: E3, H3, S3, H2 x E!, S? x E!, Sol, Nil, and PSL(2,R)
[16, 19]. It was shown in [8] that for each of these geometries there
exist hyperelliptic manifolds (with 7 be an isometry).

Examples of hyperbolic 3-manifolds of small volume admitting
one, two, or three hyperelliptic involutions can be found in [11];
we note that the maximal number of non-conjugate hyperelliptic
involutions of a hyperbolic manifold is nine, see [12], [6].

Let M be a hyperbolic hyperelliptic 3-manifold with hyperelliptic
involution 7. Then, the quotient m-orbifold M/(r) = S3(L) is also
hyperbolic.

A link L in S? is said to be hyperbolic if the complement S3\ L
is a hyperbolic manifold. We will say that L is w-hyperbolic if the
m-orbifold © = S3(L) is hyperbolic. Obviously, hyperbolicity of a
link does not imply m-hyperbolicity of it (for example, hyperbolic
2-bridge links are not w-hyperbolic).

Most of known examples of m—hyperbolic links have few com-
ponents. Among them are knots 83 and 949, 2-component link
10%38, knots and 3-component links arising as closed 3-string braids
(o105 1)", n > 4 (here we use standard notations for knots and links
according to [15] and for braids according to [1]). Discussions of the
2-fold branched coverings of these knots and links can be found in
[9, 10, 11].

In the present paper, we construct explicit examples of m-hyper-
bolic links with an arbitrary number n of components, for any posi-
tive integer n. We will present quite simple examples of such a type.



m-ORBIFOLDS WITH MANY COMPONENTS 377

1/2 >
o &
7
b A
71/20%.

Figure 1: The rational braid o,

Moreover we describe the 3-manifolds that are the 2-fold branched
coverings of the links under consideration.

2. m-hyperbolic links

To define a family of links we start with the notion of a rational
3-string braid.

Let o1 and o9 be standard generators of the braid group Bs on
3 strings. Elements of B3 are of the form w = Jfll ---Jf :, where
i1,...,1% are equal to 1 or 2, and p1, ..., pr are integers. To construct
Z T we
associate |p;| half-twists on strings i; and i; + 1 in the direction
depending of sign of p;. In other words, we are putting p;—tangle
with strings ¢; and ¢; + 1 as incoming arcs.

We generalize this construction in the following way (see also [7]).
Let p; and g; be coprime integers. By Jf I /9 we denote the geomet-
rical object called a rational braid, which is obtained by putting
the rational p;/g;—tangle with strings i; and i; + 1 as incoming
arcs. The product of two rational braids is defined similarly to the
product of usual braids. Thus, an expression w = Jfll/ . Uf:/ K
with ¢1,...,7; equal to 1 or 2, and p; and g; be coprime for each
j = 1,...,k, defines a rational braid obtained by putting rational

tangles in respect to each multiplier.

a geometric braid corresponding to w, with each multiplier o

Consider a rational 3-string braid o, 1/ 20% pictured in Figure 1.
Denote by L£,,, n > 1, the closure of the rational 3-string braid
(0;1/2 03)" (see Figure 2, where the 4-component link £3 is pictured).

Obviously, £,, has (n + 1) components.

THEOREM 2.1. For any integer n > 3 the (n+ 1)-component link L,
1s w-hyperbolic.
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Figure 2: Link L3.
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Figure 3: Link R.

Proof. Let O, = S3(L,,) be the m-orbifold with singular set £,. By
the definition £,, has a cyclic symmetry p of order n which permutes
blocks o Y 20%. The symmetry p induces a cyclic symmetry of order
n of the orbifold O,,; we denote this symmetry also by p. The singular
set of the quotient orbifold O] = O,,/(p) is the 3-component link R
presented in the left part of Figure 3, i.e. O/ = S3(R). One of its
components is the image of the axis of p and has singularity index
n. Two other components are images of £, and have singularity
index 2.

Using Reidemeister moves one can redraw R as in the right part
of Figure 3, and then as in the left part of Figure 4.

Let O/ be the 2-fold covering of O, branched over one com-
ponent of R having singularity index 2. The singular set of O, is
the 2-component link Q presented in the right part of Figure 4, i.e.
O/ = 83(Q). One its component, say Qp, has singularity index n,
and other, say Q», has singularity index 2.

Now we construct a 2-fold covering of O,/ branched over Qy as
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Figure 5: Link Q.

follows. Using Reidemeister moves one can redraw Q as in the left
part of Figure 5, and then as in the right part of Figure 5.

Let us denote by O)” the 2-fold covering of O] branched over
Q3. The singular set of O, is the 2-component link P presented
in Figure 6, i.e. O} = S3(P). Both its component have singularity
index n.

Using Reidemeister moves P can be redrawn as in the left part
of Figure 7, and then as in the right part of Figure 7. Compar-
ing Figure 7 with the standard picture for a 2-bridge link (see, for
example [3, p. 195], one can conclude that P is the 2-bridge link

corresponding to the rational parameter 40/9 = 4 + T

4
Thus O] is the orbifold with the singular set the 2-bridge 40/9-

link and the singularity index n on both components. The hyper-
bolicity of orbifolds «/3(n) with singular set a 2-bridge knot or link
o/ and singularity index n is described in [2, Example A.0.2, p. 174]
and in [5]. In particular, a/B(n) is hyperbolic if & > 5, |3] > 1, and
n > 3. Therefore, the orbifold O, is hyperbolic if n > 3. Since by
the construction O, is commensurable with O,,, the m-orbifold O,,
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Figure 6: Link P.

Figure 7: Link P as the 2-bridge link 40/9.

7

is also hyperbolic, and the link £, is m-hyperbolic for n > 3. U

Geometrical invariants of manifolds and orbifolds from the proof
can be found by using a computer program SnapPea [17]. Thus, one
can see that vol(S3\ R) = 7.70691. .. and vol(S3\ P) = 8.51908... ..
Moreover, for initial values of n the following table of volumes holds:

n wol (S3\ L,) vol Oy, vol O}, vol O]

3 16.59112... 2.56897... 0.85632... 3.42529...
4 25.76187... 5.60143... 1.40036... 5.60143...
5 34.42142... 8.32706... 1.66541... 6.66165...

3. 2-fold branched coverings of links

In this section we will describe 3-manifolds M,, that are 2-fold cov-
erings of S3 branched over links £,,.
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Figure 8: Surgeries along the link 7,,.

In [18] there was introduced a family of closed orientable 3-
manifolds Takahashi manifolds obtained by Dehn surgery with ra-
tional coefficients py/qx and ri/sg, k = 1,...,n, on S, along the
2n-component link 7;, (see Figure 8) which is a closed chain of 2n
unknotted components. These manifolds have been studied and gen-
eralized in [7, 13].

A Takahashi manifold is said to be periodic when the surgery
coefficients have the same cyclic symmetry of order n as the 2n-
component link 7, i.e. the coefficients are py/qx = p/q and ri /s =
r/s alternately, for k = 1,...,n. Let us denote such Takahashi mani-
fold by M, (p/q;r/s). By [7, 18] the manifold M,,(p/q;r/s) is a 2-fold
branched covering of S3 branched over the link that is the closure of a
rational 3-string braid (Jf/qag/s)". By the definition, if p/qg = —1/2
and r/s = 2/1 then we get the link £,, from the previous section.
Therefore, the following description of 2-fold branched coverings of

L, holds.

PROPOSITION 3.1. For any n > 1 the two-fold covering of S3

branched over L, is the periodic Takahashi manifold M, =
M, (—1/2;2/1).

In virtue [13, 18] the fundamental group of M, (p/q;r/s) has the
following presentation:

-pP __ .8 —S
<x17---7xn7y17"'7yn ’ yz _xi—lxi )

- .q ,—q
v =YY i=1,...,n),

where all indices are taken by mod n. Hence the following cyclic
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presentation holds:

7T1(Mn(—1/2?2/1)) = <9017 <oy T \ w(ﬂci,wz‘+1,$i+2) =1,

i=1,...,n).

with the defining word w(x;, x;y1,Tit2) = x?(xlx;ll)Q(xlx;_ll)Q

4. Covering diagram

To complete the discussion of links £, and manifolds M,, let us
describe a covering diagram in which they are involved.

Before formulating the main result of this section we have to talk
about the types of n-fold cyclic branched coverings of links we want
to consider. Obviously, a knot has an unique n-fold cyclic branched
covering. Let L = K; U Ky be a link in the 3-sphere with two
components. Denote by 71(S% \ L) the fundamental group of the
link complement and by m; and mo meridians of the components
Ky U K5 of the link, oriented in an arbitrary way. The homology
group Hi(S?\ L) of the link complement is isomorphic to Z? and
generated by the homology classes of the meridians. Each surjection
Y m(S3\ L) — H{(S*\ L) — Z, onto the cyclic groups Z, of
order n defines a cyclic n-fold branched covering M = M (3)) of S3
branched over L. According to [14] we call M a strictly—cyclic n-fold
covering of L if the corresponding surjection ¢ maps (the homotopy
class of) meridians m; and mg of L to the same generator of the
cyclic group Z,,. Note that strictly—cyclic coverings are also called
uniform coverings in [20].

Let us denote by M, the strictly—cyclic n-fold covering of S3
branched over the 2-component 2-bridge link 40/9. Remark that
M, is a generalized periodic Takahashi manifold in the sense of [13].

THEOREM 4.1. For the above described manifolds and orbifolds the
following diagram of coverings holds:
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where singular sets L,, R, Q, and P of orbifolds O,, O/, O, and
O] are presented in Figures 2, 3, 4, and 7, respectively.

Proof. By the proof of Theorem 2.1 and by Proposition 3.1 we al-
ready have the following sequences of coverings:

2 n /
M, — O, — O,
and
;7 n noo 2 no2 /
M, — O, — O, — O,.

Let us denote by I'/, the group of the orbifold O,,, i.e. O} =H3/T).
Let a, (3, and « be generators of I/, corresponding to generators of
71(83 \ R) pictured in Figure 9.

Using the Wirtinger algorithm [3] one can see that I, has the
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following presentation:

(a,B,v | a"=1, p*=1, 4*=1, Bay=ap
a g ta gy g tay Tl By -
Brapy 8 ava  ByB apy T = 1),

Consider a group
Hy=7p®7®Z = {a|la"=1) @ b|b*=1) @ (c| 2 =1)

and define an epimorphism ¢, : I, — H, by setting ¢,(a) = a,
on(B) = b, on(y) =c. Let Ty, TV TV G,, and G}, be such groups
that O, = H3/T,,, O,/ = H3/T, O} = H3/T", M,, = H?/G,,, and
M) =H3/G",.

For the covering O/ — O] a lift of the loop 3 is a trivial loop,
lifts & and 4 of a and v are loops about components of the singular
set Q of O/ generating subgroups Z,, and Zs, respectively. Thus,
I = ¢, ((ala™ = 1) @ (c|c? = 1)). For the covering 0, — O, a
lift of the loop % is a trivial loop, a lift & of the loop & is a loop
about the singular set P of O} generating subgroup Z,. Thus,
I = ¢, ' ((ala™ = 1)). For the covering M, — O,/ the preimage of
the loop « is a trivial loop. Thus, G, = Ker(¢,,).

For the covering O,, — O/ a lift of the loop « is a trivial loop,
lifts B and 7 of loops 8 and « are loops about components of the
singular set £,, of O, generating subgroups Zs and Zs. Thus, I'), =
o (b = 1) @ (c|c®* = 1)). For the group Zo ® Zo = (b|b> = 1) @
(c|c> = 1) we denote d = b+ ¢ and consider a group Zo = (d|d?> = 1).
For the covering M,, — O,, loops B and 7 lift to trivial loops. Thus,
Gn = ¢, ' ((d|d* = 1)).

Therefore we get the following diagram of subgroups (where
A ™ B denotes that A is a subgroup of B of index m)
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Gy, = Ker(ion)

42/ \n‘

G = o1 (@) T = (@)
5 l l 2
Ly =, ((0) @ (c)) I = ¢, ({a) ® ()
n\; - 4/2
that implies the diagram of coverings. O
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